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We consider compact hyperbolic Coxeter polytopes whose Coxeter
diagram contains a unique dotted edge. We prove that such
a polytope in d-dimensional hyperbolic space has at most d + 3
facets. In view of results by Kaplinskaja [I.M. Kaplinskaya, Discrete
groups generated by reflections in the faces of simplicial prisms
in Lobachevskian spaces, Math. Notes 15 (1974) 88–91] and
the second author [P. Tumarkin, Compact hyperbolic Coxeter n-
polytopes with n + 3 facets, Electron. J. Combin. 14 (2007), R69,
36 pp.], this implies that compact hyperbolic Coxeter polytopes
with a unique pair of non-intersecting facets are completely
classified. They do exist only up to dimension 6 and in dimension 8.
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1. Introduction

We study compact Coxeter polytopes in hyperbolic spaces. Besides the general restriction d < 30
on the dimension d of the polytope [12] and investigation of arithmetic subgroups, there are several
directions in which some attempts of general classification were undertaken. One of them is to fix the
dimension of polytope. Compact hyperbolic Coxeter polytopes of dimensions 2 and 3 were completely
classified in [10,2], respectively. Another direction is to fix the difference between the number of
facets of the polytope and its dimension. Simplices were classified in [9], d-dimensional polytopes
with d + 2 facets were classified in [8,4], d-dimensional polytopes with d + 3 facets were classified
in [3,11]. This paper is devoted to investigation of another direction in classification: the number of
pairs of non-intersecting facets.
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In paper [5] we classified all compact hyperbolic Coxeter polytopes with mutually intersecting
facets. It turns out that they do exist up to dimension 4 only, and have at most 6 facets. In this
paper we expand the technique developed in [5] to investigate compact hyperbolic Coxeter polytopes
with exactly one pair of non-intersecting facets. The paper is devoted to the proof of the following
theorem:

Main Theorem. A compact hyperbolic Coxeter d-polytope with exactly one pair of non-intersecting facets has
at most d + 3 facets. In particular, no such polytopes do exist in dimensions d � 9 and d = 7.

Clearly, neither simplices nor products of simplices (except prisms) have non-intersecting facets.
Therefore, the Main Theorem can be reformulated in the following way.

Corollary. Any compact hyperbolic Coxeter d-polytope with exactly one pair of non-intersecting facets is either
a prism or a polytope with d + 3 facets. All these polytopes are listed in Tables 10 and 11 of Appendix A.

The proof is based on already obtained classifications of polytopes of either smaller dimensions
or with smaller number of facets, or with smaller number of pairs of non-intersecting facets. In fact,
the technique we use may lead to the inductive algorithm of classification of compact hyperbolic
polytopes with respect to three directions described above. In this context the Main Theorem may be
considered as the adjusting of the base of the tentative algorithm.

The paper is organized as follows: in Section 2 we expand the technique developed in [5] to
the case of compact hyperbolic Coxeter polytopes with exactly one pair of non-intersecting facets. In
Section 3 we prove the Main Theorem moving from smaller dimensions to larger ones (namely, up
to dimension 12). Then we finish the proof considering dimensions greater than 12. In Appendix A
we reproduce the list of all the compact hyperbolic Coxeter polytopes with exactly one pair of non-
intersecting facets.

2. Technical tools

We refer to [5, Sections 2 and 3.1] for all essential preliminaries. Concerning Coxeter polytopes and
Coxeter diagrams, we mainly follow [12,13]. We use the technique of local determinants developed
in [12]. Description of Coxeter facets may be found in [1]. We use standard notation for elliptic and
parabolic diagrams (see [13]).

2.1. Notation

We recall some notation introduced in [5].
We write d-polytope instead of “d-dimensional polytope” and k-face instead of “k-dimensional

face.” We say that an edge of Coxeter diagram is multiple if it is of multiplicity at least two, and
an edge is multi-multiple if it is of multiplicity at least four. For nodes x and y of a Coxeter dia-
gram Σ we write [x, y] = m if x is joined with y by an (m − 2)-tuple edge (or by an edge labeled
by m). We write [x, y] = ∞ if x is joined with y by a dotted edge, and we write [x, y] = 2 if the
nodes x and y are not joined.

If Σ1 and Σ2 are subdiagrams of a Coxeter diagram Σ , we denote by 〈Σ1,Σ2〉 a subdiagram of Σ

spanned by all nodes of Σ1 and Σ2. By Σ1 \ Σ2 we denote a subdiagram of Σ spanned by all nodes
of Σ1 that do not belong to Σ2. By |Σ | we denote an order of the diagram Σ .

Given a Coxeter d-polytope P we denote by Σ(P ) the Coxeter diagram of P . If S0 is an elliptic
subdiagram of Σ(P ), we denote by P (S0) the face defined by this subdiagram (it is a (d − |S0|)-face
obtained by the intersection of the facets corresponding to the nodes of S0). We say that x ∈ Σ(P ) is a
neighbor of S0 if x attaches to S0 (i.e. x is joined with S0 by at least one edge), otherwise we say that
x is a non-neighbor of S0. We say that the neighbor x of S0 is good if 〈S0, x〉 is an elliptic diagram, and
bad otherwise. We denote by S0 the subdiagram of Σ(P ) consisting of nodes corresponding to facets
of P (S0). The diagram S0 is spanned by all good neighbors and all non-neighbors of S0 (in other
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words, S0 is spanned by all vertices of Σ(P ) \ S0 except bad neighbors of S0). If P (S0) is a Coxeter
polytope, denote its Coxeter diagram by ΣS0 .

It is shown in [1, Theorem 2.2] that if S0 is an elliptic diagram containing no An and D5 compo-
nents, then the face P (S0) is a Coxeter polytope, and its diagram Σ(S0) can be easily found from the
subdiagram 〈S0,ΣS0 〉. This fact is the main tool for our induction: if S0 has no good neighbors (this

is always the case if S0 is of the type H4, F4 or G(k)
2 , where k � 6) then ΣS0 = S0 is a diagram of a

Coxeter polytope of lower dimension. If the initial polytope has at most one pair of non-intersecting
facets, then the same is true for P (S0). So, in assumption that the Main Theorem holds in lower di-
mensions, this implies that P (S0) is either a simplex, or a triangular prism, or one of 7 Esselmann
polytopes, or one of finitely many d′-polytopes with d′ + 3 facets which have diagrams containing
at most one dotted edge (more precisely, in the latter case there are eight 4-polytopes, a unique 5-
polytope), three 6-polytopes, a unique 8-polytope, and no polytopes in dimension 7 and in dimensions
greater than 8, see Table 11.

We will also use the following lemmas.

Lemma 2.1.1. Let S ⊂ Σ(P ) be an elliptic subdiagram containing no components of the type An and D5 . If
P (S) is a 2-polytope (i.e. P (S) is a polygon) then:

1) If S0 = ΣS0 and S0 contains no dotted edge, then S0 is a Lannér diagram of order 3.
2) If S0 contains a dotted edge, then S has at least one good neighbor.

Proof. A triangle is the only polygon with mutually intersecting facets, which proves the first state-
ment. Suppose that the second statement does not hold, and S has no good neighbors. Then S0 = ΣS0 ,
and the assumption that S0 contains a dotted edge contradicts the first statement of the lemma. �
Lemma 2.1.2. Suppose that P is a compact Coxeter d-polytope with exactly one pair of non-intersecting facets
and at least d + 4 facets. Let Σ1 ⊂ Σ(P ) be a subdiagram of order not greater than d + 2. Then:

1) There exists a node x ∈ Σ(P ) \ Σ1 such that the subdiagram 〈x,Σ1〉 contains no dotted edges.
2) Suppose in addition that S ⊂ Σ1 is an elliptic diagram of order |S| < d having less than d − |S| good

neighbors and non-neighbors in total in Σ1 . Then there exists a node x ∈ Σ(P ) \ Σ1 such that x is not a
bad neighbor of S and the subdiagram 〈x,Σ1〉 contains no dotted edges.

3) The statement of the preceding item is also true if S1 has exactly d−|S| good neighbors and non-neighbors
in total in Σ1 and S1 contains an end of the dotted edge.

Proof. To prove the first statement, notice that Σ(P ) \ Σ1 contains at least two nodes, at least one
of these nodes is not joined with Σ1 by a dotted edge. The same consideration works for the second
statement: S must have at least d − |S| + 1 nodes, so Σ(P ) \ Σ1 contains at least two good neighbors
or non-neighbors of S . To prove the third statement, notice that Σ(P ) \ Σ1 contains a good neighbor
or a non-neighbor of S , which definitely cannot be an end of the dotted edge. �
2.2. Lists L(S0,d), L1(S0,d) and L′(Σ, C,d)

In [5, Lemma 3] we have proved that if a Coxeter diagram of a polytope contains no dotted edges,
then it contains a subdiagram satisfying some special properties. We have defined a finite list L(S0,d)

of diagrams satisfying these properties. In this section we slightly change this definition to be applied
to the case of diagrams containing a unique dotted edge.

We will need the following definitions.
If Σ is a Coxeter diagram of a simplicial prism, then the node x ∈ Σ is called a tail if x is an end of

the dotted edge and Σ \ x is a connected diagram. By a diagram without tail we mean Σ with exactly
one of its tails discarded.

We introduce a partial order “≺” on the set of connected elliptic subdiagrams of maximal order of
Lannér diagrams and diagrams of simplicial prisms without tail:
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• A2 ≺ B2 ≺ G(k)
2 , k > 2, and G(k)

2 ≺ G(l)
2 if k < l;

• A3 ≺ B3 ≺ H3;
• A4 ≺ B4 ≺ F4 ≺ H4.

Remark. We do not need to introduce a partial order on the diagrams of order 5, since any diagram
of a 5-prism without tail contains connected elliptic diagrams of order 5 of one type only.

Suppose that Σ is a Lannér diagram or a diagram of a simplicial prism without tail. A connected
elliptic subdiagram S ⊂ Σ of maximal order is called maximal in Σ if Σ contains no connected elliptic
subdiagram S ′ such that S ≺ S ′ . A connected elliptic subdiagram S ⊂ Σ of maximal order is called
next to maximal in Σ if Σ contains a maximal connected elliptic subdiagram S ′ such that S ≺ S ′ while
Σ contains no connected elliptic subdiagram S

′′
such that S ≺ S

′′ ≺ S ′ .

Lemma 2.2.1. Let P be a compact Coxeter d-polytope with a unique pair of non-intersecting facets, and assume
that P has at least d + 4 facets. Let S0 be a connected elliptic subdiagram of Σ(P ) such that:

(I) |S0| < d and S0 	= An, D5 .
(II) S0 has no good neighbors in Σ(P ).

