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We prove a generalization of Gowers’ theorem for FINk

where, instead of the single tetris operation T : FINk →
FINk−1, one considers all maps from FINk to FINj for 
0 ≤ j ≤ k arising from nondecreasing surjections f :
{0, 1, . . . , k} → {0, 1, . . . , j}. This answers a question of 
Bartošová and Kwiatkowska. We also describe how to prove 
a common generalization of such a result and the Galvin–
Glazer–Hindman theorem on finite products, in the setting 
of layered partial semigroups introduced by Farah, Hindman, 
and McLeod.
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1. Introduction

Gowers’ theorem on FINk is a generalization of Hindman’s theorem on finite unions 
where one considers, rather than finite nonempty subsets of ω, the space FINk of all 
finitely supported functions from ω to {0, 1, . . . , k} with maximum value k. Such a space is 
endowed with a natural operation of pointwise sum, which is defined for pairs of functions 
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with disjoint support. Gowers considered also the tetris operation T : FINk → FINk−1
defined by letting (Tb) (n) = max {b(n) − 1, 0} for b ∈ FINk. (The term tetris operation 
has been introduced by Todorcevic [17], and used by Mijares [12], Mijares–Nieto [13], 
Dobrinen–Mijares [5], Ojeda-Aristizabal [15], and Bartošova–Kwiatkowska [1,2]. It is 
inspired by the homonymous computer game.) Gowers’ theorem can be stated, shortly, 
by saying that for any finite coloring of FINk there exists an infinite sequence (bn)
which is a block sequence—in the sense that every element of the support of bn precedes 
every element of the support of bn+1—with the property that the intersection of FINk

with the smallest subset of FIN1 ∪ · · · ∪ FINk that contains the bn’s and it is closed 
under pointwise sum of disjointly supported functions and under the tetris operation, is 
monochromatic [8]. Gowers then used such a result—or more precisely its symmetrized 
version where one considers functions from ω to {−k, . . . , k}—to prove an oscillation 
stability result for the sphere of the Banach space c0. Other proof of Gowers’ theorem 
can be found in [9,11,17].

Gowers’ theorem of FINk as stated above implies through a standard compactness ar-
gument its corresponding finitary version. Explicit combinatorial proofs of such a finitary 
version have been recently given, independently, by Tyros [18] and Ojeda-Aristizabal [15]. 
Particularly, the argument from [18] yields a primitive recursive bound on the associated 
Gowers’ numbers.

A broad generalization of Gowers’ theorem has been proved by Farah, Hindman, and 
McLeod in [7, Theorem 3.13] in the framework, developed therein, of layered partial 
semigroups and layered actions. Such a result provides, in particular, a common gener-
alization of Gowers’ theorem and the Hales–Jewett theorem; see [7, Theorem 3.15]. As 
general as [7, Theorem 3.13] is, it nonetheless does not cover the case where one considers 
FINk endowed with the multiple tetris operations described below, since these do not 
form a layered action in the sense of [7, Definition 3.3].

In [1], Bartošová and Kwiatkowska considered a generalization of Gowers’ theorem, 
where multiple tetris operations are allowed. Precisely, they defined for 1 ≤ i ≤ k the 
tetris operation Tk,i : FINk → FINk−1 by

Tk,i(b) : n �→
{

b(n) − 1 if b(n) ≥ i, and
b(n) otherwise.

Adapting methods from [18], Bartošová and Kwiatkowska proved in [1] the strengthening 
of the finitary version of Gowers’ theorem where multiple tetris operations are considered. 
The authors then provided in [1] applications of such a result to the dynamics of the 
Lelek fan.

Question 8.3 of [1] asks whether the infinitary version of Gowers’ theorem on FINk

holds when one considers multiple tetris operations. In this paper, we show that this is 
the case, via an adaptation of Gowers’ original argument using idempotent ultrafilters. 
In order to precisely state our result, we introduce some terminology, to be used in the 
rest of the paper.
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We denote by ω the set of nonnegative integers, and by N the set of nonzero elements 
of ω. We identify an element k of ω with the set {0, 1, . . . , k − 1} of its predecessors. 
As mentioned above, FINk denotes the set of functions from ω to k + 1 with maximum 
value k and that vanish for all but finitely many elements of ω. We denote by FIN0 the 
singleton 

{
0
}
, where 0 is the function with domain ω and constant value 0. We also let 

FIN≤k be the union of FINj for j = 0, 1, 2, . . . , k. The support Supp(b) of an element b
of FINk is the set of elements of ω where b does not vanish. For finite nonempty subsets 
F, F ′ of ω, we write F < F ′ if the maximum element of F is smaller than the minimum 
element of F ′.

