期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:118
Bounds on sets with few distances
Article
Barg, Alexander1,2,3  Musin, Oleg R.4 
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[3] Russian Acad Sci, Inst Problems Informat Transmiss, Moscow, Russia
[4] Univ Texas Brownsville, Dept Math, Brownsville, TX 78520 USA
关键词: Distance transitive spaces;    Binary codes;    Intersecting families;    Orthogonal polynomials;    Spherical codes;   
DOI  :  10.1016/j.jcta.2011.01.002
来源: Elsevier
PDF
【 摘 要 】

We derive a new estimate of the size of finite sets of points in metric spaces with few distances. The following applications are considered: we improve the Ray-Chaudhuri-Wilson bound of the size of uniform intersecting families of subsets; we refine the bound of Delsarte-Goethals-Seidel on the maximum size of spherical sets with few distances; we prove a new bound on codes with few distances in the Hamming space, improving an earlier result of Delsarte. We also find the size of maximal binary codes and maximal constant-weight codes of small length with 2 and 3 distances. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2011_01_002.pdf 178KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次