(III) If |S0| 	= 2, then Σ(P ) contains no multi-multiple edges.
If |S0| = 2, then the edge of S0 has the maximum multiplicity amongst all edges in Σ(P ).

Suppose that the Main Theorem holds for any d1-polytope satisfying d1 < d. Then there exist a subdiagram
S1 ⊂ Σ(P ) and two vertices y0, y1 ∈ Σ(P ) such that the subdiagram 〈S0, y1, y0, S1〉 satisfies the following
conditions:

(0) 〈S0, y1, y0, S1〉 contains no dotted edges and parabolic subdiagrams;
(1) S0 and S1 are elliptic diagrams, S0 is connected, and S0 	= An, D5;
(2) No vertex of S1 attaches to S0 , and |S0| + |S1| = d;
(3) 〈y0, S1〉 is either a Lannér diagram, or a diagram of a simplicial prism with a tail discarded, or one of the

diagrams shown in Table 1 (in the latter case y0 is the marked vertex of the diagram);
(4) 〈S0, y1〉 is an indefinite subdiagram, and y1 is either a good neighbor of S1 or a non-neighbor of S1 .
(5) If |S0| 	= 2, then 〈S0, y1, y0, S1〉 contains no multi-multiple edges;

If |S0| = 2, then the edge of S0 has the maximum possible multiplicity in 〈S0, y1, y0, S1〉;
(6) If 〈y0, S1〉 is either a Lannér diagram or a diagram of a simplicial prism without tail, then exactly one of

the following holds:
• either S1 is a maximal connected elliptic subdiagram in 〈y0, S1〉 of order d − |S0|,
• or S1 is a next to maximal connected elliptic subdiagram in 〈y0, S1〉 of order d − |S0|, S1 contains a

node x which is an end of the dotted edge, and the diagram 〈y0, S1〉 \ x is a unique maximal connected
elliptic subdiagram of order d − |S0| in 〈y0, S1〉.

Proof. The construction is very close to one provided in [5, Lemma 3].
1. Analyzing the data. Since S0 has no good neighbors, S0 = ΣS0 . Let d0 = d −|S0| be the dimension

of P (S0). Being a subdiagram of Σ(P ), the diagram ΣS0 contains at most one dotted edge. Clearly,
d0 < d. By the assumption, the Main Theorem holds for polytopes of dimension less than d, so P (S0)

contains at most d0 + 3 facets, and it is either a simplex, or a d0-prism, or an Esselmann polytope, or
a d0-polytope with d0 + 3 facets.

2. Choosing a diagram Σ ′ = 〈S1, y0〉.
If P (S0) is a simplex then Σ ′ = S0.
If P (S0) is a prism then Σ ′ is a diagram of a prism without tail.
If P (S0) is a d0-polytope with d0 + 3 facets then Σ ′ is one of the diagrams shown in the first two

lines of Table 1.
If P (S0) is an Esselmann polytope, then each node of S0 belongs to some subdiagram of the type

shown in the third and fourth lines of Table 1. Thus, we may choose as Σ ′ a diagram of the type
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Table 1
List of diagrams 〈y0, S1〉, see Lemma 2.2.1.

shown in Table 1 not containing any end of the dotted edge (clearly, at least one such node does
exist).

3. Choosing S1 and y0 in Σ ′ .
If P (S0) is an Esselmann polytope or a d0-polytope with d0 + 3 facets, then y0 is the marked node

of the diagram (see Table 1), and S1 = Σ ′ \ y0.
If P (S0) is a prism, then Σ ′ contains at least one connected elliptic subdiagram of order d0, and

we take as S1 any maximal one.
Now, let P (S0) be a simplex. Consider a maximal elliptic connected subdiagram S ⊂ Σ ′ of order d0.

Let x ⊂ S be a node not joined with S0 by the dotted edge (there exists one since S is either a Lannér
diagram or a diagram containing at least two nodes besides S0). By the choice of x, Σ ′ \ S is the only
node of the subdiagram 〈S0, x,Σ ′〉 that can be joined with x by the dotted edge. If x is not joined
with Σ ′ \ S by the dotted edge, we choose S1 = S and y0 = Σ ′ \ S , otherwise we take as S1 a next
to maximal elliptic connected subdiagram of Σ ′ of order d0 (and y0 = Σ ′ \ S1).

4. Choosing y1 .
Consider a subdiagram S1. We claim that it is always possible to take a node y1 ⊂ S1 \ S0 such

that y1 is not joined by the dotted edge neither with 〈S1, y0〉 nor with S0. Indeed, we may choose y1
not to be joined by the dotted edge with S0 (the argument repeats one given in the preceding item).
Furthermore, such y1 is not joined with 〈S1, y0〉 by the dotted edge by the choice of S1 and y0 (see
items 2 and 3).

Clearly, all conditions (0)–(6) are satisfied by the construction. �
A nice property of the construction is that any edge of the obtained diagram 〈S0, y1, y0, S1〉 be-

longs to either 〈S0, y1〉 or 〈y1, y0, S1〉. This implies that we may use the following equation on local
determinants (see [12, Proposition 12] or [5, Proposition 3.1.1]):

det
(〈S0, y1, y0, S1〉, y1

) = det
(〈S0, y1〉, y1

) + det
(〈y1, y0, S1〉, y1

) − 1.

Combining this with the fact that |〈S0, y1, y0, S1〉| = d + 2 (and, hence, det〈S0, y1, y0, S1〉 = 0), we
obtain

det
(〈S0, y1〉, y1

) + det
(〈y1, y0, S1〉, y1

) = 1. (∗)

This allows us to prove the finiteness of the number of diagrams 〈S0, y1, y0, S1〉 in consideration.
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Lemma 2.2.2. The number of diagrams 〈S0, y1, y0, S1〉 of signature (d,1), 4 � d � 8, satisfying conditions
(0)–(6) of Lemma 2.2.1, is finite.

Proof. It is easy to see that the number of the diagrams 〈S0, y1, y0, S1〉 with S0 	= G(k)
2 for k � 6

is finite. Indeed, by conditions (0) and (5) the diagram 〈S0, y1, y0, S1〉 contains neither dotted nor
multi-multiple edges. Since |S0| + |S1| = d � 8, we obtain that |〈S0, y1, y0, S1〉| � 10, and we have
finitely many possibilities for the diagram.

Now, consider the case S0 = G(k)
2 , k � 6. As it was mentioned above, by construction of the diagram

〈S0, y1, y0, S1〉 we may use Eq. (∗) on local determinants. Since |〈y1, y0, S1〉| = d, we have∣∣det〈y1, y0, S1〉
∣∣ � d! (∗∗)

(since the absolute value of each of the summands in the standard expansion of the determinant
does not exceed 1). Further, if 〈y0, S1〉 is a Lannér diagram of order 3 then det〈y0, S1〉 is bounded
from above by 3

4 − cos2( π
7 ) ≈ −0.329 (which is the determinant of the Lannér diagram of order 3

with one simple edge, one empty edge and one edge labeled by 7). If 〈y0, S1〉 is a diagram of a 3-
prism without tail, then the determinant of 〈y0, S1〉 is a decreasing function on multiplicities of all

edges of 〈y0, S1〉. So, it is easy to check that det〈y0, S1〉 is bounded from above by 1−√
5

16 ≈ −0.08.
In all other cases, i.e. if 〈y0, S1〉 is neither a Lannér diagram of order 3 nor a 3-prism without tail,
according to condition (3) we have finitely many possibilities for 〈y0, S1〉. Therefore, there exists a
positive constant M such that

M <
∣∣det〈y0, S1〉

∣∣. (∗∗∗)

Combining (∗∗) and (∗∗∗), we obtain that the determinant det(〈y1, y0, S1〉, y1) (which is positive)
is bounded from above, so det(〈S0, y1〉, y1) (which is negative) is uniformly bounded from below.
However, since S0 = G(k)

2 , k � 6, the determinant det(〈S0, y1〉, y1) tends to infinity while k in-
creases (see [12]). Thus, k is bounded, and there are finitely many possibilities for the whole diagram
〈S0, y1, y0, S1〉. �

Now we define several lists of diagrams similar to ones defined in [5, Section 3].
For each S0 = G(k)

2 , B3, B4, H3, H4, F4 we can write down the complete list

L1(S0,d)

of diagrams 〈S0, y1, y0, S1〉 of signature (d,1), 4 � d � 8, satisfying conditions (0)–(6) of Lemma 2.2.1.
Define also a list

L1(d) =
∞⋃

k=6

L1
(
G(k)

2 ,d
)
.

By Lemma 2.2.2, the list L1(d) is also finite.
Clearly, the list L1(S0,d) contains the list L(S0,d) defined in [5, Section 3.2].
These lists were obtained by a computer. The procedure is provided by the proof of Lemma 2.2.2.

Namely, to get the list L(S0,d) we do the following.
We list all possible diagrams 〈y0, S1〉 of signature (d − |S0|,1) according to condition (3) taking

into account that multiplicity of an edge in 〈y0, S1〉 does not exceed either 3 (if |S0| 	= 2) or k − 2 (if
S0 = G(k)

2 ). For each of these diagrams we compose all possible diagrams 〈S0, y1, y0, S1〉 by joining a
new node y1 with S0 and 〈y0, S1〉 in all possible ways by edges of multiplicity not exceeding either 3
or k − 2 depending on S0. The list L(S0,d) consists of those diagrams 〈S0, y1, y0, S1〉 which have zero
determinant and contain no parabolic subdiagrams.

To get the list L1(d) we take the union of the lists L1(G(k)
2 ,d) for 6 � k � k0, where k0 can be

found according to the proof of Lemma 2.2.2. More precisely, the expression for det(〈G(k)
2 , y1〉, y1)

(see e.g. [5, Section 3.1]) shows that for k � 7 the local determinant det(〈G(k)
2 , y1〉, y1) does not

exceed 1 − 1/(4 sin2 π
k ). Combining inequalities (∗∗) and (∗∗∗), we see that the local determinant
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det(〈y1, y0, S1〉, y1) is bounded from above by some constant d!/M depending on d only. Now, com-
bining this with Eq. (∗), we get an explicit expression for k0.

Usually the lists L1(S0,d) and L1(d) are not very short. In what follows we reproduce some parts
of the lists as far as we need.

In fact, the bounds obtained in the proof of Lemma 2.2.2 are not optimal. To reduce com-
putations we usually analyze concrete data. For example, instead of taking d! as the bound
of |det〈S0, y1, y0, S1〉|, we may bound it by the number of negative summands in its expansion.
This leads to reasonable bounds on the multiplicity of multi-multiple edges in 〈S0, y1, y0, S1〉, the
worst of which was 87 in one of the cases.