Suppose that 0 ≤ j ≤ k and f : k + 1 → j + 1 is a nondecreasing surjection. 
We denote by f∗ the generalized tetris operation f∗ : FIN≤k → FIN≤j defined by 
f(b) = f ◦ b. It is not hard to show that if j < k and f : k+1 → j +1 is a nondecreasing 
surjection, then for each t ∈ {j + 1, j + 2, . . . , k}, there is some i(t) such that f∗ =
Tj+1,i(j+1) ◦ Tj+2,i(j+2) ◦ · · · ◦ Tk,i(k), and that any such composition is a nondecreasing 
surjection.1

We say that (bn) is a block sequence in FINk if bn ∈ FINk and Supp (bn) < Supp (bn+1)
for every n ∈ ω. If j ≤ n, then we define the tetris subspace TSj (bn) of FINj generated 
by (bn) to be the set of elements of FINj of the form

f0 ◦ b0 + · · · + fn ◦ bn (pointwise addition)

for some n ∈ ω, j0, . . . , jn ∈ j+1 such that max {j0, . . . , jn} = j > 0, and nondecreasing 
surjections fi : k + 1 → ji + 1 for i ∈ n + 1. A block sequence (b′n) in FINk is a block 
subsequence of (bn) if {b′n : n ∈ ω} is contained in TSk (bn).

In the following we will use some standard terminology concerning colorings. An 
r-coloring (or coloring with r colors) of a set X is a function c : X → r, and a finite 
coloring is an r-coloring for some r ∈ ω. A subset A of X is monochromatic (for the 
given coloring c) if c is constant on A. Using this terminology, we can state our infinitary 
Gowers’ theorem for generalized tetris operations as follows.

Theorem 1.1. Suppose that k ∈ N. For any finite coloring of FIN≤k, there exists an 
infinite block sequence (bn) in FINk such that TSj (bn) is monochromatic for every j =
1, 2, . . . , k.

Theorem 3.1 implies via a standard compactness argument its corresponding finitary 
version. If k, n ∈ ω, then we denote by FINk(n) the set of functions f : n → k + 1 with 
maximum value k, and by FIN≤k(n) the union of FINj(n) for j ∈ k + 1. The notion of 
block sequence (b0, . . . , bm−1) and tetris subspace TSj (b0, . . . , bm−1) of TSj(n) generated 
by (b0, . . . , bm−1) are defined similarly as their infinite counterparts.

1 We thank Sławomir Solecki for pointing this out.
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Corollary 1.2. Given k, r, � ∈ N there exists n ∈ N such that for any r-coloring of 
FIN≤k(n), there exists a block sequence (b0, b1, . . . , b�−1) in FINk(n) of length � such 
that TSj (b0, . . . , b�−1) is monochromatic for any j = 1, 2, . . . , k.

We will also describe how to prove a more general statement than Theorem 1.1, 
where one considers colorings of the space FIN[m]

k of block sequences of FINk of a fixed 
length m. We will also provide a common generalization of such a result and the Galvin–
Glazer–Hindman theorem on finite products, in the setting of layered partial semigroups 
introduced by Farah, Hindman, and McLeod in [7].

As mentioned above, the original Gowers theorem from [8] was used to prove the 
following oscillation-stability result for the positive part of the sphere of c0. Recall that 
c0 denotes the real Banach space of vanishing sequences of real numbers endowed with 
the supremum norm. Let PS(c0) be the positive part of the sphere of c0, which is the set 
of elements of c0 of norm 1 with nonnegative coordinates. The support Supp (f) of an 
element f of c0 is the set n ∈ ω such that f(n) 	= 0. A normalized positive block basis is a 
sequence (fn) of finitely-supported elements of PS(c0) such that Supp (fn) < Supp (fn+1)
for every n ∈ ω. Gowers’ oscillation-stability result asserts that for any Lipschitz map 
F : PS(c0) → R and ε > 0 there exists a block basis (fn) such that the oscillation of 
F on the positive part of the sphere of the subspace of c0 spanned by (fn) is at most ε
[8, Theorem 6]. Such a result is proved by considering a suitable discretization of PS(c0)
that can naturally be identified with FINk; see the proof of [8, Theorem 6] and also [17, 
Corollary 2.26]. Under such an identification, the tetris operation on FINk corresponds 
to multiplication by positive scalars in c0.

Similarly, one can observe that the multiple tetris operations Ti for i = 1, 2, . . . , k
described above correspond to the following nonlinear operators on c0. Fix λ, t ∈ [0, 1]
and consider the operator St,λ on c0 mapping f to the function

n �→
{

λf(n) if |f(n)| ≥ t,

f(n) otherwise.

Given a normalized positive block basis (fn), one can consider the smallest subspace of 
c0 that contains (fn) and it is invariant under St,λ for every t, λ ∈ [0, 1]. Then arguing as 
in the proof of Gowers’ oscillation-stability theorem one can deduce from Theorem 1.1
the following result.

Theorem 1.3. Suppose that F : PS(c0) → R is a Lipschitz map, and ε > 0. There exists 
a positive normalized block sequence (fn) such that the oscillation of F on the positive 
part of the sphere of the smallest subspace of c0 containing (fn) and invariant under St,λ

for t, λ ∈ [0, 1] is at most ε.

The rest of this paper consists of three sections. In Section 2 we present a proof of The-
orem 1.1. In Section 3 we explain how the proof of Theorem 1.1 can be modified to prove 
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its multidimensional generalization. Finally in Section 4 we recall the theory of layered 
partial semigroups developed in [7], and present in this setting a common generaliza-
tion of the (multidimensional version of) Theorem 1.1 and the Galvin–Glazer–Hindman 
theorem on finite products.

