期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:149 |
Gowers' Ramsey Theorem for generalized tetris operations | |
Article | |
Lupini, Martino1  | |
[1] CALTECH, Math Dept, 1200 E Calif Blvd,MC 253-37, Pasadena, CA 91125 USA | |
关键词: Gowers' Ramsey Theorem; Hindman theorem; Milliken-Taylor theorem; Idempotent ultrafilter; Stone-Cech compactification; Partial semigroup; | |
DOI : 10.1016/j.jcta.2017.02.001 | |
来源: Elsevier | |
【 摘 要 】
We prove a generalization of Cowers' theorem for FIN kappa where, instead of the single tetris operation T : FINk -> FINk-1, one considers all maps from FINk to FINj for 0 <= j <= k arising from nondecreasing surjections f : {0, 1,..., k} --+ {0,1,..., j}. This answers a question of Bartogova and Kwiatkowska. We also describe how to prove a common generalization of such a result and the Galvin-Glazer-Hindman theorem on finite products, in the setting of layered partial semigroups introduced by Farah, Hindman, and McLeod. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcta_2017_02_001.pdf | 375KB | download |