期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:164
The minimum size of a linear set
Article
De Beule, Jan1  Van de Voorde, Geertrui2 
[1] Vrije Univ Brussel, Dept Math, Pl Laan 2, B-1050 Brussels, Belgium
[2] Univ Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8140, New Zealand
关键词: Linear set;    Linearised polynomial;    Directions determined by a point set;   
DOI  :  10.1016/j.jcta.2018.12.008
来源: Elsevier
PDF
【 摘 要 】

In this paper, we first determine the minimum possible size of an F-q-linear set of rank k in PG(1, q(n)). We obtain this result by relating it to the number of directions determined by a linearized polynomial whose domain is restricted to a subspace. We then use this result to find a lower bound on the number of points in an F-q-linear set of rank k in PG(2, q(n)). In the case k = n, this confirms a conjecture by Sziklai in [9]. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2018_12_008.pdf 398KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次