2. Gowers’ theorem for generalized tetris operations

Our proof of Theorem 1.1 uses the tool of idempotent ultrafilters, similarly as Gowers’ 
original proof from [8]. In the following we will frequently use the notation of ultrafilter 
quantifiers [17, §1.1], which are defined as follows. If U is an ultrafilter on FINk and ψ(x)
is a first-order formula, then (Ub)ψ(b) means that the set of b ∈ FINk such that ψ(b)
holds belongs to U . A similar notation applies to ultrafilters on an arbitrary set.

A partial semigroup is a set S endowed with a partially defined binary operation 
(x, y) �→ x + y satisfying (x + y) + z = x + (y + z). This equation should be interpreted 
as asserting that the left hand side is defined if and only if the right hand side is defined, 
and in such a case the equality holds. Suppose that x is an element of a partial semigroup. 
We let ϕ(x) = {y ∈ S : x + y is defined}. The partial semigroup S is adequate [3,7] or 
directed [17] provided that for every finite subset F of S, 

⋂
x∈F ϕ(x) 	= ∅. We now review 

a few facts that are established in [17, Section 2.2]. Given a directed partial semigroup 
(S,+), let βS be the Stone–Čech compactification of the discrete space S, viewed as the 
set of ultrafilters on S with the points of S identified with the principal ultrafilters. Given 
A ⊂ S, A = {p ∈ βS : A ∈ p}. The topology on βS has 

{
A : A ⊂ S

}
as a basis for the 

open sets, and basis for the closed sets as well. Let γS =
⋂

x∈S ϕ(x). Then an operation, 
also denoted by +, on S can be described by, for U , V ∈ γS and A ⊂ S, A ∈ U + V if 
and only if (Ux) (Vy) x + y is defined and belongs to A. This operation makes (γS,+) a 
compact Hausdorff right topological semigroup. That is, given any U ∈ γS, the function 
V �→ V+U is continuous. By [6, Corollary 2.10], any compact Hausdorff right topological 
semigroup has idempotents.

Given partial semigroups (S,+) and (T,+), a function f : S → T is a partial semigroup 
homomorphism if and only if, whenever x and y are in S and x + y is defined then 
f(x) +f(y) is defined and f (x + y) = f(x) +f(y). We recall the following lemma, which 
is proved in [3, Proposition 2.8].

Lemma 2.1. Let (S,+) and (T,+) be directed partial semigroups, let f : S → T be a 
surjective partial semigroup homomorphism, and let fβ : βS → βT be the continuous 
extension of f . Let f̃ be the restriction of fβ to γS. Then f̃ is a semigroup homomorphism 
from γS into γT .

Given j ∈ N, we define a partial semigroup operation on FINk by defining b + b′ if 
and only if Supp(b) < Supp (b′) in which case (b + b′) (n) = b (n) + b′ (n) for any n ∈ ω. 
We also define a partial semigroup operation on FIN≤k the same way. It is a routine 
exercise to show that this makes FINk and FIN≤k directed partial semigroups, and that 
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γFIN≤k =
⋃k

j=1 γFINj ∪
{
0
}
, where each γFINk is a clopen subset of γFIN≤k and 0 is 

the function constantly equal to 0.
If 0 < j ≤ k and f : k + 1 → j + 1 is a nondecreasing surjection, we define as in the 

introduction f∗ : FIN≤k → FIN≤j by, for b ∈ FIN≤k, f∗(b) = f ◦b. Note that if b ∈ FINi

then f∗(b) ∈ FINf(i). Then f∗ is a surjective partial semigroup homomorphism, so by 

Lemma 2.1, the function f̃∗ : γFIN≤k → γFIN≤j is a semigroup homomorphism. Note 
further, that if U ∈ FINi, then f̃∗ (U) ∈ γFINf(i).

Lemma 2.2. There exists a sequence (Uk)∞k=1 such that

(1) each Uk ∈ γFINk,
(2) if 0 < j ≤ k, then Uj + Uk = Uk + Uj = Uk, and
(3) if 0 < j ≤ k and f : k + 1 → j + 1 is a nondecreasing surjection, then f̃∗ (Uk) = Uj.

Proof. For each k ∈ N, let p(k)
0 = 0. We define by recursion on k ∈ N a sequence (p(k)

j )∞j=1
such that

(1) for 1 ≤ j ≤ k, p(k)
j is an idempotent in γFINj ;

(2) for 1 ≤ j ≤ k − 1, p(k)
j = p

(k−1)
j ;

(3) for 1 ≤ j ≤ k, p(k)
j + p

(k)
j−1 = p

(k)
j ; and

(4) for 1 ≤ i ≤ j, if f : j + 1 → i + 1 is a nondecreasing surjection and 1 ≤ l ≤ j, then 
f̃∗(p(k)

l ) = p
(k)
f(l).

