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We utilize Dyson’s concept of the adjoint of a partition to derive an infinite

family of new polynomial analogs of Euler’s Pentagonal Number Theorem. We

streamline Dyson’s bijection relating partitions with crank 4k and those with k in

the Rank-Set of partitions. Also, we extend Dyson’s adjoint of a partition to

MacMahon’s ‘‘modular’’ partitions with modulus 2: This way we find a new

combinatorial proof of Gauss’s famous identity. We give a direct combinatorial

proof that for n > 1 the partitions of n with crank k are equinumerous with partitions

of n with crank �k: # 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let pðnÞ denote the number of unrestricted partitions of n: Ramanujan
discovered three beautiful arithmetic properties of pðnÞ; namely

pð5n þ 4Þ � 0 ðmod 5Þ; ð1:1Þ

pð7n þ 5Þ � 0 ðmod 7Þ; ð1:2Þ

pð11n þ 6Þ � 0 ðmod 11Þ: ð1:3Þ

The partition congruences modulo 5 and 7 were proved by Ramanujan [18].
In [19] he proved (1.3) by a different method. The most elementary proof of
(1.3) similar to the one in [18] is due to Winquist [22].

Dyson [10] discovered empirically remarkable combinatorial interpreta-
tions of (1.1) and (1.2). Defining the rank of a partition as the largest part
1 Supported in part by the NSF under Grant DMS-9870052.
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minus the number of parts, he observed that

Nðk; 5; 5n þ 4Þ ¼ pð5n þ 4Þ
5

; 04k44; ð1:4Þ

Nðk; 7; 7n þ 5Þ ¼ pð7n þ 5Þ
7

; 04k46; ð1:5Þ

where Nðk;m; nÞ denotes the number of partitions of n with rank congruent
to k mod m: Identities (1.4) and(1.5) were later proved by Atkin and
Swinnerton-Dyer [9]. However, the rank failed to explain (1.3), and so
Dyson conjectured the existence of some analogue of the rank that would
explicate the Ramanujan congruence modulo 11: He named his hypothetical
statistic the crank.

Forty-four years later, Andrews and Garvan [8], building on the work of
Garvan [14], finally unveiled Dyson’s crank of a partition p:

crankðpÞ ¼
lðpÞ if mðpÞ ¼ 0;

*nnðpÞ � mðpÞ if mðpÞ > 0;

8<
: ð1:6Þ

where lðpÞ denotes the largest part of p; mðpÞ denotes the number of ones in
p and *nnðpÞ denotes the number of parts of p larger than mðpÞ:

Remarkably, the crank provides combinatorial interpretations of all three
Ramanujan congruences (1.1)–(1.3). Namely

Mðk; 5; 5n þ 4Þ ¼ pð5n þ 4Þ
5

; 04k44; ð1:7Þ

Mðk; 7; 7n þ 5Þ ¼ pð7n þ 5Þ
7

; 04k46; ð1:8Þ

Mðk; 11; 11n þ 6Þ ¼ pð11n þ 6Þ
11

; 04k410; ð1:9Þ

where Mðk;m; nÞ denotes the number of partitions of n with crank
congruent to k mod m:

Let PmðqÞ denote the generating function

PmðqÞ ¼
X1
n¼1

pmðnÞqn; ð1:10Þ

where pmðnÞ is the number of partitions of n with rank m: Here we are using
the convention that pmð0Þ ¼ 0: As a practical tool for his empirical
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calculations Dyson used the following formula for PmðqÞ:

PmðqÞ ¼
1

ðqÞ1

X
j51

ð�1Þj�1ð1 � qjÞqjð3j�1Þ=2þjmjj; ð1:11Þ

with

ðqÞ1 ¼
Y
j51

ð1 � qjÞ; for jqj51: ð1:12Þ

For later use we also define

ða; qÞn ¼ ðaÞn ¼
Yn�1

j¼0

ð1 � aqjÞ; n50 ð1:13Þ

and note that 1
ðqÞ1

is the generating function for unrestricted partitions.

Dyson knew how to prove (1.11) in 1942 [11]. However, the first published
proof of (1.11) was given by Atkin and Swinnerton-Dyer [9] in 1954. In
1968, Dyson [12] found a simple combinatorial argument which not only
explained (1.11) but also led to a new proof of Euler’s celebrated pentagonal
number theorem:

1 ¼ 1

ðqÞ1

X1
j¼�1

ð�1Þjqjð3j�1Þ=2: ð1:14Þ

To paraphrase Dyson’s argument in [12] we introduce the generating
function

QmðqÞ ¼
X
n51

*qqmðnÞqn; ð1:15Þ

where *qqmðnÞ is the number of partitions of n with rank 5m: We adopt the
convention that

*qqmð0Þ ¼ 0: ð1:16Þ

Clearly,

PmðqÞ ¼ QmðqÞ � Qmþ1ðqÞ: ð1:17Þ

Next, following the treatment in [12] we will show that

QmðqÞ þ Q1�mðqÞ þ 1 ¼ 1

ðqÞ1
; ð1:18Þ
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and for m50

QmðqÞ ¼ qmþ1ðQ�2�mðqÞ þ 1Þ: ð1:19Þ

To prove (1.18) we note that any given nonempty partition p counted

by 1
ðqÞ1

has either rank 5m or rank 5m: If rank 5m; then p is counted by

QmðqÞ: If rank 5m; then we conjugate p to get pn as illustrated in Fig. 1.
It is obvious in this case that rankðpnÞ51 � m: Hence, pn is counted by

Q1�mðqÞ: Finally, the empty partition is counted by 1 on the left-hand side of
(1.18) and on the right-hand side by 1

ðqÞ1
: The proof of (1.19) is more subtle.

Here we will use a different conjugation transformation (Dyson’s adjoint) as
follows. Consider some partition p with rankðpÞ5m50: This partition is
counted by QmðqÞ in (1.19). Clearly,

lðpÞ � nðpÞ5m50: ð1:20Þ

Let us now remove the largest part of p to end up with *pp: Next, we conjugate
*pp to get *ppn: Finally, we attach to *ppn a new largest part of size lðpÞ � m� 1:
These transformations are illustrated in Fig. 2.

Note that the map p ! p0 is reversible. It is obvious that

lðp0Þ ¼ lðpÞ � m � 1; ð1:21Þ

nðp0Þ4lðpÞ þ 1; ð1:22Þ

jp0j ¼ jpj � m� 1; ð1:23Þ

where jpj denotes the sum of parts of p:
Since rankðp0Þ5� 2 � m; we see that p0 is counted by Q�2�mðqÞ in (1.19),

provided jp0j=0: If jpj ¼ mþ 1 and rankðpÞ5m; then nðpÞ ¼ 1 and lðpÞ ¼
FIG. 1. Conjugation of a partition p with largest part lðpÞ and the number of parts

nðpÞ; lðpÞ � nðpÞ5m:



�: �: �∗ : � ′:∼∼

FIG. 2. Dyson’s adjoint of p ¼ 4 þ 3 þ 1 with rank ¼ m ¼ 1:
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1 þ m: So in this case p0 represents the empty partition, which is counted by
1 in (1.19). This concludes the proof of (1.19).