Now, given a diagram Σ , a constant C and dimension d, define a list

L′(Σ, C,d)

of diagrams 〈Σ, x〉 of signature (d,1) containing no subdiagrams of the type G(k)
2 for k > C , no dotted

edges incident to x, and no parabolic subdiagrams. Clearly, for given Σ , C and d, this list is finite.
One can notice that if Σ contains no dotted edges, this list coincides with the list L′(Σ, C,d) defined
in [5, Section 3.2].

The list L′(Σ, C,d) is easy to obtain by computer. We join a new node with all nodes of Σ by
edges of multiplicity at most C − 2 and choose those diagrams having signature (d,1) and containing
no parabolic subdiagrams. To reduce the computations, we first compute the determinant, and check
the signature only if the determinant vanishes.

As in [5], for given Σ , C , d and an elliptic subdiagram S ⊂ Σ we define the sublist L′(Σ, C,d, S )

which consists of diagrams 〈Σ, x〉, where either x is either a good neighbor or a non-neighbor of S
(in [5] this list is denoted by L′(Σ, C,d, S(g,n))).

3. Proof of the Main Theorem

First, we prove some general facts concerning subdiagrams of the type Bk which will be used later
for the proof in all dimensions; then we prove the theorem starting from low dimensions and going
to higher ones.

3.1. Subdiagrams of the type Bk

Lemma 3.1.1. Let P ⊂ H
d, d � 6, be a compact Coxeter polytope such that Σ(P ) contains a unique dotted

edge. If Σ(P ) contains neither subdiagram of the type F4 nor subdiagram of the type G(k)
2 , k � 5, then Σ(P )

contains no subdiagram of the type Bd.

Proof. At first, notice that the assumptions of the lemma imply that for any two nodes ti, t j ∈ Σ

we have [ti, t j] ∈ {2,3,4,∞} (recall that [ti, t j] = k means that the nodes ti and t j are joined by a
(k − 2)-fold edge, and [ti, t j] = ∞ means that the nodes are joined by a dotted edge). This will be
used frequently throughout the proof.

Suppose that S0 ⊂ Σ(P ) is a diagram of the type Bd , denote by t1, . . . , td the nodes of S0
([t1, t2] = 4, [ti, ti+1] = 3 for all 1 < i < d). Consider the diagram S1 = 〈t1, t2, . . . , td−1〉 of the
type Bd−1. The polytope P (S1) is one-dimensional, so the diagram ΣS1 consists of two nodes con-
nected by a dotted edge. By [1, Theorem 2.2], this implies that the diagram 〈S1, S1〉 is of one of the
two types shown in Fig. 3.1.1 (since td ∈ S1). We consider these two diagrams separately.

Fig. 3.1.1. Two types of the diagram 〈S1, S1〉, see Lemma 3.1.1.
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Case (1): 〈S1, S1〉 is a diagram of the type shown in Fig. 3.1.1(a).
Consider the diagram S2 = 〈t2, t3, . . . , td−1, td〉 of the type Ad−1. It has a unique good neighbor in

〈S1, S1〉, so in Σ there exists a node y which is either a good neighbor or a non-neighbor of S2 (since
the diagram of the type Ad−1 defines a 1-face of P , which should have two ends). We consider two
cases: either y is joined with t1 by a dotted edge, or it is not.

Case (1a): Suppose that [y, t1] = ∞.
Consider the diagram S3 = 〈t1, t2, . . . , td−3〉 of the type Bd−3. P (S3) is a Coxeter 3-polytope

whose Coxeter diagram ΣS3 contains a Lannér subdiagram of order 3 (coming from the subdia-
gram 〈td−1, td, x〉 ⊂ Σ ). This implies that P (S3) is not a simplex, so, it has a pair of non-intersecting
facets. Since Σ contains only one dotted edge yt1, which is not contained in S3, we conclude
that S3 has a good neighbor z. So, z is not joined with 〈t1, t2, . . . , td−4〉, [z, td−3] = 3 (here we
use that d � 6 and that Σ contains no subdiagram of the type F4). Furthermore, z may be joined
with td−1, td and x by either simple or double edge. Notice, that [z, td−2] = 4, otherwise either
〈td−3, td−2, z〉 or 〈S3, td−2, z〉 is a parabolic subdiagram (of the types Ã2 and B̃d−2, respectively). So,
we have 27 possibilities for the diagram 〈S0, x, z〉 = 〈t1, t2, . . . , td−1, td, x, z〉 (see Fig. 3.1.2(a)). The di-
agram 〈S0, x, z〉 contains d + 2 nodes, so det〈S0, x, z〉 = 0, which holds only in the case shown in
Fig. 3.1.2(b) (to see this for any d � 5, we use local determinants, namely, we check the equality
det(S3, td−3) + det(〈x, z, td−3, td−2, td−1, td〉, td−3) = 1).

Recall that y is either a good neighbor or a non-neighbor of S2. So, y is joined with S2 by at
most one edge (simple or double, since [y, t1] = ∞). On the other hand, y should be joined with
each of the Lannér diagrams 〈z, td−3, td−2〉, 〈z, td−2, td−1〉 and 〈x, td−1, td〉. Since any non-dotted edge
in Σ(P ) has multiplicity at most two, a short explicit check shows that we always obtain a parabolic
subdiagram of one of the types Ã2, C̃2, Ã3 and C̃3, which is impossible.

Fig. 3.1.2. To the proof of Lemma 3.1.1, case (1a).

Case (1b): Suppose that [y, t1] 	= ∞.
Since y is either a good neighbor or a non-neighbor of S2 = 〈t2, . . . , td−1, td〉, y cannot be joined

with S0 by a dotted edge. However, it is possible that [y, x] = ∞. In the latter case we consider
the diagram S ′

2 = 〈t2, . . . , td−1, x〉 instead of the diagram S2 and find its good neighbor (or non-
neighbor) y′ , which is definitely not an end of a dotted edge in this case. Therefore, we may assume
that [y, x] 	= ∞, in other words, that the diagram 〈S0, x, y〉 contains no dotted edges.

To find out, how y can be joined with 〈S0, x〉, notice that:

1. y is joined with S0 and with 〈S1, x〉 (otherwise we obtain an elliptic diagram of order d + 1).
2. [y, t1] 	= 2 (otherwise either the subdiagram 〈S0, y〉 contains a parabolic subdiagram, or 〈S0, y〉 is

a diagram of the type Bd+1, which is also impossible).
3. y is joined with one of t2 and t3 (otherwise 〈y, t1, t2, t3〉 either is a diagram of the type F4 or

contains a parabolic subdiagram of the type C̃2). In particular, this implies that y is not joined
with 〈t4, t5, . . . , td〉.

4. [y, x] 	= 2 (since d � 6, the edge yx is the only way to join an indefinite subdiagram 〈y, t1, t2, t3〉
with Lannér diagram 〈td−1, td, x〉).

5. [y, x] = 3 (if [y, x] = 4 then 〈y, x, td〉 is a parabolic diagram of the type C̃2).
6. [y, t1] = 3 (if [y, t1] = 4 then 〈t1, y, x, td〉 is a parabolic diagram of the type C̃3).
7. [y, t2] = 3 (if [y, t2] = 2 then 〈t2, t1, y, x, td〉 is a parabolic diagram of the type C̃4, if [y, t2] = 4

then 〈t2, y, x, td〉 is a parabolic diagram of the type C̃3).

We arrive with a parabolic subdiagram 〈x, y, t2, t3, t4, . . . , td−2, td−1〉 of the type Ãd−1, which is
impossible.
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Case (2): 〈S1, S1〉 is a diagram of the type shown in Fig. 3.1.1(b).
Similarly to the case (1), we consider the diagrams S2 = 〈t2, t3, . . . , td−1, td〉 and S3 = 〈t1, t2,

. . . , td−2〉. As before, S2 has either a good neighbor or a non-neighbor y, and S3 has a good neigh-
bor z (to see the latter statement, notice, that P (S3) is a 2-polytope whose diagram ΣS3 contains a
dotted edge coming from 〈td, x〉, so ΣS3 contains at least one more dotted edge, which can appear
only if S3 has one more good neighbor). So, [z, td−2] = 3, which implies [z, td−1] = 4 (otherwise, ei-
ther 〈S3, td−1, z〉 is a parabolic diagram of the type B̃d−1 or C̃d−1, or 〈td−2, td−1, z〉 is of the type Ã2).
So, 〈S0, z〉 is one of the two diagrams shown in Fig. 3.1.3(a).

Fig. 3.1.3. To the proof of Lemma 3.1.1, case (2).

Similarly to case (1b), consider the multiplicities of edges joining y with 〈S1, z〉. All the asser-
tions 1–7 (as well as the arguments) still hold if we replace x by z, td by td−1, and td−1 by td−2.
However, to state assertion 4 we need to assume now that d � 7. To state the same for d = 6
notice, that the only case when [y, z] = 2 and all Lannér subdiagrams of 〈y, t1, t2, t3〉 are joined
with Lannér diagram 〈td−2, td−1, z〉 is one shown in Fig. 3.1.3(b) (in all other cases the subdiagram
〈t1, . . . , t5, y, z〉 contains a parabolic subdiagram). However, this diagram is superhyperbolic, so all the
assertions 1–7 hold for any d � 6. This leads to a parabolic subdiagram 〈z, y, t2, t3, t4, . . . , td−3, td−2〉
of the type Ãd−2, which is impossible. �
Lemma 3.1.2. Let P ⊂ H

d, d � 4, be a compact Coxeter polytope such that Σ(P ) contains a unique dotted
edge. Suppose that Σ(P ) contains no subdiagram of the type F4 , G(m)

2 , m � 5, and Bd. Then Σ(P ) contains no
subdiagram of the type Bk for any k < d, k � 3.

Proof. Suppose that the lemma is true for all k′ > k, but there exists a subdiagram S0 ⊂ Σ(P ) of the
type Bk . Then S0 has no good neighbors (here we use the assumption that Σ contains no subdiagram
of the type F4). Thus, S0 = ΣS0 is a Coxeter diagram of a (d − k)-polytope P (S0). Clearly, S0 contains
at most one dotted edge and does not contain edges of multiplicity greater than 2. As above, denote
by t1, t2, . . . , td the nodes of S0 ([t1, t2] = 4, [ti, ti+1] = 3 for all 1 < i < d).

Consider a subdiagram S1 ⊂ S0 of the type Bk−1. Since S1 ⊂ S0, at least one bad neighbor (denote
it by x) of S0 is not a bad neighbor of S1 (P (S1) is a face of bigger dimension than P (S0) is). Suppose
that x is not an end of the dotted edge. Clearly, x is a good neighbor of S1, otherwise it is a non-
neighbor and the diagram 〈S0, x〉 is either a parabolic diagram C̃k or a diagram of the type Bk+1
which is impossible by assumption. So, 〈S1, x〉 is a diagram of the type Bk (we use the assumption
that k > 3 and that Σ(P ) contains no subdiagram of the type F4). Let x′ be any node of S0 joined
with x (it does exist since an indefinite diagram 〈S0, x〉 should be joined with each Lannér subdiagram
of S0). Then the diagram 〈S1, x, x′〉 is either a parabolic diagram C̃k or a diagram of the type Bk+1,
which is impossible by assumption.