We show first that it suffices to complete this construction. For each k ∈ N let Uk =
p
(k)
1 + p

(k)
2 + · · ·+ p

(k)
k . Observe that hypotheses (1) and (3) imply that p(k)

k + p
(k)
j = p

(k)
k

for all j ∈ {1, 2, . . . , k}. Now let j ≤ k. Then

Uk + Uj = p
(k)
1 + p

(k)
2 + · · · + p

(k)
k + p

(j)
1 + p

(j)
2 + · · · + p

(j)
j

= p
(k)
1 + p

(k)
2 + · · · + p

(k)
k + p

(k)
1 + p

(k)
2 + · · · + p

(k)
j

= p
(k)
1 + p

(k)
2 + · · · + p

(k)
k = Uk

and

Uj + Uk = p
(j)
1 + p

(j)
2 + · · · + p

(j)
j + p

(k)
1 + p

(k)
2 + · · · + p

(k)
k

= p
(j)
1 + p

(j)
2 + · · · + p

(j)
j + p

(j)
1 + p

(j)
2 + · · · + p

(j)
j + p

(k)
j+1 + · · · + p

(k)
k

= p
(j)
1 + p

(j)
2 + · · · + p

(j)
j + p

(k)
j+1 + · · · + p

(k)
k

= p
(k)
1 + p

(k)
2 + · · · + p

(k)
j + p

(k)
j+1 + · · · + p

(k)
k = Uk.

Now let f : k + 1 → j + 1 be a nondecreasing surjection. Then f̃∗ : γFIN≤k → γFIN≤j

is a homomorphism so by hypothesis (4) we have
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f̃∗ (Uk) = f̃∗(p(k)
1 ) + f̃∗(p(k)

2 ) + · · · + f̃∗(p(k)
k )

= p
(k)
f(1) + p

(k)
f(2) + · · · + p

(k)
f(k)

= p
(k)
1 + p

(k)
2 + · · · + p

(k)
j (since 0 ≤ f(1) ≤ · · · ≤ f(k) = j)

= p
(j)
1 + p

(j)
2 + · · · + p

(j)
j = Uj .

Let Π be the product of γFINj for j ∈ N endowed with the product topology and 
coordinatewise operations. It is a routine exercise to show that Π is a compact Hausdorff 
right topological semigroup.

We begin by constructing (p(1)
j )∞j=1. Let Σ1 be the set of (qj)∞j=1 ∈ Π with the property 

that, if 1 ≤ i ≤ j, f : j+1 → i +1 is a nondecreasing surjection, 1 ≤ l ≤ j, and f(l) > 0, 
then f̃∗ (ql) = qf(l). We shall show that Σ1 is a compact subsemigroup of Π. Since each 

f̃∗ is a homomorphism, it is immediate that if (qj)∞j=1 ∈ Σ1 and (q′j)∞j=1 ∈ Σ1, then 
(qj + q′j)∞j=1 ∈ Σ1. To see that Σ1 is compact, let (qj)∞j=1 ∈ Π�Σ1 and pick 1 ≤ i ≤ j, 
a nondecreasing surjection f : j + 1 → i + 1, and l ∈ {1, 2, . . . , j} such that f(l) > 0 and 
f̃∗ (ql) 	= qf(l). Pick disjoint neighborhoods U of f̃∗ (ql) and V of qf(l) in γFINf(l) and 

pick a neighborhood W of ql in γFINl such that f̃∗ [W ] ⊂ U . Then π−1
l [W ]∩π−1

f(l) [V ] is a 
neighborhood of (qj)∞j=1 missing Σ1, where for every k ∈ N we denote by πk : Π → γFINk

the k-th projection map.
Now we show that Σ1 	= ∅. For i ∈ N, let Mi = {b ∈ FINi : (∀n ∈ ω) (f (n) ∈ {0, i})}

and for each i ∈ N define hi+1 : i +2 → i +1 by, hi+1 (n) = n −1 for n ∈ {1, 2, . . . , i + 1}
and hi+1 (0) = 0. We claim that if qi ∈ γFINi and Mi ∈ qi, then there is some 
qi+1 ∈ γFINi+1 such that Mi+1 ∈ qi+1 and h̃∗

i+1 (qi+1) = qi. So let qi ∈ γFINi such 
that Mi ∈ qi be given. Let B = {(h∗

i+1)−1[A] ∩ Mi+1 : A ∈ qi} and for t ∈ N, let 
Dt = {b ∈ FINi+1 : min Supp(b) > t}. We claim that B = {Dt : t ∈ N} has the finite 
intersection property. So let A ∈ qi and t ∈ N be given. Since qi ∈ γFINi, we have that 
{c ∈ FINi : min Supp (c) > t} ∈ qi so pick c ∈ A ∩ Mi such that min Supp (c) > t. 
Define b ∈ Mi+1 by b (n) = i + 1 if c (n) = i and b (n) = 0 if c (n) = 0. Then 
h∗
i+1(b) = c so b ∈

(
h∗
i+1

)−1 [A] ∩ Mi+1 ∩ Dt. Thus we may pick qi+1 ∈ βFINi+1 such 
that B ∪ {Dt : t ∈ N} ⊂ qi+1. Since {Dt : t ∈ N} ⊂ qi+1, we have qi+1 ∈ γFINi+1. Since 
B ⊂ qi+1, we have Mi+1 ∈ qi+1 and h̃∗

i+1 (qi+1) = qi.
Pick any q1 ∈ γFIN1 and note that M1 = FIN1. Inductively for each i ∈ N, pick 

qi+1 ∈ γFINi+1 such that Mi+1 ∈ qi+1 and h̃∗
i+1 (qi+1) = qi. We claim that (qj)∞j=1 ∈ Σ1. 