Combining (1.18) and (1.19), we see that for m50

QmðqÞ þ qmþ1Qmþ3 ¼ qmþ1

ðqÞ1
: ð1:24Þ

Iterating (1.24) we obtain for m50

QmðqÞ ¼
qmþ1

ðqÞ1
� qmþ1Qmþ3

¼ qmþ1 � q2mþ5

ðqÞ1
þ q2mþ5Qmþ6 ¼ � � �

¼ 1

ðqÞ1

X
j51

ð�1Þj�1qjð3j�1Þ=2þmj: ð1:25Þ

We observe that (1.25) together with (1.18) with m ¼ 0 yields Euler’s
theorem (1.14). On the other hand, (1.25) together with (1.17) yields (1.11)
with m50: To treat the m50 case in (1.17) we make use of

PmðqÞ ¼ P�mðqÞ; ð1:26Þ

which is a straightforward consequence of the conjugation transformation.
In [6] Andrews utilized Dyson’s adjoint to give a new proof of a partition

theorem due to Fine. This seems to be the only known application of the
Dyson transformation.

In the next section we will show that Dyson’s formulas (1.18) and (1.19)
can be generalized to yield a binary tree of polynomial analogs of (1.14).
This tree contains Schur’s well-known formula

1 ¼
X1

j¼�1
ð�1Þ jq jð3j�1Þ=2

2L

L þ b3j
2
c

" #
q

; ð1:27Þ
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as well as a new polynomial version of (1.14)

1 ¼
X1

j¼�1
ð�1Þ jq jð3jþ1Þ=2 2L � j

L þ j

" #
q

; ð1:28Þ

where bxc denotes the integer part of x and q-binomial coefficients are
defined as

n þ m

n

" #
q

¼
ðqÞnþm

ðqÞnðqÞm
if n; m50;

0 otherwise:

(
ð1:29Þ

Actually, (1.27) and (1.28) are special cases of the following more general
formula:

1 � ds;�1 ¼
X1

j¼�1
ð�1Þ jq jð3j�1Þ=2þsj 2L þ s� auðn; jÞ

L þ sþ bnþ1
n

jc

" #
q

; ð1:30Þ

where n ¼ 1; 2; 3; 4; 5; . . . ; s ¼ �1; 0; 1; and

auðn; jÞ ¼

�j if n ¼ 1;

0 if n ¼ 2;Pn�2

k¼1

j þ k

n


 �
if n > 2:

8>>><
>>>: ð1:31Þ

It is easy to verify that

lim
n!1

auðn; jÞ ¼ j � 1 if j > 0 ð1:32Þ

and

auðn;�jÞ ¼ �auðn; jÞ for n51: ð1:33Þ

Note that (1.27) is (1.30) with n ¼ 2; s ¼ 0 and (1.28) is (1.30) with
n ¼ 1; s ¼ 0:

In Sections 3 and 4, we will streamline and generalize Dyson’s treatment
of partitions with crank 4k: In Section 5, we will use modular
representations with modulus 2 of partitions in which odd parts do not
repeat, and an appropriate modification of Dyson’s adjoint transformation,
to obtain a new proof of the Gauss formula

ðq2; q2Þ1
ðq; q2Þ1

¼
X
j50

q jðjþ1Þ=2: ð1:34Þ
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We remark that the first combinatorial proof of (1.34) was given by
Andrews [3]. This early proof uses a Franklin-type involution and is quite
different from the one given in Section 5. Section 6 contains a brief
description of some open questions for future research. In Appendix A we
introduce a new type of partition transformation, termed pseudo-conjuga-
tion, in order to prove directly that for n > 1 the partitions of n with crank k
are equinumerous with partitions of n with crank �k: We also show that
self-pseudo-conjugate partitions of n (introduced there) are equinumerous
with partitions of n into distinct odd parts. Finally, in Appendix B we
outline an alternative proof of formula (5.17). This proof was communicated
to us by Andrews [7].

2. POLYNOMIAL ANALOGS OF EULER’S PENTAGONAL
NUMBER THEOREM

We say that a partition p is in the box ½L;M� if its largest part does not
exceed L and the number of parts does not exceed M: In other words,

lðpÞ4L;

nðpÞ4M:

It is well known [4] that the generating functions for partitions in the box
½L;M� is

L þ M

L

" #
q

:

Let us define QL
mðqÞ as

QL
mðqÞ ¼

X
n51

*qqL
mðnÞqn; ð2:1Þ

where *qqL
mðnÞ is the number of partitions of n with rank 5m and largest part

4L: As before, we assume that *qqL
mð0Þ ¼ 0: Clearly, QL

mðqÞ ¼ 0 whenever
L4m: We now prove that

QL
mðqÞ � QL�1

m ðqÞ ¼ qL 2L � m � 1

L

" #
q

: ð2:2Þ

To this end we observe that the left-hand side of (2.2) counts partitions
with rank 5m and lðpÞ ¼ L: We note that these partitions are in the box
½L;L �m�: If we remove the largest part L from one of those partitions we
obtain a partition in the box ½L;L � m � 1�; and this partition is counted by
the q-binomial coefficient on the right-hand side of (2.2), as desired.
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We now move on to derive the bounded analogs of (1.18), (1.19), namely

QL
mðqÞ þ QL�m

1�m ðqÞ þ 1 ¼
2L � m

L

" #
q

; L > m; ð2:3Þ

and

QL
mðqÞ ¼ qmþ1ðQL�1�m

�2�m ðqÞ þ 1Þ; L > m50: ð2:4Þ

To prove (2.3) we note that any given nonempty partition p; counted
by 2L�m

m


 �
; has either rank 5m or rank 5m: Moreover, p is in the box

½L;L �m�: Now if rankðpÞ5m; then p is counted by QL
mðqÞ: If rankðpÞ5m;

then we conjugate p to get pn: Obviously, pn is counted by QL�m
1�m ðqÞ: Finally,

the empty partition is counted by 1 and by the q-binomial coefficient on the
left- and right-hand sides of (2.3), respectively.

Next, to prove (2.4) we observe that any partition p counted by QL
mðqÞ is

in the box ½L;L � m�: Performing Dyson’s transformation p ! p0; as
explained in the previous section, we see that lðp0Þ4L � 1 � m and
rankðp0Þ5� 2 � m: Therefore, if jpj=m þ 1; then p0 is counted by
QL�1�m

�2�m ðqÞ: If jpj ¼ m þ 1; then p0 is empty. In this case it is counted by 1
on the right-hand side of (2.4).

Combining (2.3) and (2.4) yields

QL
mðqÞ þ qmþ1QLþ2

mþ3ðqÞ ¼ qmþ1
2L � m þ 1

L þ 2;

" #
q

; m50: ð2:5Þ

We remark that when L4m the above formula becomes 0 þ 0 ¼ 0; and
when L tends to infinity (2.5) reduces to (1.24). Actually, it is possible to
derive another bounded analog of (1.24). To this end we employ (2.2)
together with the well-known recurrence

n þm

n

" #
q

¼ qn
n þ m� 1

n

" #
q

þ
n þm � 1

m� 1

" #
q

ð2:6Þ

to transform (2.5) as

QL
mðqÞ þ qmþ1QLþ1

mþ3ðqÞ ¼ qmþ1 2L � m þ 1

L þ 2

" #
q

�qLþ2 2L � m

L þ 2

" #
q

8<
:

9=
;

¼ qmþ1
2L � m

L þ 1

" #
q

; m50: ð2:7Þ
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The power of (2.5) and (2.7) lies in the fact that these transformations can
be employed to generate an infinite binary tree of representations for QL

mðqÞ:
First we consider four special cases, namely:

QL
mðqÞ ¼

X
j51

ð�1Þj�1qjð3j�1Þ=2þmj 2L �m þ j

L �m � j

" #
q

; m50; ð2:8Þ

QL
mðqÞ ¼

X
j51

ð�1Þj�1qjð3j�1Þ=2þmj
2L � m � j þ 1

L þ j

" #
q

; m50; ð2:9Þ

QL
mðqÞ ¼

X
j51

ð�1Þj�1q jð3j�1Þ=2þmj
2L �m þ 1

L � b�3j
2

�
" #

q

; m50; ð2:10Þ

QL
mðqÞ ¼

X
j51

ð�1Þj�1q jð3j�1Þ=2þmj
2L �m

L þ b3j
2

�
" #

; m50: ð2:11Þ

To derive (2.8)–(2.11) we use the iteration schemes which we denote
symbolically as

ð2:5Þ2ð2:5Þ2ð2:5Þ2ð2:5Þ2ð2:5Þ2ð2:5Þ2 � � � ; ð2:12Þ

ð2:7Þ2ð2:7Þ2ð2:7Þ2ð2:7Þ2ð2:7Þ2ð2:7Þ2 � � � ; ð2:13Þ

ð2:5Þ2ð2:7Þ2ð2:5Þ2ð2:7Þ2ð2:5Þ2ð2:7Þ2 � � � ; ð2:14Þ

ð2:7Þ2ð2:5Þ2ð2:7Þ2ð2:5Þ2ð2:7Þ2ð2:5Þ2 � � � ; ð2:15Þ

respectively. For example, scheme (2.12) means each transformation uses
only Eq. (2.5), and scheme (2.14) means that we use both (2.5) and (2.7) in
an alternating fashion with (2.5) being used first.

Now, (2.3) with m ¼ 0 yields

QL
0 ðqÞ þQL

1 ðqÞ þ 1 ¼
2L

L

" #
q

: ð2:16Þ

Equation (1.28) then follows by using (2.8) with m ¼ 0 and (2.9) with
m ¼ 1:
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Schur’s formula (1.27) follows in a similar fashion. We use (2.16), (2.10)
with m ¼ 1; (2.11) with m ¼ 0 and the fact that

2L

L þ a

" #
q

¼
2L

L � a

" #
q

: ð2:17Þ

To prove (1.30) we need to consider the following periodic iterations:

ð2:7Þ2ð2:7Þ2 � � �2ð2:7Þ2ð2:5Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

� ð2:7Þ2ð2:7Þ2 � � �2ð2:7Þ2ð2:5Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

2 � � �

ð2:18Þ

and

ð2:5Þ2ð2:5Þ2 � � �2ð2:5Þ2ð2:7Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

� ð2:5Þ2ð2:5Þ2 � � �2ð2:5Þ2ð2:7Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

2 � � � :

ð2:19Þ

The iteration schemes (2.18) and (2.19) yield for m50

QL
mðqÞ ¼

X
j51

ð�1Þj�1q jð3j�1Þ=2þmj 2L � m � auðn; jÞ
L þ bnþ1

n
jc

" #
q

ð2:20Þ

and

QL
mðqÞ ¼

X
j51

ð�1Þj�1q jð3j�1Þ=2þmj 2L þ 1 � mþ auðn; jÞ
L þ 1 � mþ b�nþ1

n
jc

" #
; ð2:21Þ

respectively. If we employ (2.3) and (2.20) with m ¼ 0 and (2.21) with m ¼ 1
we obtain (1.30) with s ¼ 0: On the other hand, (2.3) and (2.20) with m ¼ 1
and L ! L þ 1 together with (2.21) with m ¼ 0 give (1.30) with s ¼ 1: To
prove (1.30) with s ¼ �1 we note that (2.7) and (2.3) with m ¼ �1 can be
combined to give

dm;�1 þ QL
mðqÞ þ qmþ1QLþ1

mþ3ðqÞ ¼ qmþ1 2L � m

L þ 1

" #
q

; m5� 1: ð2:22Þ

Therefore (2.20) can be slightly generalized as

dm;�1 þ QL
mðqÞ

¼
X
j51

ð�1Þj�1q jð3j�1Þ=2þmj
2L �m � auðn; jÞ

L þ bnþ1
n

jc

" #
q

; m5� 1: ð2:23Þ



DYSON’S SYMMETRIES OF PARTITIONS 71
Next, Eq. (2.3) with m ¼ �1 and L ! L � 1 becomes

1 þ QL�1
�1 ðqÞ þ QL

2 ðqÞ ¼
2L � 1

L � 1

" #
q

: ð2:24Þ

The last equation together with (2.21) with m ¼ 2 and (2.23) with m ¼ �1
and L ! L � 1 gives (1.30) with s ¼ �1; as desired.

We now move on to generalize (1.11). To this end we define PL
mðqÞ as

PL
mðqÞ ¼

X
n51

pL
mðnÞqn; ð2:25Þ

where pL
mðnÞ is the number of partitions of n with largest part 4L and rank

m: Obviously,

PL
mðqÞ ¼ QL

mðqÞ � QL
mþ1ðqÞ: ð2:26Þ

So using (2.10), (2.11) and (2.17) we obtain

PL
mðqÞ ¼

X
j51

ð�1Þj�1q jð3j�1Þ=2þmj
2L �m

L þ b3j
2
c

" #
q

�
X
j51

ð�1Þj�1q jð3jþ1Þ=2þmj
2L � m

L � b� 3j
2
c

" #
q

; ð2:27Þ

provided m50: Using the obvious conjugation symmetry

PL
�jmjðqÞ ¼ P

Lþjmj
jmj ðqÞ ð2:28Þ

it is straightforward to extend (2.27) to negative m: This way we obtain the
following polynomial analog of (1.11):

PL
mðqÞ ¼

X
j51

ð�1Þj�1q jð3j�1Þ=2þmj
2L � m

L þ signðmÞb3j
2
c

" #
q

�
X
j51

ð�1Þj�1q jð3jþ1Þ=2þmj
2L � m

L � signðmÞb� 3j
2
c

" #
q

; ð2:29Þ

where

signðmÞ ¼
1 if m50;

�1 otherwise:

(
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3. PARTITIONS WITH PRESCRIBED CRANKS

Dyson [10] conjectured that the generating function for the crank should
have a form similar to (1.11), and it does as can be seen from the following
formula:

#CCkðqÞ ¼
1

ðqÞ1

X
j51

ð�1Þj�1qTj�1þjjkjð1 � q jÞ þ qðdk;0 � dk;1Þ; ð3:1Þ

where

Tj ¼
jðj þ 1Þ

2
ð3:2Þ

and

#CCkðqÞ ¼
X
n50

#cckðnÞqn; ð3:3Þ

with #cckðnÞ denoting the number of partitions of n with crank k: In (3.3) we
adopt the convention that #cckð0Þ ¼ dk;0: Formula (3.1) is a consequence of
Theorem 7.19 in [14] and Theorem 1 in [8].

