期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:116
Coxeter polytopes with a unique pair of non-intersecting facets
Article
Felikson, Anna1  Tumarkin, Pavel2 
[1] Independent Univ Moscow, Moscow 119002, Russia
[2] Univ Fribourg, Dept Math, CH-1700 Fribourg, Switzerland
关键词: Coxeter polytope;    Missing face;    Simple polytope;    Coxeter diagram;   
DOI  :  10.1016/j.jcta.2008.10.008
来源: Elsevier
PDF
【 摘 要 】

We consider compact hyperbolic Coxeter polytopes whose Coxeter diagram contains a unique dotted edge. We prove that such a polytope in d-dimensional hyperbolic space has at most d + 3 facets. In view of results by Kaplinskaja [I.M. Kaplinskaya, Discrete groups generated by reflections in the faces of simplicial prisms in Lobachevskian spaces, Math. Notes 15 (1974) 88-91] and the second author [P. Tumarkin, Compact hyperbolic Coxeter n-polytopes with n + 3 facets, Electron. J. Combin. 14 (2007), R69. 36 pp.], this implies that compact hyperbolic Coxeter polytopes with a unique pair of non-intersecting facets are completely classified. They do exist only tip to dimension 6 and in dimension 8. (C) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2008_10_008.pdf 627KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次