So assume that 1 ≤ i ≤ j, f : j + 1 → i + 1 is a nondecreasing surjection, and 1 ≤
l ≤ j. If f(l) = l, then f∗ is the identity on Ml and so f̃∗ (ql) = ql. Now assume 
that 0 < f(l) < l. Then for any b ∈ Ml, f∗(b) = h∗

f(l)+1 ◦ h∗
f(l)+2 ◦ · · · ◦ hl and so 

f̃∗ (ql) = (h̃∗
f(l)+1 ◦ h̃∗

f(l)+2 ◦ · · · ◦ h̃∗
l ) (ql) = qf(l).

Since Σ1 is a compact Hausdorff right topological semigroup, pick an idempotent 
(p(1)

j )∞j=1 ∈ Σ1. Then hypotheses (1), (2), and (3) are satisfied, (2) vacuously. To verify 
hypothesis (4) assume that 1 ≤ i ≤ j, f : j + 1 → i + 1 is a nondecreasing surjection, 
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and 1 ≤ l ≤ j. If f(l) > 0, then f̃∗(p(1)
l ) = p

(1)
f(l) since (p(1)

j )∞j=1 ∈ Σ1. So assume that 
f(l) = 0. Then f∗ is constantly equal to 0 on FINl so f̃∗(p(1)

l ) = 0 = p
(1)
0 .

Now let k > 1 and assume we have chosen (p(m)
j )∞j=1 for m ∈ {1, 2, . . . , k − 1} satisfying 

hypotheses (1), (2), (3), and (4). Let Σk be the set of (qj)∞j=1 ∈ Π such that

• if j ∈ {1, 2, . . . , k − 1} then qj = p
(k−1)
j ;

• if i ∈ {1, 2, . . . , k − 1} and i ≤ j, then qj + p
(k−1)
i = qj ; and

• if 1 ≤ i ≤ j, f : j + 1 → i + 1 is a nondecreasing surjection, 1 ≤ l ≤ j, and f(l) > 0, 
then f̃∗ (ql) = qf(l).

The verification that Σk is compact subsemigroup of Π is similar to the corresponding 
proof for Σ1. For each j ∈ N, let qj = p

(k−1)
j + p

(k−1)
j−1 + · · · + p

(k−1)
1 . We shall show that 

(qj)∞j=1 ∈ Σk. If j ∈ {1, 2, . . . , k − 1}, then by hypothesis (3), qj = p
(k−1)
j . Now assume 

that i ∈ {1, 2, . . . , k − 1} and i ≤ j. Then by hypothesis (3), qj = p
(k−1)
j + p

(k−1)
j−1 + · · ·+

p
(k−1)
i so qj + p

(k−1)
i = p

(k−1)
j + p

(k−1)
j−1 + · · · + p

(k−1)
i + p

(k−1)
i = qj by hypothesis (1). 

Finally, assume that 1 ≤ i ≤ j, f : j +1 → i +1 is a nondecreasing surjection, 1 ≤ l ≤ j, 
and f(l) > 0. Then, using hypothesis (4) and the fact that f̃∗ is a homomorphism we 
have that

f̃∗ (ql) = f̃∗(p(k−1)
l ) + f̃∗(p(k−1)

l−1 ) + · · · + f̃∗(p(k−1)
1 )

= p
(k−1)
f(l) + p

(k−1)
f(l−1) + · · · + p

(k−1)
f(1) .

Since f is nondecreasing, each p(k−1)
j is an idempotent, and either p(k−1)

f(1) = p
(k−1)
1 or 

p
(k−1)
f(1) = 0, this latter sum is p(k−1)

f(l) + p
(k−1)
f(l−1) + · · · + p

(k−1)
f(1) = qf(l).

Since Σk is a compact Hausdorff right topological semigroup, pick an idempotent 
(pj)∞j=1 in Σk. Hypothesis (1) and (2) hold directly. To verify hypothesis (3), assume 

that 1 ≤ j ≤ k. If j ≤ k− 1, then p(k)
j + p

(k)
j−1 = p

(k)
j by hypotheses (2) and (3) for k− 1. 

Also p(k)
k +p

(k)
k−1 = p

(k)
k +p

(k−1)
k−1 = p

(k)
k , as required. To verify hypothesis (4) assume that 

1 ≤ i ≤ j, f : j+1 → i +1 is a nondecreasing surjection, and 1 ≤ l ≤ j. If f(l) > 0, then 
f̃∗(p(k)

l ) = p
(k)
f(l) because (p(k)

j )∞j=1 ∈ Σk. If f(l) = 0, then f∗ is constantly equal to 0 on 

FINl and so f̃∗(p(k)
l ) = 0 = p

(k)
0 . �

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Pick (Uj)kj=1 as guaranteed by Lemma 2.2. For each j ∈
{1, 2, . . . , k}, pick Aj ∈ Uj such that Aj ⊂ FINj and c is constant on Aj . We de-
fine (bn)n∈ω inductively so that for each n ∈ ω, if j0, j1, . . . , jn ∈ k + 1, m =
max {j0, j1, . . . , jn} > 0, and for each i ∈ n + 1, fi : k + 1 → ji + 1 is a nondecreasing 
surjection, then
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(1) f0 ◦ b0 + f1 ◦ b1 + · · · + fn ◦ bn ∈ Am and
(2) for all l ∈ {1, 2, . . . , k}, (Uly) f0 ◦ b0 +f1 ◦ b1 + · · ·+fn ◦ bn +y is defined and belongs 

to Amax{l,m}.