Therefore, x is an end of the dotted edge. Moreover, the paragraph above shows that another end
of the dotted edge coincides with either td or some x′ ⊂ S0 (otherwise we repeat the arguments and
obtain a contradiction). This implies that x is the only bad neighbor of S0 that is not a bad neighbor
of S1, and either [x, tk] = ∞ or [x, x′] = ∞, where x′ ∈ S0. In particular, this implies that S0 contains
no dotted edge, which is possible only if ΣS0 is one of the diagrams shown in Fig. 3.1.4 (here we
use the classification of Coxeter polytopes with mutually intersecting facets, we also use that any
non-dotted edge of Σ is either a simple edge or a double edge).

Suppose that [x, x′] = ∞, where x′ ∈ S0. It is easy to see that [x, tk−1] = 3 and [x, tk] = 4 (otherwise
Σ contains either a parabolic subdiagram or a subdiagram of the type Bk+1). Since x is the only bad
neighbor of S0 that is not a bad neighbor of S1, we have S1 = 〈tk, x, S0〉. Thus, the diagram ΣS1

contains exactly three Lannér subdiagrams: two dotted edges coming from tkx and xx′ , and a Lannér
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Fig. 3.1.4. Possible diagrams ΣS0 = S0, see Lemma 3.1.2.

diagram of order 2 or 3 (which coincides with S0). Hence, the Lannér diagram coming from xx′ has a
common point with any other Lannér diagram of ΣS1 , which is impossible by [6, Lemma 1.2].

Therefore, [x, tk] = ∞. Let S2 = 〈t2, t3, . . . , tk〉 be a subdiagram of the type Ak−1, and let S3 ⊂ S0
be any subdiagram of the type B3 (if any) or of the type B2 (otherwise). Then the subdiagram 〈S2, S3〉
has exactly one good neighbor (or non-neighbor) y besides the node t1. Clearly, y is a bad neighbor
of S0 distinct from x. So, y is not an end of the dotted edge. Let y′ = S0 \ S3.

To find out, how y can be joined with 〈S0, x〉, notice that:

1. [y, t1] 	= 2 (otherwise the subdiagram 〈S0, y〉 contains a parabolic subdiagram).
2. y is joined with one of t2 and t3 (otherwise 〈y, t1, t2, t3〉 either is a diagram of the type F4, or

contains a parabolic subdiagram of the type C̃2). In particular, this implies that y is not joined
with 〈t4, t5, . . . , tk〉.

3. y is not joined with S3 (otherwise an elliptic diagram 〈S2, S3, y〉 is connected, so it is of the
type Bk+2 or Bk+3).

4. [y, y′] = 3 (if [y, y′] = 4 then 〈t1, y, S0〉 contains either a parabolic diagram of the type C̃2 or C̃3,
or a subdiagram of the type F4).

Either 〈t1, t2, t3, y〉 or 〈t1, t2, y〉 is a Lannér diagram (one of the diagrams shown in Fig. 3.1.4),
denote it by L. By construction, L is joined with a Lannér diagram S0 by the edge yy′ only. Thus,
we obtain a subdiagram 〈L, S0〉 ⊂ 〈S0, y, S0〉 of the following type: it consists of two Lannér diagrams
L and S0 from Fig. 3.1.4 joined by a unique simple edge yy′ , where y ∈ L, y′ ∈ S0, and both dia-
grams L \ y and S0 \ y′ are of the type B2 or B3. It is easy to see that any such diagram 〈L, S0〉 is
superhyperbolic, which proves the lemma. �
Lemma 3.1.3. Suppose that the Main Theorem holds for any dimension d′ < d, d > 4. Suppose also that for
any compact Coxeter polytope P ⊂ H

d, such that Σ(P ) contains a unique dotted edge, it is already shown that
Σ(P ) contains neither subdiagram of the type F4 , nor subdiagram of the type G(k)

2 , k � 5, nor subdiagram of
the type Bd. Then the Main Theorem holds in dimension d.

Proof. Suppose that the Main Theorem is broken in dimension d. Let P ⊂ H
d be a compact Coxeter

polytope with at least d + 4 facets, such that Σ(P ) contains a unique dotted edge, and Σ(P ) contains
neither subdiagram of the type F4 nor subdiagram of the type G(k)

2 , k � 5, nor subdiagram of the
type Bd . By Lemma 3.1.2, Σ(P ) also contains no subdiagram of the type Bk , k > 2. It follows that any
Lannér diagram of Σ(P ) is either a dotted edge or one of the three diagrams of order three shown in
Fig. 3.1.4.

Let L0 ⊂ Σ(P ) be a Lannér diagram of order 2, i.e. a dotted edge. By [6, Lemma 1.2], Σ(P ) \ L0
contains at least one Lannér diagram L. So, L is one of three diagrams of order three shown in
Fig. 3.1.4. Let S0 ⊂ L be a subdiagram of the type B2. By assumptions, S0 has no good neighbors, so
S0 = ΣS0 is a diagram containing at most one dotted edge. S0 is a diagram of a (d − 2)-polytope
with at most (d − 2) + 3 nodes, containing no edges of multiplicity greater than 2, and no diagrams
of type B3. It follows from the classification of d′-polytopes with at most d′ + 3 facets, that P (S0)

is a polytope of dimension at most 3. If P (S0) is either a 2-polytope or a 1-polytope, then d < 5 in
contradiction to the assumptions.

So, P (S0) is a 3-polytope. Then P (S0) is a 3-prism (it cannot be a simplex since diagrams of 3-
simplices always contain subdiagrams of one of the forbidden types). It is easy to see that S0 = ΣS0

is the diagram shown in Fig. 3.1.5. Since the 5-polytope P has at least d + 4 = 9 facets, there exists
a node x ∈ Σ(P ) such that x /∈ 〈S0, S0〉. Notice that x is joined with 〈S0, S0〉 by simple and double
edges only. Since P is a 5-polytope, det〈x, S0, S0〉 = 0. However, each of the diagrams satisfying all
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Fig. 3.1.5. The diagram ΣS0 = S0, see Lemma 3.1.3.

the conditions above either contains a parabolic subdiagram, or is superhyperbolic (in other words,
the list L′(〈S0, S0〉,4,5) is empty). This proves the lemma. �
3.2. Dimensions 2 and 3

In dimensions 2 and 3 the statement of the Main Theorem is combinatorial: it is easy to see that
any polygon except triangle has at least two pairs of disjoint sides, and any polyhedron (3-polytope)
having a unique pair of disjoint facets is a triangular prism.

3.3. Dimension 4

Let P be a 4-dimensional compact hyperbolic Coxeter polytope such that Σ(P ) contains a unique
dotted edge and P has at least 8 facets.

Lemma 3.3.1. Σ(P ) contains no multi-multiple edges.

Proof. Suppose that S0 ⊂ Σ(P ) is a multi-multiple edge of the maximum multiplicity in Σ(P ). Then
S0 has no good neighbors and, by Lemma 2.2.1, Σ(P ) contains a subdiagram 〈S0, y1, y0, S1〉 from the
list L1(4). The list contains 28 diagrams, 3 of these diagrams are Esselmann diagrams, which cannot
be subdiagrams of Σ(P ) by [5, Lemma 1]. For each of the remaining 25 diagrams we check the list
L′(Σ1,k(Σ1),4), where Σ1 ranges over the 25 diagrams, and k(Σ1) is the maximum multiplicity of an
edge in Σ1 (in fact, k(Σ1) � 14; Σ(P ) contains some diagram from one of these lists by Lemma 2.1.2).
All these lists are empty, so the lemma is proved. �

In the proof of the following lemma we use Gale diagram of simple polytope (see [5, Section 2.2]
for essential facts about Gale diagrams, and [7] for general theory).

Lemma 3.3.2. Σ(P ) contains two non-intersecting Lannér diagrams of order 3, all nodes of which are not
ends of the dotted edge.

Proof. The proof follows the proof of [5, Lemma 8].
Let n be the number of facets of P and let fn−1 and fn be the facets of P having no common

point.
Let G be a Gale diagram of P . It consists of n points a1, . . . ,an in (n−6)-dimensional sphere S

(n−6) .
Let ai be the point corresponding to facet f i . Consider a unique hyperplane H ⊂ S

(n−6) containing
all points ai , i � 7. Let H+ and H− be open hemispheres of S

(n−6) bounded by H . Since any two
of f j , 1 � j � 6, have non-empty intersection, each of H+ and H− contains at least three points a j ,
1 � j � 6. Since n � 8, H+ and H− do not contain neither an−1 nor an , which proves the lemma. �
Lemma 3.3.3. The Main Theorem holds in the dimension d = 4.

Proof. Suppose that the Main Theorem does not hold for d = 4, so let P be a compact Coxeter 4-
polytope with at least 8 facets such that Σ(P ) contains a unique dotted edge.

By Lemma 3.3.2, Σ(P ) contains two disjoint Lannér subdiagrams T1 and T2 of order three each
such that the diagram 〈T1, T2〉 contains no dotted edges. It is shown in [5, Lemma 9] that there
are only 39 diagrams 〈T1, T2〉 of signature (4,1) such that T1 and T2 are Lannér diagrams of order
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Table 2
The list L1(5). Ends of dotted edges are encircled.

three and 〈T1, T2〉 contains no edges of multiplicity greater than three. 3 of these diagrams are Essel-
mann diagrams (by [5, Lemma 1], they are not parts of any diagram of a 4-polytope with more than
6 facets), 5 of them contain parabolic subdiagrams. For each of the remaining 31 diagrams the list
L′(〈T1, T2〉,5,4) is empty. �
3.4. Dimension 5

Let P be a 5-dimensional compact hyperbolic Coxeter polytope such that Σ(P ) contains a unique
dotted edge and P has at least 9 facets.

Lemma 3.4.1. Σ(P ) contains no multi-multiple edges.