To explain (3.1) in a combinatorial fashion Dyson [13] introduced the
concept of the rank-set RðpÞ of a partition p ¼ p1 þ p2 þ p3 þ � � � with parts
p15p25p35 � � � : RðpÞ is defined as

RðpÞ ¼ ½j � pjþ1; j ¼ 0; 1; 2; . . .�: ð3:4Þ

To prove (3.1) Dyson first established that

CkðqÞ ¼ GkðqÞ þ qdk;0; ð3:5Þ

where

CkðqÞ ¼
X
n50

ckðnÞqn; ð3:6Þ

GkðqÞ ¼
X
n50

gkðnÞqn; ð3:7Þ

with ckðnÞ; gkðnÞ denoting the number of partitions of n with crank 4k and
k in the rank-set of these partitions, respectively. In (3.6)–(3.7) we use the
convention that ckð0Þ ¼ gkð0Þ ¼ 1 if k50 and 0; otherwise. He then showed
that

G�kðqÞ þ Gk�1ðqÞ ¼
1

ðqÞ1
ð3:8Þ



DYSON’S SYMMETRIES OF PARTITIONS 73
and

GkðqÞ þ qkþ1Gkþ1ðqÞ ¼
1

ðqÞ1
; k5� 1: ð3:9Þ

Iteration of (3.9) yields

GkðqÞ ¼
1

ðqÞ1

X
j50

ð�1ÞjqTjþkj ; k5� 1: ð3:10Þ

Now (3.10), (3.5) and the obvious relation

#CCkðqÞ ¼ CkðqÞ � Ck�1ðqÞ ð3:11Þ

together imply that

#CCkðqÞ ¼
1

ðqÞ1

X
j50

ð�1Þj�1ðqTj�1þkj � qTjþkjÞ þ qðdk;0 � dk;1Þ; k50;

ð3:12Þ

which is (3.1) with k50: To extend (3.12) to negative k; we observe that (3.8)
implies that

#GG�kðqÞ ¼ #GGkðqÞ; ð3:13Þ

where

#GGkðqÞ ¼ GkðqÞ � Gk�1ðqÞ: ð3:14Þ

From (3.5) we deduce that

#CCkðqÞ ¼ #GGkðqÞ þ qðdk;0 � dk;1Þ: ð3:15Þ

If we now replace k by �k in (3.15) with k50 and use (3.13) we obtain

#CC�kðqÞ ¼ #GG�kðqÞ þ qdk;0 ¼ #GGkðqÞ þ qdk;0; k50: ð3:16Þ

This equation together with (3.10) and (3.14) gives (3.1) for k50: In
addition, using (3.15) we see that (3.16) implies that

#CC�kðqÞ ¼ #CCkðqÞ þ qdk;1; k50: ð3:17Þ

In the appendix we give a direct combinatorial proof of (3.17) without using
(3.15).

To deal with (3.8) and (3.9) Dyson introduced a simple graphical tool
to determine whether or not k 2 RðpÞ: To explain it we follow Dyson [13]
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and define the boundary of the Ferrers graph of p as the infinite zig-zag
line consisting of vertical and horizontal segments each of unit length
(see Fig. 3).

Next, we draw two 458 lines, namely

y ¼ k þ x; y ¼ 1 þ kþ x;

as shown in Figs. 4 and 5.
Let BSkðpÞ denote the segment of BðpÞ lying in the strip

k þ x4y4k þ 1 þ x

determined by these two lines. Now if BSkðpÞ is vertical, then k 2 RðpÞ;
otherwise k =2 RðpÞ: Using this criterion it is easy to verify that nðpÞ=1 þ k;
whenever k 2 RðpÞ:
y

x

FIG. 3. Graph of p ¼ 5 þ 2 þ 1; the boundary BðpÞ is indicated by the thick line.

1+k

k

y

x

FIG. 4. Graph of p ¼ 3 þ 2 þ 1 þ 1 with k ¼ 2 2 RðpÞ:



1+k

k

y

x

FIG. 5. Graph of p ¼ 2 þ 1 with k ¼ 1 =2 RðpÞ:
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We are now ready to prove (3.8). First, it is obvious that any given

partition p counted by 1
ðqÞ1

has either �k 2 RðpÞ or �k =2 RðpÞ: In the first

case, p is counted by G�kðqÞ in (3.8). In the second case, BS�kðpÞ is a
horizontal segment, and so if we conjugate p to get pn; then it is clear that
BSk�1ðpnÞ is vertical. Therefore, k� 1 2 RðpnÞ and consequently pn is
counted by Gk�1ðqÞ in (3.8).

To prove (3.9), we remove the row containing the segment BSkðpÞ from
some given partition p counted by GkðqÞ: Next, we insert a vertical column
of height j þ k to the right of the rectangle ½ j; j þ k�; where j is the length of
the row removed. This procedure is illustrated in Fig. 6.

Let us call the resulting partition p0: It is easy to see that

jp0j ¼ jpj þ k;

and, because BS�1þkðp0Þ is a horizontal segment,

k � 1 =2 Rðp0Þ:
2

j

j+k

2

1

k

1+k

k

−1+k

j+k

1

j
�: � ′:

FIG. 6. The transformation p ! p0 used in the proof of (3.9) (k50).
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Since the map p ! p0 is reversible, we immediately infer that

gkðnÞ ¼ pðn þ kÞ � gk�1ðn þ kÞ; k50; ð3:18Þ

where n ¼ jpj: The last equation can be easily transformed in (3.9).
In [13], Dyson proves (3.5) first by mapping partitions p with k 2 RðpÞ

onto certain vector partitions introduced in [14], and then mapping these
vector partitions onto ordinary partitions with crank 4k: This approach
involved 10 separate cases. Here, we choose to prove (3.5) directly, without
any reference to vector partitions. Our analysis requires consideration of
only three separate cases, as we now explain.

Case 1. Here we consider partitions p with k 2 RðpÞ and nðpÞ5kþ 2:
This case is illustrated in Fig. 7.

We now remove the row bounded by the vertical segment BSkðpÞ and
then add a vertical column representing j ones to the resulting graph, where
j > 0 is the length of the row removed. We call this last partition p0: It is easy
to see that

nðp0Þ5k þ 2; mðp0Þ5j > 0; and *nnðp0Þ4j þ k;

where m and *nn were defined in (1.6). Clearly, crankðp0Þ ¼ *nnðp0Þ � mðp0Þ4k:
Perhaps, it is not immediately obvious that the map p ! p0 is reversible. To
see that it is, we consider partitions p0 with crankðp0Þ4k; mðp0Þ > 0 and
nðp0Þ5k þ 2: Next, we define j to be the x-coordinate of the intersection
point of the line y ¼ x þ k and the boundary Bðp0Þ: Since nðp0Þ5k þ 2; j is
j+k j+k

2

1

 

k

1

j

45˚

2

j

j

45˚
k

1+k

�:

�

� ′:

FIG. 7. Map p ! p0 from partitions p with k 2 RðpÞ; nðpÞ5kþ 2 to partitions p0 with

crankðp0Þ4k; mðp0Þ > 0; nðp0Þ5k þ 2:



DYSON’S SYMMETRIES OF PARTITIONS 77
positive. Moreover, j4m because otherwise crankðp0Þ would be > k: So we
can remove from p0 a vertical column of length j representing ones and place
it as a row of length j right underneath the ½j; j þ k� rectangle. This way we
obtain p with k 2 RðpÞ; nðpÞ5kþ 2:

Case 2. Here we consider partitions p with nðpÞ4k and unique largest
part lðpÞ: In this case the segment BSkðpÞ is necessarily vertical, implying
that k 2 RðpÞ: We now transform p into p0 as follows. If jpj > 1; then we
add a part of size 1 to p and subtract 1 from lðpÞ; giving lðp0Þ ¼
lðpÞ � 1; nðp0Þ ¼ nðpÞ þ 1; mðp0Þ > 0: If jpj ¼ 1; then we define p0 ¼ p:
It is obvious that the map p ! p0 is reversible and that
crankðp0Þ4k� 1; mðp0Þ > 0; nðp0Þ4k þ 1:

Case 3. Here we consider partitions p with k52; nðpÞ4k and the
largest part lðpÞ is repeated. Once again, it is clear that k 2 RðpÞ: We now
conjugate p to get p0 ¼ pn: Since the smallest part of p0 is at least 2; we have
mðp0Þ ¼ 0; and crankðp0Þ ¼ lðp0Þ ¼ nðpÞ4k:

We now recall that nðpÞ=kþ 1 whenever k 2 RðpÞ: Thus the three cases
above are exhaustive. Hence, (3.5) holds for k > 0:

If k50 there is no need to consider cases 2 and 3, because there are no
partitions with a negative number of parts. In addition, case 1 requires no
modification. Hence, (3.5) is valid in this case k50; as well.