This will suffice since then by (1), TSj((bn)n∈ω) ⊂ Aj for each j ∈ {1, 2, . . . , k}. At 
each stage of the induction it suffices to show that given j0, j1, . . . , jn and f0, f1, . . . , fn, 
the set of choices of bn making (1) and (2) hold is a member of Uk. For then, since there 
are only finitely many choices for j0, j1, . . . , jn and f0, f1, . . . , fn, and if n > 0, then 
{b ∈ FINk : Supp(b) > Supp (bn−1)} ∈ Uk, one may choose bn as required.

To begin, let j0 ∈ {1, 2, . . . , k} and let f0 : k + 1 → j0 + 1 be a nondecreasing 
surjection. Then Aj0 ∈ Uj0 = f̃∗

0 (Uk) so (Ukb) (f0 ◦ b ∈ Aj0). Also, given l ∈ {1, 2, . . . , k}, 
Umax{l,j0} = Uj0 + Ul so (Uj0w) (Ulz) w + z is defined and belongs to Amax{l,j}. Since 

Uj0 = f̃∗
0 (Uk), we also have (Ukb) (Ulz) f0 ◦ b + z ∈ Amax{l,j0}.

Now assume we have n ∈ ω and have constructed b0, b1, . . . , bn. Let j0, j1, . . . , jn+1 ∈
k+1 be given with r = max {j0, j1, . . . , jn+1} > 0 and for i ∈ n +2 let fi : k+1 → ji +1
be a nondecreasing surjection. If jn+1 = 0, then any choice for bn+1 will do, so assume 
that jn+1 > 0. If j0 = j1 = · · · = jn = 0, then proceed exactly as for n = 0. So 
assume that m = max {j0, j1, . . . , jn} > 0. Then r = max {m, jn+1}. By hypothesis (2) 
for l = jn+1 we have 

(
Ujn+1z

)
f0 ◦ b0 + f1 ◦ b1 + · · · + fn ◦ bn + z is defined and belongs 

to Ar. Since Ujn+1 = f̃∗
n+1 (Uk) we have that (Ukb) f0 ◦b0 +f1 ◦b1 + · · ·+fn ◦bn +fn+1 ◦b

is defined and belongs to Ar, showing that (1) holds.
To verify (2), let l ∈ {1, 2, . . . , k}. We need to show that (Ukb) (Uly) f0 ◦ b0 + f1 ◦

b1 + · · · + fn ◦ bn + fn+1 ◦ b + y is defined and belongs to Amax{l,r}. For this, since 

f̃∗
n+1 (Uk) = Ujn+1 , it suffices that 

(
Ujn+1x

)
(Uly) f0 ◦ b0 + f1 ◦ b1 + · · ·+ fn ◦ bn + x + y

is defined and belongs to Amax{l,r}. For this in turn, since Ujn+1 + Ul = Umax{l,jn+1}, it 
suffices to show that 

(
Umax{l,jn+1}z

)
f0 ◦ b0 + f1 ◦ b1 + · · · + fn ◦ bn + z is defined and 

belongs to Amax{l,r}. We are given that

(Ulw) f0 ◦ b0 + · · · + fn ◦ bn + w is defined and belongs to Amax{l,m} (∗)

and

(
Ujn+1w

)
f0 ◦ b0 + · · · + fn ◦ bn + w is defined and belongs to Amax{jn+1,m}. (∗∗)

Assume first that r = jn+1 so jn+1 ≥ m. If l ≥ r, then max {l, r} = l = max {l,m}
and max {l, jn+1} = l so (∗) applies. If l < r, then max {l, r} = jn+1 = max {jn+1,m}
and max {l, jn+1} = jn+1 so (∗∗) applies.

Now assume that r > jn+1 so r = m. If l ≥ r, then max {l, r} = l = max {l,m} and 
max {l, jn+1} = l, so (∗) applies. If r > l ≥ jn+1, then max {l, r} = r = max {l,m} and 
max {l, jn+1} = jn+1 so (∗∗) applies. �
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3. A multidimensional generalization

Gowers’ theorem on FINk can be seen as a generalization of Hindman’s theorem for 
sets of finite unions [10]. Such a theorem asserts that for any finite coloring of FIN1, there 
exists a block sequence (bn) in FIN1 such that TS1 (bn) is monochromatic. Observe that 
one can identify FIN1 with the set of nonempty finite subsets of ω. Then TS1 (bn) is 
just the collection of all finite unions of the elements of the given sequence. Hindman’s 
theorem on finite unions is the particular instance of Gowers’ theorem for k = 1.