Proof. Suppose that S0 ⊂ Σ(P ) is a multi-multiple edge of the maximum multiplicity in Σ(P ). Then
S0 has no good neighbors and, by Lemma 2.2.1, Σ(P ) contains a subdiagram 〈S0, y1, y0, S1〉 from the
list L1(5). The list consists of 11 diagrams shown in Table 2. Notice that S0 in this case is a diagram
of a 3-polytope with at most one pair of non-intersecting facets, i.e. either a simplex or a prism. In
the cases when S1 is either a diagram of a prism without tail or a next to maximal subdiagram of
a diagram of a simplex, we mark the end of the dotted edge by a circle. Denote by S2 an elliptic
subdiagram of 〈S0, y1, y0, S1〉 of order 4 marked by a gray block (if any, see Table 2). Notice that
S2 has at most 1 good neighbor or non-neighbor in 〈S0, y1, y0, S1〉, and if it has exactly one then
S2 contains an end of the dotted edge. Therefore, there exists a node x ∈ Σ(P ) \ 〈S0, y1, y0, S1〉 such
that x is not a bad neighbor of S2, and the diagram 〈x, S0, y1, y0, S1〉 contains no dotted edges. In
other words, Σ(P ) contains a diagram from the list L′(Σ1,k(Σ1),5, S2), where Σ1 ranges over the
11 diagrams 〈S0, y1, y0, S1〉 and k(Σ1) is a maximum multiplicity of the edge in Σ1 (in a unique case
when the diagram S2 is not defined, we take a list L′(Σ1,10,5) instead). All these lists but one are
empty. The remaining one contains a unique entry Σ2 shown in Fig. 3.4.1 (again, we mark an end of
the dotted edge by a circle). Consider a subdiagram S3 ⊂ Σ2 of the type G(8)

2 marked in Fig. 3.4.1 by
a gray block. Clearly, the subdiagram S3 contains no dotted edges. At the same time, starting from S3
instead of S0, we should obtain some diagram of the list L1(S3,5) ⊂ L1(5), but looking at Table 2 one
can note that each entry of L1(5) containing the subdiagram G(8)

2 contains an end of the dotted edge.
The contradiction proves the lemma. �

Fig. 3.4.1. Treating the list L1(5), see Lemma 3.4.1.

Lemma 3.4.2. Σ(P ) contains no subdiagrams of the types H4 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type H4. Then S0 has no good neighbors, so
S0 = ΣS0 is a dotted edge. Let S1 ⊂ S0 be a subdiagram of the type H3. By Lemma 2.1.1, S1 has a
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Fig. 3.4.2. Notation to the proof of Lemma 3.4.2. (a) six possibilities for 〈S0, x, y〉; (b) diagram Σ ′ .

good neighbor or a non-neighbor x /∈ 〈S0, So〉. If x is a good neighbor of S1, consider the diagram
S2 = 〈S1, x〉 of the type H4. As it is shown above for the diagram S0, the dotted edge belongs to S2.
Hence, the dotted edge is not joined with an indefinite diagram 〈S0, x〉, which is impossible. Therefore,
x is a non-neighbor of S1. Let y be an end of the dotted edge joined with x (there exists one, since
Σ(P ) is not superhyperbolic). Let t1 = S0 \ S1 and notice that [x, t1] 	= 5 (otherwise 〈S0, x〉 contains
a subdiagram S3 of the type H4 such that S3 contains no dotted edge, which is impossible as it
was proved above). Thus, we have only 6 possibilities for the diagram 〈S0, x, y〉 (see Fig. 3.4.2(a)). In
fact, only in 3 of these cases the diagram 〈S0, x, y〉 contains no parabolic subdiagrams. If x is joined
with S0 by a simple edge, we consider the list L′(〈S0, x, y〉,5,5), which is empty. If x is joined with
S0 by a double edge, we denote by S4 ⊂ 〈S0, x〉 a subdiagram of the type B4 and consider the list
L′(〈S0, x, y〉,5,5, S4). The latter list consists of a unique diagram Σ ′ , shown in Fig. 3.4.2(b).

Let S4 ⊂ Σ ′ be the subdiagram of type B4 marked by a gray box. S4 contains an end of the dotted
edge and has a unique good neighbor (and no non-neighbors) in Σ ′ . Hence, it has at least one good
neighbor (or non-neighbor) in Σ(P ) \ Σ ′ , so Σ(P ) contains a diagram from the list L′(Σ ′,5,5, S4),
which is empty. �
Lemma 3.4.3. Σ(P ) contains no subdiagrams of the type H3 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type H3. In view of Lemma 3.4.2, the diagram
S0 has no good neighbors, and S0 = ΣS0 is a Lannér diagram of order 3 (see Lemma 2.1.1). By Lem-
mas 2.1.2 and 3.4.1, Σ(P ) contains a subdiagram from the list L′(〈S0, S0〉,5,5). This list consists of
12 diagrams, 5 of which contain a subdiagram of the type H4. Again, by Lemma 2.1.2, Σ(P ) contains
a subdiagram from the list L′(Σ1,5,5), where Σ1 ranges over the 7 diagrams of L′(〈S0, S0〉,5,5)

containing no subdiagram of the type H4. All these lists L′(Σ1,5,5) are empty, which completes the
proof. �

Fig. 3.4.3. To the proof of Lemma 3.4.4.

Lemma 3.4.4. Σ(P ) contains no subdiagrams of the type G(5)
2 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type G(5)
2 . Then S0 has no good neighbors,

and S0 = ΣS0 . P (S0) is a 3-polytope with at most one pair of non-intersecting facets, so S0 is either
is a Lannér diagram of order 4, or a diagram of a triangular prism. If S0 is a diagram of a triangular
prism, let Σ1 be a diagram spanned by S0 and S0 without tail. In case of a Lannér diagram of
order 4, let Σ1 = 〈S0, S0〉. By Lemmas 2.1.2 and 3.4.3, Σ(P ) contains a subdiagram from one of the
lists L′(Σ1,5,5) with Σ1 as above. Notice that we may consider only Lannér diagrams and diagrams
of prisms not containing subdiagrams of the type H3. The union of these lists contains 5 entries,
only one of them contains no subdiagram of the type H3. We present this diagram in Fig. 3.4.3 and



888 A. Felikson, P. Tumarkin / Journal of Combinatorial Theory, Series A 116 (2009) 875–902
Fig. 3.4.4. To the proof of Lemma 3.4.5.

denote it by Σ2. By Lemma 2.1.2, Σ(P ) contains a subdiagram from the list L′(Σ2,5,5), which is
empty. �
Lemma 3.4.5. Σ(P ) contains no subdiagrams of the types F4 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type F4. Then S0 has no good neighbors, so
S0 = ΣS0 is a dotted edge. Let S1 ⊂ S0 be a subdiagram of the type B3. P (S1) is a 2-polytope with
a pair of non-intersecting facets, so Σ(P ) contains a node x such that x is not a bad neighbor of S1,
and the edge xt1 turns into a dotted edge in ΣS1 . It follows from [1, Theorem 2.2] that 〈S0, x〉 is one
of the two diagrams Σ1 and Σ2 shown in Fig. 3.4.4(a). Notice, that x is a bad neighbor of S0, so it is
joined with at least one end (denote it by y) of the dotted edge (otherwise the diagram 〈S0, x, S0〉 is
superhyperbolic). By Lemmas 3.4.1 and 3.4.4, [y, x] = 3 or 4. In case of the diagram Σ1 this leads to
a parabolic subdiagram of the type F̃4 or C̃3. In case of Σ2 this implies that [y, x] = 3 (otherwise we
obtain a parabolic subdiagram of the type C̃4). So, we are left with the only possibility for the diagram
〈Σ2, x〉, see Fig. 3.4.4(b). By Lemma 2.1.2, Σ(P ) contains a subdiagram from the list L′(〈Σ2, x〉,4,5).
However, this list is empty. �
Table 3
Notation to the proof of Lemma 3.4.6.

Lemma 3.4.6. Σ(P ) contains no subdiagrams of the type B5 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type B5. Let S1 ⊂ S0 be a subdiagram of the
type B4. P (S0) is a 1-polytope, so ΣS0 is a dotted edge. By [1, Theorem 2.2], this may happen only if
〈S1, S1〉 is one of two diagrams Σ1 and Σ2 shown in the left row of Table 3.

Consider the diagram Σ1. By Lemma 2.1.2, Σ(P ) contains a diagram from the list L′(Σ1,4,5)

The list consists of two diagrams Σ1a
1 and Σ1b

1 (see Table 3). The diagram Σ1b
1 contains a subdia-

gram of the type F4, which is impossible by Lemma 3.4.5. For the diagram Σ1a
1 we consider the list

L′(Σ1a
1 ,4,5), which consists of a unique diagram Σ2

1 . The latter diagram contains a subdiagram of the
type F4, which is impossible.

Consider the diagram Σ2. Let S2 ⊂ Σ2 be a subdiagram of the type B3. P (S2) is a polygon with
at least 4 edges. So, there exists at least one good neighbor or a non-neighbor x of S2 such that xt4
turns into a dotted edge in ΣS2 (see Table 3 for the notation). This is possible only if [x, t3] = 3 and
[x, t4] = 4. Notice, that [x, t5] 	= 4, otherwise 〈S0, x〉 contains a parabolic subdiagram of the type C̃4.
Denote by Σ1

2 the subdiagram 〈S0, x〉 (see Table 3). By Lemma 2.1.2, Σ(P ) contains a diagram from
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Table 4
The list L1(6).

the list L′(Σ1
2 ,4,5), which consists of a unique diagram Σ2

2 (see Table 3 again). Consider the subdi-
agram S3 ⊂ Σ2

2 marked by a gray box. S3 is a diagram of the type B4 containing an end t5 of the
dotted edge. So, 〈S3, S3〉 is a diagram of the same type as Σ1. As it is shown above, the diagram Σ1
cannot be a subdiagram of Σ(P ). So, the diagram S3 also cannot be a subdiagram of Σ(P ), which
completes the proof. �
Lemma 3.4.7. The Main Theorem holds in dimension 5.

Proof. Let P be a compact hyperbolic Coxeter 5-polytope with at least 5 facets and exactly one pair
of non-intersecting facets. By Lemmas 3.4.1–3.4.6, Σ(P ) does not contain neither edges of multiplicity
greater than 2, nor diagrams of the type B5. Applying Lemmas 3.1.2 and 3.1.3, we finish the proof. �
Remark. Instead of Lemmas 3.4.2–3.4.6 one could use the reasoning similar to the proof of
Lemma 3.3.3; however, in dimension 5 this leads to very long computation (in particular, one should
find the list L′(〈T1, T2〉,5,5), where T1 and T2 are Lannér diagrams of order 3 containing no multi-
multiple edges, and then for each diagram Σ ∈ L′(〈T1, T2〉,5,5) we should find the list L′(Σ,5,5)).

3.5. Dimension 6

Let P be a 6-dimensional compact hyperbolic Coxeter polytope such that Σ(P ) contains a unique
dotted edge and P has at least 10 facets.

Lemma 3.5.1. Σ(P ) contains no multi-multiple edges.