If k ¼ 0; then there is no need to consider case 3. Once again, case 1
requires no modification. However, in case 2 the map p ! p0 is not bijective.
To see this, we note that the set of partitions p with nðpÞ40 is empty, but the
set of partitions p0 with crankðp0Þ4� 1; mðp0Þ > 0; nðp0Þ41 consists of the
single partition p0 with jp0j ¼ 1; nðp0Þ ¼ 1 and crankðp0Þ ¼ �1: Thus,

c0ðnÞ ¼ g0ðnÞ þ dn;1; n50: ð3:19Þ

The last equation can be easily transformed into (3.5) with k ¼ 0:

4. PARTITIONS WITH BOUNDS ON THE LARGEST PART
AND THE CRANK

Let CL
k ðqÞ; #CC

L

k ðqÞ; GL
k ðqÞ denote the generating functions for partitions

with crank 4k and largest part 4L; with crank k and largest part 4L; with
k in the rank-set and largest part 4L; respectively. In this section we will
establish the following bounded analogs of (3.5) and (3.9):

CL
k ðqÞ ¼ GL

k ðqÞ þ
1 � q

ðqÞk
þ ðq � 1Þ

L þ k

k

" #
q

þqdk;0; ð4:1Þ
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GL
k ðqÞ þ qkþ1GL�1

kþ1 ðqÞ ¼
1

ðqÞL
; ð4:2Þ

where for the sake of simplicity here (and throughout this section) we
assume that 04k4L; L=0; unless otherwise stated.

The proof of (4.2) is essentially the same as that of (3.9). Iterating (4.2) we
derive

GL
k ðqÞ ¼

XL
j¼0

ð�1Þ j q
Tjþkj

ðqÞL�j

: ð4:3Þ

To prove (4.1) we need to follow the three separate cases of the map p ! p0

we used to prove (3.5).
Case 1 requires no modification. In case 2 the map p ! p0

produces partitions p0 with lðp0Þ ¼ lðpÞ � 14L � 1 and, therefore,
misses partitions p0 counted by CL

k ðqÞ in (4.1) such that lðp0Þ ¼ L; mðp0Þ >
0 and nðp0Þ4k þ 1; and when k ¼ 0 this map also misses the partition
p0 ¼ 1; as discussed earlier. In other words, the correction term needed in
this case is

CT2 ¼ q1þL L þ k� 1

k � 1

" #
q

þqdk;0: ð4:4Þ

In case 3, the map p ! p0 fails to account for partitions p0 counted by CL
k ðqÞ

such that lðp0Þ4k; nðp0Þ > L; mðp0Þ ¼ 0: The correction term needed in this
case is

CT3 ¼ 1 � q

ðqÞk
�

L þ k

k

" #
q

�q
L � 1 þ k

k

" #
q

0
@

1
A

8<
:

9=
;yðk > 1Þ; ð4:5Þ

where

yðstatementÞ ¼
1 if statement is true;

0 otherwise:

(
ð4:6Þ

To understand (4.5) we observe that 1�q
ðqÞk

is the generating function for
partitions without ones and largest part not exceeding k; and

L þ k

k

" #
q

�q
L � 1 þ k

k

" #
q

0
@

1
A
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is the generating function for partitions *pp with lð *ppÞ4k; nð *ppÞ4L; mð *ppÞ ¼ 0:
Combining (4.4) and (4.5) and using the q-binomial recurrence (2.6) we get
the total correction term

T ¼ CT2 þ CT3 ¼ 1 � q

ðqÞk
þ ðq � 1Þ

L þ k

k

" #
q

þ qdk;0 ð4:7Þ

as desired. Since

#CC
L

k ðqÞ ¼ CL
k ðqÞ � CL

k�1ðqÞ; ð4:8Þ

we have for L5k > 0

#CC
L

k ðqÞ ¼
XL
j¼1

ð�1Þ j�1qTj�1þkj ð1 � q jÞ
ðqÞL�j

þ yðk > 1Þ 1 � q

ðqÞk
qk þ ðq � 1Þqk

L � 1 þ k

k

" #
q

; ð4:9Þ

by using (4.1) and (4.3).
We now derive a very different representation for #CC

L

k ðqÞ using (1.6).
Because the crank is defined in (1.6) in a piece-wise fashion we have to treat
two separate cases.

Case A. Here we consider partitions %pp with crankð %ppÞ ¼ k > 0;
lð %ppÞ4L; and mð %ppÞ > 0: We decompose the graph of some given %pp as shown
in Fig. 8.

From this decomposition it is clear that the generating function for these
partitions is

AðqÞ ¼
XL�1

m¼1

qmqðmþ1ÞðmþkÞ 1

ðq2; qÞm�1

L � 1 þ k

mþ k

" #
q

: ð4:10Þ

Case B. Here we consider partitions %pp without ones with crankð %ppÞ ¼
lð %ppÞ ¼ k; 24k4L: Clearly, the generating function for these partitions is

BðqÞ ¼ qk

ðq2; qÞk�1

yðk > 1Þ: ð4:11Þ



�+1

�+k

≤�

≤L

�>0

 

 

1

2

FIG. 8. Decomposition of partition %pp with crankð %ppÞ ¼ k > 0; L5lð %ppÞ; mð %ppÞ > 0:

BERKOVICH AND GARVAN80
Combining (4.10) and (4.11) we find that

#CC
L

k ðqÞ ¼AðqÞ þ BðqÞ

¼ qkð1 � qÞ
ðqÞk

yðk > 1Þ

þ
XL�1

m¼1

qðmþ1ÞðmþkÞþm

ðq2; qÞm�1

L � 1 þ k

mþ k

" #
q

; 05k4L: ð4:12Þ

Comparing (4.9) and (4.12) we arrive at the following identity:

XL
j¼1

ð�1Þj�1qTj�1þkj ð1 � q jÞ
ðqÞL�j

¼ ð1 � qÞ
XL�1

m¼0

qðmþ1ÞðmþkÞþm

ðqÞm
L � 1 þ k

mþ k

" #
q

: ð4:13Þ

Remarkably, this identity is nothing else but a limiting case of Heine’s
second transformation of a 2f1-series [16]:

2f1

a; b

c
; q; z

 !
¼

ðc
b
Þ1ðbzÞ1

ðcÞ1ðzÞ1
2f1

abz
c
; b

bz
; q;

c

b

 !
; ð4:14Þ

where

2f1

a; b

c
; q; z

 !
¼
X1
n¼0

ðaÞnðbÞn
ðcÞnðqÞn

zn: ð4:15Þ
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To see this we rewrite the left-hand side of (4.13) in q-hypergeometric
form as