In another direction, Hindman’s theorem on finite unions was generalized, indepen-
dently, by Milliken and Taylor [14,16]; see also [4]. Fix m ∈ N and consider the set FIN[m]

1
of block sequences in FIN1 of length m. The Milliken–Taylor theorem on finite unions 
asserts that, for any finite coloring of FIN[m]

1 , there exists an infinite block sequence (bn)
in FIN1 such that the set TS1 (bn)[m] of m-tuples of the form

(bn0 + · · · + bn�0−1 , bn�0
+ · · · + bn�1−1, . . . , bn�m−1

+ · · · + bn�m−1)

for 0 < �0 < �2 < · · · < �m and 0 ≤ n1 < n2 < · · · < n�m−1, is monochromatic.
The multidimensional analog of Gowers’ theorem for a single tetris operation is proved 

in [17, Corollary 5.26]. The corresponding finite version is considered in [18]. In a similar 
spirit, one can consider a multidimensional generalization of Theorem 3.1. Let FIN[m]

k

be the space of block sequences in FINk of length m, and FIN[m]
≤k be the union of FIN[m]

j

for j = 1, 2, . . . , k. If (bn) is a block sequence in FINk and 1 ≤ j ≤ k, then we define 
the tetris subspace TSj (bn)[m] of FIN[m]

k generated by (bn) to be the set of elements of 
FIN[m]

j of the form (a0, . . . , am−1), where ad for d ∈ m is equal to

fnd
◦ bnd

+ · · · + fnd+1−1 ◦ bnd+1−1

for some n0 = 0 < n1 < n2 < · · · < nm, 0 ≤ ji ≤ k and nondecreasing surjections 
fi : k + 1 → ji + 1 for i ∈ nm such that max

{
jnd

, . . . , jnd+1−1
}

= j. We can then state 
the multidimensional generalization of Theorem 1.1 as follows:

Theorem 3.1. Suppose that m, k ∈ N. For any finite coloring of FIN[m]
≤k , there exists an 

infinite block sequence (bn) in FINk such that TSj (bn)[m] is monochromatic for every 
j = 1, 2, . . . , k.

In order to prove the Milliken–Taylor theorem, one can consider an idempotent cofi-
nite ultrafilter U1 on FIN1, and then the Fubini power V1 := U⊗m

1 . This is defined 
as the cofinite ultrafilter on FIN[m]

1 such that A ∈ V1 if and only if (U1b1) · · · (Umbm), 
(b1, . . . , bm) ∈ A; see [17, §1.2]. Then any element of V1 witnesses that the Milliken–
Taylor theorem holds. A similar approach works for Theorem 3.1. Indeed, consider the 
cofinite ultrafilter Uk on FINk given by Lemma 2.1 and its Fubini power Vk := U⊗m

k

on FIN[m]
k . Then any element of Vk witness that Theorem 3.1 holds. The proof of such a 
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fact is analogous to the proof of Theorem 1.1, and only notationally heavier. The details 
are left to the interested reader.

As usual, it follows by compactness from Theorem 3.1 the corresponding finite version, 
which recovers Corollary 2.3 of [1].

Corollary 3.2. Suppose that m, k, �, r ∈ N. There exists n ∈ N such that for any r-coloring 
of FINj(n)[m], there exists a block sequence (b0, . . . , b�−1) in FINk of length � such that 
TSj(b0, . . . , b�−1)[m] is monochromatic for j = 1, 2, . . . , k.

4. A generalization for layered partial semigroups

Suppose that (S,+) , (T,+) are partial semigroups. Recall that a partial semigroup 
homomorphism from S to T is a function σ : S → T such that for any x, y ∈ S, 
σ(x) +σ(y) is defined whenever x +y is defined, and in such case σ(x +y) = σ(x) +σ(y) [7, 
Definition 2.8]. We say that σ : S → T is an adequate partial semigroup homomorphism
if it is a partial semigroup homomorphism with the property that for any finite subset 
A of S there exists a finite subset B of T such that 

⋂
b∈B ϕ(b) is contained in the image 

under σ of 
⋂

a∈A ϕ (a).
If T is a partial semigroup and S ⊂ T , then S is an adequate partial subsemigroup

if the inclusion map S ↪→ T is an adequate partial semigroup homomorphism [7, Defi-
nition 2.10]. We say that a subset S of a partial semigroup T is an adequate ideal if it 
is an adequate partial subsemigroup, and for any x ∈ S and y ∈ T one has that x + y

and y + x belong to S whenever they are defined [7, Definition 2.15]. Lemma 2.14 and 
Lemma 2.16 of [7] show that, if S ⊂ T is an adequate partial subsemigroup, then γS can 
be canonically identified with a subsemigroup of γT . If furthermore S is an adequate 
ideal of T , then γS is an ideal of γT . We now recall the definition of layered partial 
semigroup from [7, §3]. An element e of a partial semigroup is an identity element if 
e + x and x + e are defined and equal to x for any x ∈ S.

Definition 4.1. A layered partial semigroup with k layers is a partial semigroup S endowed 
with a partition {S0, . . . , Sk} such that S0 = {e} for some identity element e for S, and 
for every n = 1, 2, . . . , k, letting S≤n = S0 ∪ · · · ∪ Sn, one has that S≤n is an adequate 
partial semigroup, Sn is an adequate partial subsemigroup of S, and an adequate ideal 
of S≤n.