Proof. Suppose that S0 ⊂ Σ(P ) is a multi-multiple edge of the maximum multiplicity in Σ(P ). Then
S0 has no good neighbors, and, by Lemma 2.2.1, Σ(P ) contains a subdiagram 〈S0, y1, y0, S1〉 from the
list L1(6). The list consists of 8 diagrams shown in Table 4. We denote these diagrams Σ1, . . . ,Σ8.
Notice, that for each of the diagrams it is easy to find out where the subdiagram S0 is (the multi-
multiple edge with a unique bad neighbor), where the node y1 is (which is the bad neighbor of S0),
and where 〈y0, S1〉 is. The node y1 is a bad neighbor of the subdiagram S ⊂ 〈y0, S1〉 of the type H4
or F4, so the node 〈y0, S1〉 \ S is an end of the dotted edge (we mark the end of the dotted edge by
a circle). For each of Σ1, . . . ,Σ8 (except Σ7) denote by S2 the elliptic subdiagram of order 5 marked
by a gray box. Notice, that S2 has a unique good neighbor (or a unique non-neighbor) in Σi . So, it
has one more in Σ(P ). Thus, in case of diagrams Σ1, . . . ,Σ6 we consider the lists L′(Σi,k(Σi),6, S2),
where k(Σi) = 6 for i = 1,2,3 and k(Σi) = 10 for i = 4,5,6. The lists are empty.

We are left to consider the diagrams Σ7 and Σ8. In case of the diagram Σ7 denote by Σ1
7 ⊂ Σ7

the subdiagram with the end of the dotted edge discarded. Let S2 ⊂ Σ1
7 be the subdiagram of the

type H4. Since S2 has only two non-neighbors in Σ1
7 , it has at least one more in Σ(P ). So, Σ(P )

contains a diagram from the list L′(Σ1
7 ,10,6, S2), which consists of two diagrams shown in Fig. 3.5.1.

The diagram shown in Fig. 3.5.1(a) is a diagram of a 6-polytope with 9 facets, so by [5, Lemma 1]
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Fig. 3.5.1. Treating the diagram Σ7, see Lemma 3.5.1.

it cannot be a subdiagram of Σ(P ). Denote by Σ2
7 the diagram shown in Fig. 3.5.1(b) and consider

the elliptic subdiagram S3 ⊂ Σ2
7 of order 5 marked by a gray box. It has no good neighbors (non-

neighbors) in Σ2
7 , so at least one of its good neighbors (non-neighbors) is not joined with Σ2

7 by a
dotted edge. However, the list L′(Σ2

7 ,10,6, S3) is empty, and the diagram Σ7 cannot be a subdiagram
of Σ(P ).

Consider the remaining diagram, Σ8. The subdiagram S2 of order 5 (marked by a gray box) has
a unique good neighbor in Σ8. S2 contains an end of the dotted edge, so, the second good neighbor
of S2 (or non-neighbor) is not joined with Σ8 by the dotted edge. Therefore, Σ(P ) contains a diagram
from the list L′(Σ8,8,6, S2), which consists of a unique diagram Σ1

8 shown in Table 5. Let S3 ⊂ Σ1
8

be a subdiagram of order 4 marked by a gray box (see Table 5). S3 has only one non-neighbor (and
no good neighbors) in Σ1

8 , so it should have at least two more in Σ(P ). Therefore, Σ(P ) contains a
diagram from the list L′(Σ1

8 ,8,6, S3), which consists of two diagrams Σ2a
8 and Σ2b

8 shown in Table 5.

Denote by Σ2a′
8 and Σ2b′

8 these diagrams with the end of the dotted edge discarded. Denote by S4

the subdiagram of order 4 in Σ2a′
8 and Σ2b′

8 marked by a gray box. S4 has only to non-neighbors

(and no good neighbors) in Σ2a′
8 (and in Σ2b′

8 ), so, it has at least one more in Σ(P ). Since the dia-

grams Σ2a′
8 and Σ2b′

8 contain no end of dotted edge, Σ(P ) contains a diagram from one of the lists

Table 5
Treating the diagram Σ8, see Lemma 3.5.1.
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Table 6
Lists L1(H4,6) and L1(F4,6).

L′(Σ2a′
8 ,8,6, S4) and L′(Σ2b′

8 ,8,6, S4). The first of these lists is empty, the second one consists of

two diagrams Σ3a′
8 and Σ3b′

8 shown in Table 5. Returning the end of the dotted edge and comput-

ing the weight of the edge joining that with Σ3a′
8 \ Σ2a′

8 (respectively, with Σ3b′
8 \ Σ2b′

8 ), we obtain
subdiagrams Σ3a

8 and Σ3b
8 of Σ(P ), see Table 5.

Consider the diagram Σ3a
8 . Let S5 ⊂ Σ3a

8 be a subdiagram of the type D4 marked by a gray box.
It has only two non-neighbors (and no good neighbors) in Σ3a

8 . Hence, Σ3a
8 is not a diagram of a

Coxeter polytope. Now, consider the diagram Σ3a′
8 . Since there exists a good neighbor (or a non-

neighbor) of S5 which does not belong to Σ3a
8 , we conclude that Σ(P ) contains a diagram from the

list L′(Σ3a′
8 ,8,6, S5), which is empty.

We are left to consider the diagram Σ3b
8 . Consider the diagram S6 of the type G(8)

2 marked by a
gray box. It has no good neighbors in Σ(P ), so S6 = ΣS6 is either a Lannér diagram of order 5 or
an Esselmann diagram (since one of the ends of the dotted edge is a bad neighbor of S6). However,
discarding from Σ3b

8 the subdiagram S6 with all its bad neighbors, we obtain a subdiagram Σ ′ shown
in Table 5, which is neither a Lannér diagram nor a part of an Esselmann diagram. Therefore, the
diagram Σ8 also cannot be a subdiagram of Σ(P ), and the lemma is proved. �
Lemma 3.5.2. Σ(P ) contains no subdiagrams of the types H4 and F4 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type H4 or F4. Then Σ(P ) contains a diagram
from the list L1(H4,6) or L1(F4,6). The union of these lists consists of 9 diagrams shown in Table 6,
we denote these diagrams Σ1, . . . ,Σ9 (the list L1(H4,6) is shown in the left column, L1(F4,6) is
shown in the right one). For the diagrams Σ1, . . . ,Σ6 we consider the lists L′(Σi,5,6), which turn
out to be empty. In particular, this implies that Σ(P ) contains no subdiagram of the type H4.

For the diagrams Σ7, Σ8 and Σ9 we denote by S2 a subdiagram of order 5 marked by a gray box.
It has neither good neighbors nor non-neighbors in cases of Σ7 and Σ9, and it has a unique good
neighbor in case of Σ8, however in the latter case S2 contains an end of the dotted edge (we know
where the end of the dotted edge is, since y1 is a good neighbor of a subdiagram of the type B2 ⊂ S0

but not of the subdiagram of the type G(5)
2 , which is maximal). Therefore, Σ(P ) contains a subdiagram

from one of the lists L′(Σi,5,6, S2), i = 7,8,9. Each of the lists L′(Σ7,5,6, S2) and L′(Σ8,5,6, S2)

consist of the diagram Σ78 shown in Fig. 3.5.2(a), the list L′(Σ9,5,6, S2) consists of the diagram Σ9

shown in Fig. 3.5.2(b). For each of Σ78 and Σ9 consider a subdiagram S3 of the type H3 marked
by a gray box. As it was shown above, S3 has no good neighbors in Σ(P ). So, P (S3) is a 3-polytope
with at most one pair of non-intersecting facets, and S3 = ΣS3 is either a Lannér diagram of order 4,
or a diagram of a 3-prism. The former case is impossible since S3 contains a Lannér subdiagram of
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Fig. 3.5.2. Treating the diagrams Σ7, Σ8 and Σ9, see Lemma 3.5.2.

order 3, so P (S3) is a prism. In case of the diagram Σ9 this implies that S3 has at least 2 additional
non-neighbors, and hence, Σ(P ) contains a diagram from the list L′(Σ9,5,6, S3), which is empty.

We are left with the diagram Σ78. Let T be the Lannér subdiagram of Σ78 contained in S3, and
let x be the leaf of Σ78 (node of valency 1). Since P (S3) is a prism, there exists a non-neighbor of S3,
a node y ∈ Σ(P ) \Σ78, such that y is joined with T by some edge and y is joined with x by a dotted
edge. However, the list L′(Σ78 \ x,5,6, S3) contains no entry in which the new node is joined with
T . This completes the proof. �
Lemma 3.5.3. Σ(P ) contains no subdiagram of the type H3 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type H3. Then Σ(P ) contains a diagram from
the list L1(H3,6), which consists of 4 diagrams. Two of these diagrams contain the subdiagrams of
the type F4 or H4. The remaining two diagrams are the diagrams Σ1 and Σ2 shown in Fig. 3.5.3. For
the diagram Σ1 we check the list L′(Σ1,5,6), which is empty. For the diagram Σ2 the list L′(Σ2,5,6)

consists of a unique entry Σ ′
2 (see Fig. 3.5.3). Let S2 ⊂ Σ ′

2 be a subdiagram of the type B2 marked by a
gray box. Discarding from Σ ′

2 the subdiagram S2 with all its bad neighbor, we obtain a subdiagram Θ

of order 5 which consists of a Lannér diagram of order 3 and of two separate nodes. It is easy to see
that Θ is not a subdiagram of a Lannér diagram of order 5, of an Esselmann diagram or of diagram
of a 4-prism. Therefore, ΣS2 contains at least 7 nodes, and Σ(P ) contains a diagram from the list
L′(Σ ′

2,5,6, S2), which is empty. �

Fig. 3.5.3. To the proof of Lemma 3.5.3, see Lemma 3.5.3.

Lemma 3.5.4. Σ(P ) contains no subdiagram of the type G(5)
2 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type G(5)
2 . Then S0 has no good neighbors,

so P (S0) is a 4-polytope with at most one pair of non-intersecting facets, so (by the Main Theorem
in dimension d = 4), a 4-polytope with at most 7 facets. There are only four 4-polytopes with at
most 7 facets such that their Coxeter diagrams contain no subdiagram of the type H4 or F4. The
diagrams are shown in Fig. 3.5.4(a) (the diagram Σ1 corresponds to two 4-prisms). Notice, that all
these diagrams contain dotted edges. At the same time, the diagram Σ3 contains a subdiagram S1

of the type G(5)
2 such that S1 definitely contains no dotted edges (one end of the dotted edge is a

Fig. 3.5.4. To the proof of Lemma 3.5.4. (a) 4-polytopes with at most 7 facets containing no subdiagrams H4, F4 and G(k)
2 , k � 6;

(b) some subdiagrams of the diagrams shown in (a) (Σ ′
1 ⊂ Σ1, Σ ′

2 ⊂ Σ2).
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Table 7
The list L1(7).

bad neighbor of S1). This is impossible, so we are left with the diagrams Σ1 and Σ2. Denote by Σ ′
1

and Σ ′
2 the diagrams with respectively one and two nodes discarded (see Fig. 3.5.4(b)). Let S2 be a

subdiagram of Σ ′
1 or Σ ′

2 of the type B4 (marked by a gray box). The diagram S2 has only two good
neighbors in 〈S0,Σ

′
1〉 as well as in 〈S0,Σ

′
2〉, at the same time, S2 contains an end of the dotted edge.