XL
j¼1

ð�1Þ j�1qTj�1þkj ð1 � q jÞ
ðqÞL�j

¼ qkð1 � qÞ
ðqÞL�1

lim
c!0

2f1

q2; q1�L

c
; q; qLþk

 !
: ð4:16Þ

Here we have used

ðqÞL�j ¼
ðqÞL�1

ðq1�LÞj�1

ð�1Þ j�1qTj�2�ðL�1Þðj�1Þ ð4:17Þ

and

1 � q1þj

1 � q
¼

ðq2Þj
ðqÞj

; ð4:18Þ

along with the trivial relation

lim
c!0

ðcÞn ¼ 1: ð4:19Þ

Next, we employ (4.14) with a ¼ q2; b ¼ q1�L; z ¼ qLþk together with

ðq1þkÞ1
ðqLþkÞ1

¼ ðq1þkÞL�1 ð4:20Þ

and

lim
r!1

ðrÞir�i ¼ ð�1ÞiqTi�1 ð4:21Þ

to derive

XL
j¼1

ð�1Þ j�1qTj�1þkj ð1 � q jÞ
ðqÞL�j

¼ qkð1 � qÞ
ðqÞL�1

ðq1þkÞL�1 lim
c!0

2f1

q3þk

c
; q1�L

q1þk

; q; cqL�1

0
@

1
A

¼ qkð1 � qÞ
ðqÞL�1

ðq1þkÞL�1

XL�1

i¼0

ð�1Þi ðq1�LÞi
ðqÞiðq1þkÞi

qTi�1þðLþkþ2Þi: ð4:22Þ
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Finally, verifying that

ð�1Þiðq
1þkÞL�1

ðqÞL�1

ðq1�LÞi
ðq1þkÞi

¼ qTi�Li L � 1 þ k

i þ k

" #
q

ð4:23Þ

we see that

XL
j¼1

ð�1Þ j�1qTj�1þkj ð1 � q jÞ
ðqÞL�j

¼ ð1 � qÞ
XL�1

i¼0

qi2þð2þkÞiþk

ðqÞi
L � 1 þ k

i þ k

" #
q

: ð4:24Þ

This last equation is essentially (4.13), as desired.
The q-hypergeometric proof of (4.13) clearly suggests that our analysis

can be extended further to treat partitions p with crankðpÞ ¼ k; lðpÞ4L and
nðpÞ4M: However, we will not pursue this here.

5. A VARIANT OF DYSON’S TRANSFORMATION AND
A NEW PROOF OF GAUSS’S FORMULA

Let eðnÞ denote the number of partitions of n into distinct odd parts with
all other parts being even. The generating function EðqÞ for these partitions
can be written in the form of a product as

EðqÞ ¼
X
n50

eðnÞqn ¼ ð�q; q2Þ1
ðq2; q2Þ1

: ð5:1Þ

We will use MacMahon’s graphs with modulus 2 to depict these partitions.
For example, the mod 2 graph of the partition p ¼ 7 þ 6 þ 6 þ 5 þ 2 is given
in Fig. 9.

A nice thing about mod 2 representations of the partitions counted by
EðqÞ is that these representations have certain invariance properties under
conjugation. Namely, if we conjugate the mod 2 graph of some given
partition counted by EðqÞ we obtain a partition that is also counted by EðqÞ:
2

2

22

2

2 2

22 2 1

1

2

2

FIG. 9. mod 2 and regular mod 1 representations of p ¼ 7 þ 6 þ 6 þ 5 þ 2:
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For instance if we conjugate the mod 2 graph of the partition depicted in
Fig. 9 we get pn ¼ 10 þ 8 þ 7 þ 1 whose mod 2 graph is given in Fig. 10.

Note that the ordinary Ferrers graph representations do not possess this
invariance property. For example, if we conjugate the mod 1 graph in Fig. 9
we get the partition 5 þ 5 þ 4 þ 4 þ 4 þ 3 þ 1; which has repeated odd
part 5:

Next, we define the M2-rank of a partition as the largest row minus the

number of rows of its mod 2 graph. It is easy to check that the M2-rank of the
partition, 7 þ 6 þ 6 þ 5 þ 2; depicted in Fig. 9, is equal to 4 � 5 ¼ �1; while
its rank is 7 � 5 ¼ 2: Also, it is straightforward to verify that under
conjugation the M2-rank changes its sign, as does the ordinary rank.

Let us define *EErðqÞ as

*EErðqÞ ¼
X
n51

*eerðqÞqn; ð5:2Þ

where *eerðnÞ denotes the number of partitions of n into distinct odd parts
and unrestricted even parts such that the M2-rank 5r: We assume that
*eerð0Þ ¼ 0: We now show that

*EErðqÞ þ *EE1�rðqÞ þ 1 ¼ EðqÞ ð5:3Þ

and

*EErðqÞ ¼ q2rþ1ð *EE�1�rðqÞ þ 1Þ; r50: ð5:4Þ

To prove (5.3) we will follow a well-trodden path and observe that any
nonempty partition counted by EðqÞ whose M2-rank 5r is also counted by
*EErðqÞ: Any nonempty partition counted by EðqÞ whose M2-rank 5r gives

rise to a partition with M2-rank 5� 1 � r; after conjugation. Thus, this
conjugated partition is counted by *EE�1�rðqÞ in (5.3). Finally, the empty
partition is counted by 1 and EðqÞ on the left- and right-hand sides of (5.3),
respectively.

The proof of (5.4) requires modification of Dyson’s transformation,
which we now proceed to describe. Let p denote the mod 2 graph of some
1

1

2222

2 22

2 2222

FIG. 10. mod 2 representation of pn ¼ 10 þ 8 þ 7 þ 1:
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partition counted by *EErðqÞ in (5.4). Let r þ ‘ðpÞ denote the length of the
largest row of p; and hðpÞ denote the number of rows of p: Clearly,

hðpÞ4‘ðpÞ

for p to have M2-rank 5r: Next, we remove the largest row from p to get a
mod 2 graph *pp: Conjugating *pp we obtain *ppn: Now, if the removed row
represented the odd part 2‘þ 2r � 1; then we add to *ppn a new largest row of
length ‘� 1; representing the even part 2‘� 2: On the other hand, if the
removed row represented the even part 2‘þ 2r; then we add to *ppn a new
largest row of length ‘; representing the odd part 2‘� 1: These operations
are illustrated in Figs. 11 and 12 where the resulting partition is denoted
by p0:

Remarkably, regardless of whether the largest part of p is even of odd we
have

jp0j ¼ jpj � 2r � 1 ð5:5Þ

and

M2-rankðp0Þ5� 1 � r: ð5:6Þ

It is easy to check that the map p ! p0 is reversible, except when
jpj ¼ 2r þ 1: In the last case p0 is empty. This concludes the proof of (5.4).

Combining (5.3), (5.4) we obtain

*EErðqÞ þ q2rþ1 *EE2þrðqÞ ¼ q2rþ1 ð�q; q2Þ1
ðq2; q2Þ1

; r50: ð5:7Þ
2 1

2

12

2 2

2

2

122 22

1

2

2

2 2

2

1

2

2
 �: �: �∗ : � ′:∼∼

FIG. 11. Modification of Dyson’s adjoint for p ¼ 7 þ 5 þ 2 with M2-rank ¼ 1 > r ¼ 0:
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1

1
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�: �: �∗ : � ′:∼∼

FIG. 12. Modification of Dyson’s adjoint for p ¼ 8 þ 5 þ 2 with M2-rank ¼ 1 > r ¼ 0:
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Iteration of (5.7) yields

