期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:164 |
The minimum size of a linear set | |
Article | |
De Beule, Jan1  Van de Voorde, Geertrui2  | |
[1] Vrije Univ Brussel, Dept Math, Pl Laan 2, B-1050 Brussels, Belgium | |
[2] Univ Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8140, New Zealand | |
关键词: Linear set; Linearised polynomial; Directions determined by a point set; | |
DOI : 10.1016/j.jcta.2018.12.008 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we first determine the minimum possible size of an F-q-linear set of rank k in PG(1, q(n)). We obtain this result by relating it to the number of directions determined by a linearized polynomial whose domain is restricted to a subspace. We then use this result to find a lower bound on the number of points in an F-q-linear set of rank k in PG(2, q(n)). In the case k = n, this confirms a conjecture by Sziklai in [9]. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcta_2018_12_008.pdf | 398KB | download |