Therefore, S2 has a good neighbor (or a non-neighbor) in Σ(P ) \ 〈S0,Σ
′
1〉 (or in Σ(P ) \ 〈S0,Σ

′
2〉,

respectively), and Σ(P ) contains a diagram from the list L′(〈S0,Σ
′
1〉,5,6, S2) or L′(〈S0,Σ

′
2〉,5,6, S2).

Both these lists are empty, and the lemma is proved. �
Lemma 3.5.5. The Main Theorem holds in dimension 6.

Proof. Let P be a compact hyperbolic Coxeter 6-polytope with at least 10 facets and exactly one pair
of non-intersecting facets. By Lemmas 3.5.1–3.5.4, Σ(P ) does not contain edges of multiplicity greater
than 2. Now we apply Lemmas 3.1.1, and 3.1.3 to complete the proof. �
3.6. Dimension 7

Let P be a 7-dimensional hyperbolic Coxeter polytope such that Σ(P ) contains a unique dotted
edge and P has at least 11 facets.

Lemma 3.6.1. Σ(P ) contains no multi-multiple edges.

Proof. Suppose that S0 ⊂ Σ(P ) is a multi-multiple edge of the maximum multiplicity in Σ(P ). Then
S0 has no good neighbors and P (S0) is either a 5-prism or a 5-polytope with 8 facets with a unique
pair of non-intersecting facets (there is a unique such polytope). By Lemma 2.2.1, Σ(P ) contains
a subdiagram 〈S0, y1, y0, S1〉 from the list L1(7). The list consists of 5 diagrams Σ1, . . . ,Σ5 (see
Table 7). Notice, that for each of these diagrams the subdiagram 〈y0, S1〉 is a part of a diagram of a 5-
prism, and we know where the end of the dotted edge is. Denote by S2 ⊂ Σi , i = 1, . . . ,5 the elliptic
subdiagram of order 6 marked by a gray box. The diagram S2 contains an end of the dotted edge
and has at most 1 good neighbor in Σi . Therefore, there exists a good neighbor or a non-neighbor
of S2 which is not joined with Σi by a dotted edge. So, Σ(P ) contains a subdiagram from the list
L′(Σi,k(Σi),7), where Σi ranges over 5 diagrams Σ1, . . . ,Σ5 and k(Σi) is a maximum multiplicity
of the edge in Σi . All these lists are empty, and the lemma is proved. �
Lemma 3.6.2. Σ(P ) contains no subdiagrams of the types H4 and F4 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type H4 or F4. Then Σ(P ) contains a diagram
from the list L1(H4,7) or L1(F4,7). Each of these lists consists of 3 diagrams, we denote these 6
diagrams by Σ1, . . . ,Σ6 (see Table 8). Notice that in cases of the diagrams Σ2, Σ3, Σ5 and Σ6 we
know where the end of the dotted edge is, since y1 (the bad neighbor of S0) is a good neighbor of a
diagram S1 ⊂ S0 of the type B3, but not H3.

First, consider the diagram Σ1. Let t1 and t2 be the nodes of Σ1 marked in Table 8. Without loss
of generality we may assume that neither t1 nor t2 is an end of the dotted edge (here we use the
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Table 8
The lists L1(H4,7) and L1(F4,7).

symmetry of the diagram Σ1). Let S2 ⊂ Σ1 be a diagram of the type A6 that does not contain the
nodes t1 and t2. Then Σ(P ) contains a diagram from the list L′(〈S2, t1, t2〉,5,7), which is empty.

For the diagrams Σ2, . . . ,Σ6 denote by S2 a subdiagram marked by a gray box. In cases of Σ4
and Σ5 the diagram S2 is of order 4, and it has only 2 good neighbors (or non-neighbors) in Σi , so
it has at least 2 more good neighbors (or non-neighbors) in Σ(P ), one of which is joined with Σi

without dotted edges. In cases of Σ2, Σ3, and Σ6, the diagram S2 is of order 6, and it has only 1 good
neighbor (or non-neighbor) in Σi , so, it has another one in Σ(P )\Σi (and this good neighbor or non-
neighbor cannot be joined with Σi by a dotted edge since S2 contains an end of the dotted edge).
Therefore, Σ(P ) contains a diagram from the list L(Σi,5,7, S2), where i = 2, . . . ,6. For i = 2,3,4 the
lists are empty. For i = 5 and i = 6 the lists consist of a unique entry Σ56 shown in Fig. 3.6.1. Denote
by S3 ⊂ Σ56 a subdiagram of order 6 marked by a gray box. It has only one good neighbor (and no
non-neighbors) in Σ56 and contains an end of the dotted edge. Hence, Σ(P ) contains a diagram from
the list L(Σ56,5,7, S3), which is empty. �

Fig. 3.6.1. Treating the diagrams Σ5 and Σ6, see Lemma 3.6.2.

Lemma 3.6.3. Σ(P ) contains no subdiagram of the type H3 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type H3. Then P (S0) is a 4-polytope whose
Coxeter diagram contains at most 1 dotted edge, so it is either a simplex, or an Esselmann polytope,
or a 4-prism, or a 4-polytope with 7 facets. Since S0 = ΣS0 contains neither multi-multiple edges
nor subdiagrams of the types H4 and F4, we are left with only three possibilities for S0 shown in
Fig. 3.5.4(a). For each of these diagrams consider a subdiagram Σ ′ of order 5 shown in Fig. 3.6.2, and
let S1 ⊂ Σ ′ be a subdiagram of order 4 marked by a gray block. Notice that S1 has at least one good
neighbor or non-neighbor in Σ(P )\〈S0, S0〉, so Σ(P ) contains a diagram from the list L′(Σ ′,5,7, S1),
where Σ ′ ranges over the three diagrams shown in Fig. 3.6.2. These lists are empty, and the lemma
is proved. �

Fig. 3.6.2. To the proof of Lemma 3.6.3.
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Lemma 3.6.4. Σ(P ) contains no subdiagram of the type G(5)
2 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type G(5)
2 . Then P (S0) is a 5-polytope with

at most one pair of non-intersecting facets. By the Main Theorem in dimension 5, this implies that
P (S0) has at most 8 facets. However, any diagram of a 5-polytope with at most 8 facets contains
either 2 dotted edges or a subdiagram of the types H4 or F4. Together with Lemma 3.6.2 this proves
the lemma. �

Applying Lemmas 3.1.1 and 3.1.3, we obtain the following result.

Lemma 3.6.5. The Main Theorem holds in dimension 7.

3.7. Dimension 8

Let P be an 8-dimensional compact hyperbolic Coxeter polytope such that Σ(P ) contains a unique
dotted edge and P has at least 12 facets.

Lemma 3.7.1. Σ(P ) contains no multi-multiple edges.

Proof. Suppose that S0 ⊂ Σ(P ) is a multi-multiple edge of the maximum multiplicity in Σ(P ). Then
S0 has no good neighbors and P (S0) is a Coxeter 6-polytope with at most 1 pair of non-intersecting
facets. Since the Main Theorem is already proved in dimension 6, this implies that P (S0) has at most
9 facets and S0 is one of the 3 diagrams Σ1, Σ2, Σ3 shown in Fig. 3.7.1.

Fig. 3.7.1. To the proof of Lemma 3.7.1.

Consider the diagram Σ1. It contains a subdiagram S1 of the type G(10)
2 such that S1 = ΣS1 con-

tains no dotted edge. Since P (S1) is a 6-polytope, this is impossible.
Consider the diagram Σ2. It contains a subdiagram S1 of the type H4 (marked by a gray box)

such that S1 = ΣS1 contains no dotted edge. P (S1) is a 4-polytope, so S1 is either a Lannér diagram
of order 5 or an Esselmann diagram. At the same time, S1 contains a multi-multiple edge S0 and
a Lannér diagram of order 3 with one triple edge and two simple edges. This is impossible for an
Esselmann diagram as well as for a Lannér diagram of order 5.

Consider the diagram Σ3. It contains a subdiagram S1 of the type H4 such that S1 = ΣS1 contains
no dotted edge. At the same time, S1 contains a multi-multiple edge S0 and a Lannér diagram of
order 3 with one triple edge, one double edge, and one empty edge. This is possible only if S1 is an
Esselmann diagram and S0 = G(10)

2 . In particular, this implies that any multi-multiple edge in Σ(P )

is of the type G(10)
2 . Denote by Σ ′

3 the diagram Σ3 with one end of the dotted edge discarded. Let
S2 ⊂ Σ ′

3 be a subdiagram of the type B6. It has only two non-neighbors (and no good neighbors) in
〈S0,Σ3〉, so there exists either a good neighbor or a non-neighbor x of S2, such that x /∈ 〈S0,Σ3〉 and
the diagram 〈x, S0,Σ

′
3〉 contains no dotted edges. Since any multi-multiple edge in Σ(P ) is of the

type G(10)
2 , the number of such diagrams is finite. None of these diagrams has zero determinant, so

the lemma is proved. �
Lemma 3.7.2. Σ(P ) contains no subdiagrams of the types H4 and F4 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type H4 or F4. S0 has no good neighbors,
so Σ(P ) contains a diagram from the list L1(H4,8) or L1(F4,8). The union of these lists consists
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Table 9
The lists L1(H4,8) and L1(F4,8).

of 9 diagrams Σ1, . . . ,Σ9, see Table 9. One can note that for any of diagrams Σ1, . . . ,Σ9 the dia-
gram S0 is a linear Lannér subdiagram containing a subdiagram of the type H4, and S0 ⊂ Σi (by
a linear diagram we mean a connected diagram without nodes of valency greater than 2). This im-
plies that we can always start from the diagram S0 of the type H4, so Σ(P ) must contain one of
the diagrams Σ1, . . . ,Σ6, and we do not need to consider the diagrams Σ7, Σ8, and Σ9. Moreover,
notice that y1 (which is a unique bad neighbor of S0 in Σi ) is always a bad neighbor of a unique
subdiagram S2 ⊂ S0 of the type H4. By construction (see Lemma 2.2.1), this implies that there exists
a non-neighbor y2 /∈ Σi of S2 joined with S0 \ S2 by a dotted edge. Starting from S2 instead of S0,
we obtain (by symmetry) that S2 is also a linear Lannér diagram of order 5. Since 〈S0, y2〉 ⊂ S2, we
see that both 〈S0, y2〉 and S0 are linear Lannér diagrams, and y2 is joined with S0 \ S2 by a dotted
edge. Thus, we obtain three possibilities for the subdiagram 〈S0, y2, S0〉, see Fig. 3.7.2. For each of
these 3 diagrams we solve the equation det(〈S0, y2, S0〉) = 0 and find the weight of the dotted edge.
Consider a diagram S3 ⊂ 〈S0, y2, S0〉 of the type H3 + H3 (it is marked on Fig. 3.7.2). S3 has four
good neighbors and non-neighbors in total in 〈S0, y2, S0〉, while S3 has at least three dotted edges
(one coming from a dotted edge of Σ(P ) and two coming from simple or double edges). This implies
that S3 has at least one good neighbor or a non-neighbor in Σ(P ) \ 〈S0, y2, S0〉. So, Σ(P ) contains a
diagram from the list L′(〈S0, y2, S0〉,5,8). This list consists of a unique diagram, which is a diagram
of a Coxeter 8-polytope with 11 facets (see Fig. 3.9.1). By [5, Lemma 1], this diagram cannot be a
subdiagram of Σ(P ). �

Fig. 3.7.2. The diagram 〈S0, y2, S0〉, see Lemma 3.7.2.