In the following we will assume that S is a layered partial semigroup with k layers 
as witnessed by the partition {S0, . . . , Sk}, and set S≤n = S0 ∪ · · · ∪ Sn. Observe that 
it follows from the definition of layered partial semigroup that γSn is an ideal of γS≤n, 
and a subsemigroup of γS for n = 1, 2, . . . , k.

Definition 4.2. Suppose that A = (F1,M1,F2,M2, . . . ,Fk,Mk) is a tuple such that for 
every n = 1, 2, . . . , k, Fn is a nonempty finite collection of partial semigroup homomor-
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phisms from S≤n to S≤n−1, and Mn is an adequate subsemigroup of Sn for n = 1, 2, . . . , k. 
We say that A is a tetris action on S if and only if it satisfies for any n = 2, 3, . . . , k, 
and σ ∈ Fn the following conditions:

(1) the image of Mn under σ is an adequate partial subsemigroup of Mn−1;
(2) the image of Sn under σ is an adequate partial subsemigroup of Sn−1;
(3) the restriction of σ to S≤n−1 either belongs to Fn−1, or it is the identity map of 

S≤n−1, and
(4) for any σ1, σ2 ∈ Fn one has that σ1|Mn

= σ2|Mn
.

From now on we assume that (F1,M1,F2,M2, . . . ,Fk,Mk) is a tetris action on S as in 
Definition 4.2. It follows from [7, Lemma 2.4] that for any n = 2, 3, . . . , n, any element σ
of Fn admits a continuous extension σβ : βS≤n → βS≤n−1 such that:

• if p ∈ βSn, q ∈ γS≤n−1, and σβ(q) ∈ γS≤n−1, then σβ(p + q) = σβ(p) + σβ(q);
• if p ∈ βS≤n−1, q ∈ γSn, and σβ(q) ∈ γSn, then σβ(p + q) = σβ(p) + σβ(q);
• σβ maps γSn to γSn−1 and γMn to γMn−1.

In particular, σβ induces continuous semigroup homomorphism σ̃ : γSn → γSn−1

mapping the subsemigroup γMn to γMn−1. The same proof as Lemma 2.1 shows the 
following:

Lemma 4.3. There exist idempotent elements Un ∈ γSn for n = 1, 2, . . . , k such that 
σ̃ (Un) = Un−1 and Un + Un−1 = Un−1 + Un = Un for every n = 2, . . . , k and σ ∈ Fn.

Given a tetris action, one can define as in [7, Definition 3.9] the collection Gn of maps 
from Sk to Sn of the form σn+1 ◦ σn+2 ◦ · · · ◦ σk, where σj ∈ Fj for j = n + 1, . . . , k. We 
also let G be the union of Gn for n = 1, 2, . . . , k.

Definition 4.4. A block sequence in Sk is a sequence (bn) such that f0 (b0) + · · ·+ fn (bn)
is defined for any n ∈ ω and f0, . . . , fn ∈ G.

The notion of block sequence in Sn for some n ≤ k is defined similarly. We let S[m]
n

be the set of block sequences in Sn of length m, and S[m]
≤n be the union of S[m]

j for 
j = 1, 2, . . . , n. If (bn) is a block sequence in Sk, then we define the tetris subspace
TSj (bn) ⊂ S

[n]
j of the j-th layer generated by (bn) to be the set of elements of S[n]

j of 
the form (a0, . . . , am−1) where for some 0 = n0 < n1 < · · · < nm ∈ ω, ji ∈ k + 1, and 
fi ∈ Gji for i ∈ nm one has that for every d ∈ m, max{jnd

, . . . , jnd+1−1} = j and ad =
fnd

(bnd
) +· · ·+fnd+1−1(bnd+1−1). Then using Lemma 4.3 one can prove as in Theorem 3.1

the following result, which is a common generalization of the Galvin–Glazer–Hindman 
theorem and Theorem 3.1.
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Theorem 4.5. Suppose that S is a layered partial semigroup endowed with a tetris action 
as above. Fix m ∈ N and a finite coloring of S[m]

≤k . Then there exists an infinite block 

sequence (bn) in Sk such TSj (bn)[m] is monochromatic for every j = 1, 2, . . . , k.

It is clear that Theorem 4.5 has the Galvin–Glazer–Hindman theorem [17, Theo-
rem 2.20] as a particular case. Set now Sj := FINj for j = 0, 1, . . . , k, and S :=
S0 ∪ · · · ∪ Sn. Endow S = FIN≤k with the partial semigroup structure described in 
Section 2. Then S = S0 ∪ · · · ∪ Sk is a layered partial semigroup in the sense of Defi-
nition 4.1. Denote by Fn for n = 1, 2, . . . , k the collection of multiple tetris operations 
Tn,1, . . . , Tn,n : FINn → FINn−1 defined in the introduction. Let also Mn ⊂ Sn be the set 
of b ∈ Sn such that b(i) ∈ {0, n} for every i ∈ ω. It is then easy to see that (Fn,Mn)kn=1
is a tetris action on S in the sense of Definition 4.2. Furthermore the conclusions of 
Theorem 4.5 in the particular case of such a tetris action yields Theorem 3.1.
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