*EErðqÞ ¼
ð�q; q2Þ1
ðq2; q2Þ1

X
j51

ð�1Þ j�1q2rjþjð2j�1Þ; r50: ð5:8Þ

Now (5.3) with r ¼ 0 states that

*EE0ðqÞ þ *EE1ðqÞ þ 1 ¼ ð�q; q2Þ1
ðq2; q2Þ1

: ð5:9Þ

Thanks to (5.8) we may cast (5.9) in the form

1 ¼ ð�q; q2Þ1
ðq2; q2Þ1

X1
j¼�1

ð�1Þ jq jð2jþ1Þ; ð5:10Þ

and so

ðq2; q2Þ1
ð�q; q2Þ1

¼
X1

j¼�1
ð�1Þ jq jð2jþ1Þ: ð5:11Þ

Finally, replacing q by �q in (5.11) we obtain the Gauss identity

ðq2; q2Þ1
ðq; q2Þ1

¼
X1

j¼�1
q jð2jþ1Þ ¼

X
j50

qTj : ð5:12Þ

Formula (5.8) implies that

#EErðqÞ ¼EðqÞ � *EErþ1ðqÞ

¼ ð�q; q2Þ1
ðq2; q2Þ1

X
j50

ð�1Þ jq2rjþjð2jþ1Þ; r50; ð5:13Þ

where #EErðqÞ denotes the generating function for partitions into distinct
odd, and unrestricted even parts with M2-rank4r: We now develop
very different representations for #EErðqÞ: To this end we decompose
partitions counted by #EErðqÞ into even and odd parts. Let us assume that
this decomposition gives p1 with j distinct odd parts and p2 with i even
parts. Clearly, lðp1Þ42ði þ j þ rÞ � 1 and lðp2Þ42ði þ j þ rÞ; and so, for
r50 we have

#EErðqÞ ¼
X
i;j50

q jþ2Tj�1
i þ j þ r

j

" #
q2

q2i
i þ j þ r � 1 þ i

i

" #
q2

: ð5:14Þ
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Comparing (5.13) and (5.14), we see that

X
i;j50

q j2þ2i i þ j þ r

j

" #
q2

2i þ j þ r� 1

i

" #
q2

¼ ð�q; q2Þ1
ðq2; q2Þ1

X
j50

ð�1Þ jq jð2jþ1Þðq2rÞ j; r50: ð5:15Þ

Next, since

n þ m

n

" #
q

¼ ðq1þm; qÞn
ðq; qÞn

; ð5:16Þ

we can rewrite (5.13) as

X
i;j50

q j2þ2i
ðaq2iþ2; q2Þjðaq2iþ2j; q2Þi

ðq2; q2Þjðq2; q2Þi
¼ ð�q; q2Þ1

ðq2; q2Þ1

X
j50

ð�1Þ jq2j2þja j; ð5:17Þ

where a ¼ q2r; r50: Since the limit of the sequence fq2rg is equal to zero, we
may treat a in (5.17) as a free parameter. In Appendix B we discuss an
alternative proof of (5.17). This proof was communicated to us by Andrews
[7].

In the past, fundamental as they are, modular representations have not
received the attention they deserve. Recently, Alladi [1] used 2-modular
representations to provide an elegant combinatorial bijection for a variant
of G .oollnitz’s partition theorem. However, in [1] partitions into only distinct
odd parts are considered, whereas here we allow even parts to appear with
possible repetition.

In this regard, Alladi pointed out to us that Andrews [4, Example 6,
p. 13] used mod 2 representations on the set of partitions treated
here, subject to the extra condition that no part ¼ 1; in order to
establish a partition theorem, which is equivalent to Cauchy’s identity
in the form

X
n50

ð�aq; q2Þn
ðq2; q2Þn

tnq2n ¼ ð�atq3; q2Þ1
ðtq2; q2Þ1

: ð5:18Þ

Andrews’s proof of the original Cauchy’s identity with base q (instead of
base q2 as above) may be found in [2].
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6. OPEN QUESTIONS

In [5] Andrews proposed a dissection of a partition p into successive
Durfee squares with sizes n1ðpÞ5n2ðpÞ5n3ðpÞ5 � � � : For example, the
partition p; depicted in Fig. 13, has two Durfee squares with sizes n1ðpÞ ¼ 3;
n2ðpÞ ¼ 2:

Garvan [15] introduced a generalization of Dyson’s rank for partitions
with at least k � 1 successive Durfee squares. He called this generalization
the k-rank of a partition p: The k-rank is defined as

k-rankðpÞ ¼

the number of columns in the Ferrers graph of

p which lie to the right of the first Durfee square

and whose length 4nk�1ðpÞ
minus

the number of parts of p that lie below the

ðk � 1Þth Durfee square:

ð6:1Þ

For instance, the partition p depicted in Fig. 13 has 3-rankðpÞ ¼ 2 � 1 ¼ 1:
Since any nonempty partition p has at least one Durfee square we can easily
infer that the 2-rank is the same as Dyson’s rank.

Formula (1.10) in [15] implies that for m50

FGk;mðqÞ ¼
1

ðqÞ1

X1
j¼1

ð�1Þ j�1q jðð2k�1Þj�1Þ=2þmj ; ð6:2Þ

where FGk;mðqÞ denotes the generating function for partitions p with at least
k � 1 successive Durfee squares and with k-rankðpÞ5m50: Using (6.2) it is
FIG. 13. Ferrers graph of p ¼ 6 þ 5 þ 4 þ 2 þ 2 þ 1: This graph can be dissected into two

Durfee squares of sizes 3 and 2: 3-rankðpÞ ¼ 2 � 1 ¼ 1:
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easy to verify that

FGk;mðqÞ þ qkþm�1FGk;2k�1þmðqÞ ¼
qkþm�1

ðqÞ1
: ð6:3Þ

We note that (6.3) with k ¼ 2 becomes (1.24). Despite its speciously simple
appearance the functional equation (6.3) with k > 2 turned out to be very
difficult to prove in a combinatorial fashion. Perhaps the appropriate
generalization of Dyson’s notion of rank-set may provide a key to a
combinatorial proof of (6.3).

We feel that it would be worthwhile to determine the precise q-
hypergeometric status of the new polynomial analogs of Euler’s pentagonal
number theorem (1.30) and to explore more general iteration schemes.
Finally, we would like to pose the problem of finding a natural bounded
extension of formulas (1.4), (1.5), and (1.7)–(1.9).

APPENDIX A

Here we give a direct proof of (3.17) which we restate as

#cc�kðnÞ ¼ #cckðnÞ þ dn;1dk;1; k50; ðA:1Þ

with #cckðnÞ denoting the number of partitions of n with crank k: It is easy to
check that (A.1) holds for n ¼ 0; 1:

To proceed further let us recall that lðpÞ; mðpÞ and *nnðpÞ denote the largest
part of a partition p; the number of ones in p and the number of parts of p
which are larger than mðpÞ; respectively. In addition, let gðpÞ be defined by

gðpÞ ¼
p1 � p2 if *nnðpÞ=1;

lðpÞ � mðpÞ � 1 if *nnðpÞ ¼ 1;

(

where p ¼ p1 þ p2 þ p3 þ � � � has parts p15p25p35 � � � : It is easy to check
that (A.1) with n > 1 is an immediate consequence of the following two
propositions.

Proposition A.1. The number of partitions p with jpj ¼ n > 1; lðpÞ ¼ ‘;
and mðpÞ ¼ 0; equals the number of partitions p0 with jp0j ¼ jpj; *nnðp0Þ ¼ 0; and

mðp0Þ ¼ ‘:

Proposition A.2. The number of partitions p with jpj ¼ n > 1; mðpÞ ¼
M > 0; and *nnðpÞ ¼ N > 0; equals the number of partitions p0 with jp0j ¼ jpj;
mðpÞ ¼ N; and *nnðpÞ ¼ M:
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To prove Proposition A.1 we remove the largest row from the graph of p
and then add a vertical column representing lðpÞ ones to the resulting graph.
Let us call the resulting partition p0: Obviously, mðp0Þ ¼ lðpÞ; and *nnðp0Þ ¼ 0:
Since n > 1 the map p ! p0 is a bijection and the result follows.