Lemma 3.7.3. Σ(P ) contains no subdiagram of the type H3 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type H3. Then P (S0) is a 5-polytope with at
most one pair of non-intersecting facets. By the Main Theorem in dimension 5, this implies that P (S0)

has at most 8 facets. However, any diagram of a 5-polytope with at most 8 facets either contains 2
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dotted edges or contains a subdiagram of the types H4 or F4. Together with Lemma 3.7.2, this proves
the lemma. �
Lemma 3.7.4. Σ(P ) contains no subdiagram of the type G(5)

2 .

Proof. Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type G(5)
2 . Then P (S0) is a 6-polytope with

at most one pair of non-intersecting facets. By the Main Theorem in dimension 6, this implies that
P (S0) has at most 9 facets, so P (S0) has exactly 9 facets. However, any diagrams of a 6-polytope with
9 facets contains a subdiagram of the type H4. Together with Lemma 3.7.2, this proves the lemma. �

As in dimensions 6 and 7, we apply Lemmas 3.1.1 and 3.1.3 to obtain

Lemma 3.7.5. The Main Theorem holds in dimension 8.

3.8. Dimension 9

Lemma 3.8.1. The Main Theorem holds in dimension 9.

Proof. Suppose that the lemma is broken. Let P be a 9-dimensional compact hyperbolic Coxeter poly-
tope such that Σ(P ) contains a unique dotted edge and P has at least 13 facets.

• Σ(P ) contains no multi-multiple edges.
Indeed, if S0 ⊂ Σ(P ) is a multi-multiple edge, then P (S0) is a 7-polytope with at most one pair

of non-intersecting facets, so P (S0) is a 7-polytope with at most 10 facets, which does not exists.
• Σ(P ) contains no subdiagrams of the types H4 and F4 .

Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type H4 or F4. Then P (S0) is a 5-polytope with at
most one pair of non-intersecting facets, so P (S0) is a 5-polytope with at most 8 facets. Since S0 =
ΣS0 contains no multi-multiple edges and at most one dotted edge, there are only three possibilities
for the diagram S0, see Fig. 3.8.1(a)–(c). For each of these cases we choose a subdiagram Σ1 of
order 6 shown in Fig. 3.8.1(d)–(f) respectively, and denote by S1 ⊂ Σ1 a subdiagram of the type H4
or F4 marked by a gray box. Let S2 ⊂ S0 be a subdiagram of the type H3 or B3 (if S0 is of the type H4
or F4, respectively). Let S3 = 〈S1, S2〉. Notice that S3 has 3 good neighbors and non-neighbors in total
in 〈S0, S0〉, two of which are the ends of the dotted edge. Hence, by Lemma 2.1.1, S3 has at least
one good neighbor or non-neighbor in Σ(P ) \ 〈S0, S0〉. Therefore, Σ(P ) contains a diagram from the
list L′(〈S0,Σ1〉,5,9, S3), where Σ1 ranges over the diagrams shown in Fig. 3.8.1(d)–(f). The lists are
empty, and the statement is proved.
• Σ(P ) contains no subdiagrams of the types H3 .

Indeed, if S0 ⊂ Σ(P ) is a subdiagram of the type H3, then P (S0) is a 6-polytope with at most one
pair of non-intersecting facets. However, a diagram of any such a polytope contains a subdiagram of
the type H4.

Fig. 3.8.1. To the proof of Lemma 3.8.1.
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• Σ(P ) contains no subdiagrams of the types G(5)
2 .

If S0 ⊂ Σ(P ) is a subdiagram of the type G(5)
2 , then P (S0) is a 7-polytope with at most one pair

of non-intersecting facets, which does not exists.
Now, we apply Lemmas 3.1.1 and 3.1.3, which finishes the proof. �

3.9. Dimension 10

Lemma 3.9.1. The Main Theorem holds in dimension 10.

Proof. Suppose that the lemma is broken. Let P be a 10-dimensional compact hyperbolic Coxeter
polytope such that Σ(P ) contains a unique dotted edge.

• Σ(P ) contains no multi-multiple edges.
Indeed, if S0 ⊂ Σ(P ) is a multi-multiple edge, then P (S0) is an 8-polytope with at most one pair

of non-intersecting facets, so P (S0) is an 8-polytope with at most 11 facets. There exists a unique
such a polytope, its diagram is shown in Fig. 3.9.1. Let S1 ⊂ S0 be a subdiagram of the type H4. Then
S1 contains no dotted edges, and P (S1) is a Coxeter 6-polytope with mutually intersecting facets,
which is impossible.

Fig. 3.9.1. A unique 8-polytope with 11 facets.

• Σ(P ) contains no subdiagrams of the types H4 and F4 .
Suppose that S0 ⊂ Σ(P ) is a subdiagram of the type H4 or F4. Then P (S0) is a 6-polytope with

at most one pair of non-intersecting facets, so P (S0) is a 6-polytope with exactly 9 facets. There are
3 such polytopes (see Fig. 3.7.1), each contains a subdiagram S1 of the type H4 such that S1 contains
no dotted edges. So, P (S1) is a 6-polytope with mutually intersecting facets, which is impossible.
• Σ(P ) contains no subdiagrams of the types H3 .

Indeed, if S0 ⊂ Σ(P ) is a subdiagram of the type H3, then P (S0) is a 7-polytope with at most one
pair of non-intersecting facets. This implies that P (S0) is a 7-polytope with at most 10 facets, which
is impossible.
• Σ(P ) contains no subdiagrams of the types G(5)

2 .

As it was already shown, the diagram of the type G(5)
2 cannot have good neighbors, so the proof

coincides with the reasoning used for multi-multiple edges.
Applying Lemmas 3.1.1 and 3.1.3, we complete the proof. �

3.10. Dimension 11

Lemma 3.10.1. The Main Theorem holds in dimension 11.

Proof. Suppose that the lemma is broken. Let P be an 11-dimensional compact hyperbolic Coxeter
polytope such that Σ(P ) contains a unique dotted edge.

• Σ(P ) contains no multi-multiple edges.
If S0 ⊂ Σ(P ) is a multi-multiple edge, then P (S0) is a 9-polytope with at most one pair of non-

intersecting facets.
• Σ(P ) contains no subdiagrams of the types H4 and F4 .

Indeed, if S0 ⊂ Σ(P ) is a subdiagram of the type H4 or F4, then P (S0) is a 7-polytope with at
most one pair of non-intersecting facets, which is impossible.
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• Σ(P ) contains no subdiagrams of the types H3 .
If S0 ⊂ Σ(P ) is a subdiagram of the type H3, then P (S0) is an 8-polytope with at most one pair

of non-intersecting facets. However, the diagram of a unique such a polytope contains a subdiagram
of the type H4.
• Σ(P ) contains no subdiagrams of the types G(5)

2 .
Again, we follow the proof for multi-multiple edges.
Application of Lemmas 3.1.1 and 3.1.3 finishes the proof. �

3.11. Dimension 12

Lemma 3.11.1. The Main Theorem holds in dimension 12.

Proof. Suppose that the lemma is broken. Let P be a 12-dimensional hyperbolic Coxeter polytope
such that Σ(P ) contains a unique dotted edge.

• Σ(P ) contains no subdiagrams of the types H4 and F4 .
Indeed, if S0 ⊂ Σ(P ) is a subdiagram of the type H4 or F4, then P (S0) is an 8-polytope with at

most one pair of non-intersecting facets. So, S0 is the diagram shown in Fig. 3.9.1. However, the latter
diagram contains a subdiagram S1 of the type H4 such that S1 contains no dotted edges, which is
impossible.
• Σ(P ) contains no subdiagrams of the types H3 and G(k)

2 , k � 5.

If S0 ⊂ Σ(P ) is a subdiagram of the type H3 or G(k)
2 , k � 5, then P (S0) is a d-polytope with at

most one pair of non-intersecting facets, where d = 9 or 10, which is impossible.
Again, we complete the proof applying Lemmas 3.1.1 and 3.1.3. �

3.12. Large dimensions

To complete the proof of the Main Theorem, we prove the following lemma.

Lemma 3.12.1. The Main Theorem holds in dimensions d > 12.

Proof. Suppose that the lemma is broken, and let P be a d-dimensional compact hyperbolic Coxeter
polytope such that Σ(P ) contains a unique dotted edge (d > 12). We may assume that the Main
Theorem holds in all dimensions less than d. Suppose that Σ(P ) contains a subdiagram S0 of the
type H4 or F4. Then P (S0) is a d-polytope with at most one pair of non-intersecting facets, where
d � 9, which is impossible. Similarly, Σ(P ) contains no subdiagrams of the types H3 and G(k)

2 , k � 5.
As usual, Lemmas 3.1.1 and 3.1.3 imply that such a polytope P does not exist. �
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Appendix A

In this appendix we list all compact hyperbolic Coxeter polytopes with exactly one pair of non-
intersecting facets. Table 10 contains Coxeter diagrams of prisms. The list of “right” prisms (i.e., prisms
with one facet composing right dihedral angles only) is reproduced from [8] (see also [13]). The
remaining prisms are obtained by gluing two right prisms along congruent bases. Table 11 contains
Coxeter diagrams of d-polytopes with d + 3 facets, the list is reproduced from [11].
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Table 10
Compact hyperbolic Coxeter prisms
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Table 10 (Continued)

Table 11
Compact hyperbolic Coxeter d-polytopes with d + 3 facets and exactly one pair of non-intersecting
facets.
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