The proof of Proposition A.2 is more involved. Here we need to
decompose p as indicated in Fig. A.1 below.

Let us now remove from the graph of p in Fig. A.1 three pieces, namely,
the vertical columns of height M; N and the horizontal row of length g:
Next, we conjugate the resulting graph to get *pp: We now add three pieces to
*pp as indicated in Fig. A.2 to get p0:

Clearly, mðp0Þ ¼ N; *nnðp0Þ ¼ M and jp0j ¼ jpj: To finish the proof we
observe that the map p ! p0 is a bijection.

Let us call the map employed in the proofs of Propositions A.1 and A.2 a
pseudo-conjugation transformation. We say that a partition p with jpj > 1 is
self-pseudo-conjugate if it remains invariant under pseudo-conjugation. In
addition, we say the partitions p ¼ 0; 1 are self-pseudo-conjugate.

It is well known that the number of self-conjugate partitions of n equals
the number of partitions into distinct odd parts. The generating function for
the last set of partitions is ð�q; q2Þ1: Remarkably, the same is true for self-
pseudo-conjugate partitions, as we now demonstrate. First, it is obvious that
the partitions described in Proposition A.1 are not self-pseudo-conjugate.
Second, the partitions p in Proposition A.2 are self-pseudo-conjugate only if
M ¼ N and the conjugate of sub-graph A in Fig. A.1 is identical to sub-
graph B. Therefore, the generating function SPCðqÞ for self-pseudo-
≤ M

B

�

N

M

M

A

FIG. A.1. Graph of p in Proposition A.2.



 

 ≤ N

N

M

N

B* 

A* 

�

FIG. A.2. Graph of p0 in Proposition A.2.
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conjugate partitions is

SPCðqÞ ¼ 1 þ q þ
X
M51;

g50

qMðMþ1ÞþMþg

ðq4; q2ÞM�1

¼ 1 þ q þ
X
M51

qMðMþ1ÞþM

ð1 � qÞðq4; q2ÞM�1

¼ ð1 þ qÞ
X
M50

qMðMþ1Þ

ðq2; q2ÞM
qM :

ðA:2Þ

Making use of the Euler identity

X
j50

q jð jþ1Þ

ðq2; q2Þj
z j ¼ ð�zq2; q2Þ1; ðA:3Þ

we find that

SPCðqÞ ¼ ð1 þ qÞð�q3; q2Þ1 ¼ ð�q; q2Þ1; ðA:4Þ

as desired.
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APPENDIX B

Here we describe an alternative proof of (5.17) communicated to
us by Andrews [7]. We begin by expanding the products ðaq2iþ2; q2Þj and
ðaq2iþ2j; q2Þi in (5.17) using the q-binomial theorem [4, (3.3.6), p. 36]

X
n50

qn2�nzn
L

n

" #
q2

¼ ð�z; q2ÞL: ðB:1Þ

This way we obtain after performing changes of summation variables the
following expression for the left-hand side of (5.17):

LHSð5:17Þ ¼
X

i;j;s;t50

ð�aÞsþt q
ðjþtÞ2þ2ðiþsÞþ2sðiþjþsþtÞþsðs�1Þþt2þtþ2tðiþsÞ

ðq2; q2Þiðq2; q2Þjðq2; q2Þsðq2; q2Þt
: ðB:2Þ

Next, we use the Euler identity (A.3) along with another result of Euler
[4, (2.2.5), p. 19]

X
n50

zn

ðqÞn
¼ 1

ðz; qÞ1
ðB:3Þ

to sum out the j and i variables in (B.2) to get

LHSð5:17Þ ¼
X
s;t50

ð�aÞsþt q2t2þ4stþ3s2þsþt

ðq2; q2Þsðq2; q2Þt
ð�q1þ2sþ2t; q2Þ1
ðq2þ2sþ2t; q2Þ1

: ðB:4Þ

Since

ð�q1þ2sþ2t; q2Þ1
ðq2þ2sþ2t; q2Þ1

¼ ð�q; q2Þ1
ðq2; q2Þ1

ðq2; q2Þsþt

ð�q; q2Þsþt

; ðB:5Þ

we can derive

LHSð5:17Þ ¼ ð�q; q2Þ1
ðq2; q2Þ1

X
n50

ð�aÞn q2n2þn

ð�q; q2Þn

Xn

s¼0

qs2 n

s

" #
q2

: ðB:6Þ

Making use of (B.1) we can evaluate the inner sum in (B.6) to get

LHSð5:17Þ ¼ ð�q; q2Þ1
ðq2; q2Þ1

X
n50

ð�aÞnq2n2þn; ðB:7Þ

which is essentially (5.17), as desired.
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Note added. In a recent paper, Warnaar [20] observed that (1.30) with
n ¼ 1 is a limiting case of a rather nontrivial cubic summation formula

XbN=2c

k¼0

1 � Aq4k

1 � A

ðA;AqNþ1; q3Þk
ðq; q�N ; qÞk

ðq�N ; qÞ2k

ðAqNþ1; qÞ2k

ðC;D; qÞk
ðAq3=C;Aq3=D; q3Þk

qk

¼
ðAq3; q2�N=C; q2�N=D; q3ÞbN=3c

ðAq3=C;Aq3=D; q2�N=CD; q3ÞbN=3c
; Nc 2 ðmod 3Þ;

0; N � 2 ðmod 3Þ;

8><
>: ðN:1Þ

with CD ¼ AqNþ1: More precisely, Warnaar replaced A ! A2; C ! CA;
D ! DA and let A ! 0 in (N.1) to obtain

XbN=2c

k¼0

ðq�N ; qÞ2k

ðq; q�N ; qÞk
qk ¼ ð�1ÞbN=3cq�NðN�1Þ=6 Nc2 ðmod 3Þ;

0 otherwise;

(
ðN:2Þ

which is essentially (1.30) with n ¼ 1 and L ¼ bðN þ 1Þ=3c: In [20] Warnaar
established (N.1) by setting p ¼ 0 in his elliptic generalization of (N.1) [21,
Corollary 4.13]). Here, we would like to point out that the cubic summation
formula (N.1) is a special case of the Gasper–Rahman transformation
formula (3.19) in [17]. Indeed, setting ac ¼ d ¼ A and b ¼ cq1þN in this
formula we get

XbN=2c

k¼0

1 � Aq4k

1 � A

ðA;AqNþ1; q3Þk
ðq; q�N ; qÞk

ðq�N ; qÞ2k

ðAqNþ1; qÞ2k

ðcq1þN ;A=c; qÞk
ðAq2�N=c; cq3; q3Þk

qk

¼ ðAq; qÞN
ðq�N ; qÞN

ðq1�2N ; q3ÞN
ðAq2�N ; q3ÞN

�8 W7ðAq�1�N ;Aq1þN ; c;Ac�1q�1�N ; q1�N ; q�N ; q3; q3Þ ðN:3Þ

with rþ1Wrða1; a4; . . . ; arþ1; q; zÞ defined as in [16, (2.11.11)]. Note that for
N � 2 ðmod 3Þ; N > 0

ðq1�2N ; q3ÞN ¼ 0; ðN:4Þ

and, consequently, the right-hand side of (N.3) becomes zero. When
Nc2 ðmod 3Þ; the series 8W7 in (N.3) can be summed thanks to Jackson’s
q-Dougall’s summation [16, (II.22)]. As a result, we obtain (N.1) with
C ¼ cq1þN and D ¼ A=c:
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