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considered:

• we improve the Ray-Chaudhuri–Wilson bound of the size of
uniform intersecting families of subsets;

• we refine the bound of Delsarte–Goethals–Seidel on the
maximum size of spherical sets with few distances;

• we prove a new bound on codes with few distances in the
Hamming space, improving an earlier result of Delsarte.

We also find the size of maximal binary codes and maximal
constant-weight codes of small length with 2 and 3 distances.
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1. Introduction

We consider finite collections of points in a metric space X with distance function d. Following
the terminology of coding theory we call such collections codes. We say that C ⊂ X is an s-code if the
set of distances d(x1, x2) between any two distinct points of C has size s. The subject of this paper is
estimates for the size (the number of points) of s-codes.

The study of s-codes in R
n was initiated by Einhorn and Schoenberg [10]. Delsarte [5,6] obtained

several classical results for s-codes in finite spaces, while for the case of the unit sphere Sn−1 ⊂ R
n

the problem of bounding the size of s-codes was first addressed by Delsarte, Goethals, and Seidel
in [8]. Codes with few distances in finite spaces are closely related to the well-known combinatorial

E-mail addresses: abarg@umd.edu (A. Barg), omusin@gmail.com (O.R. Musin).
1 Research supported in part by NSF grants DMS0807411, CCF0635271, and CCF0830699.
2 Research supported in part by NSF grant DMS0807640 and NSA grant MSPF-08G-201.
0097-3165/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcta.2011.01.002

http://dx.doi.org/10.1016/j.jcta.2011.01.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcta
mailto:abarg@umd.edu
mailto:omusin@gmail.com
http://dx.doi.org/10.1016/j.jcta.2011.01.002


1466 A. Barg, O.R. Musin / Journal of Combinatorial Theory, Series A 118 (2011) 1465–1474
problem of bounding the size of families of sets with restricted intersections. Results of this kind are
often called intersection theorems in combinatorial literature. They have been a subject of extensive
studies beginning with the work of Ray-Chaudhuri and Wilson [22]. Their proofs are mostly based on
two general methods, namely, the method of linearly independent polynomials, see e.g., Alon et al. [1],
Blokhuis [4], Babai et al. [3], and on Delsarte’s linear programming method [6,8].

Recently an improvement of the Delsarte–Goethals–Seidel bound on spherical s-codes for the case
s = 2 was obtained in the second author’s paper [20]. Following this result, Nozaki [21] proved a
general bound on the size of spherical s-codes. We continue this line of work, employing Delsarte’s
ideas to derive a general improvement of the bound [8] for every even s as well as new estimates
of the size of s-codes over a finite alphabet. The latter result also enables us to tighten the Ray-
Chaudhuri–Wilson bound on the size of uniform s-intersecting families. Of course, both these bounds
are known to be tight in general, so our improvements are only valid under some assumptions on the
size of the intersections.

2. A bound on s-codes

In this section we present a general bound on the size of s-codes (Theorem 5). The bound is
most conveniently described in the context of harmonic analysis. This approach to packings of metric
spaces was introduced in [5,8] for finite spaces known as association schemes and the sphere Sn−1

respectively. It was generalized in [15] to all distance transitive compact metric spaces. Under this
approach the space X is viewed as a homogeneous space of its isometry group G . The space X is
called distance transitive if G acts transitively on ordered pairs of points of X at a given distance.
Denote by dα the normalized G-invariant measure on X . The space L2(X,dα) of complex-valued
square-integrable functions on X decomposes into a finite or countably infinite direct sum of pairwise
orthogonal finite-dimensional linear spaces V i of functions called (generalized) spherical harmonics.
Let us fix a basis of spherical harmonics (φi,1, . . . , φi,hi ) in the space V i , where hi = dim V i . Since X
is distance transitive, the function

Pi(x, y) =
hi∑

j=1

φi, j(x)φi, j(y) (1)

depends only on the distance d(x, y). This expression is called the addition formula in the theory of
special functions, and it is only this formula that we need in later derivations. Below we use small
p to refer to functions obtained from the functions (1) once the pair of points x, y is replaced by
the distance between them, and use x to denote this distance. In particular, pi(x) is a univariate real
polynomial of degree i. Without loss of generality we assume that p0 ≡ 1.

In the cases of interest to us, the functions pi form a family of classical orthogonal polynomials.
Namely, consider the linear functional L( f ) = ∫

f (x)dμ(x), where dμ is the measure induced by dα
on the set of possible values of the distance on X . Then L(pi p j) = 0 for i �= j, and

riL
(

p2
i

) = 1, where ri = 1

hi
.

As is well known (e.g., [2, p. 244]), the polynomials pi satisfy a three-term recurrence of the form

xpi = ai pi+1 + bi pi + ci pi−1, (2)

where the numbers ai,bi, ci can be easily computed. Given a polynomial f (x) of degree s we can
compute its Fourier coefficients in the basis {pi} in a usual way, namely,

f i = riL( f pi) (0 � i � s). (3)

Our primary examples will be the Hamming space Hn
q = (Zq)

n where Zq is the set of integers
mod q, the binary Johnson space Jn,w formed by the n-dimensional binary vectors with w ones,
w � n/2, and the sphere Sn−1. The distance in Hn

q is defined as dH (x1, x2) = |{i: x1i �= x2i}|, the

distance in J w,n is given by d J (x1, x2) = 1
2 dH (x1, x2), and the distance on Sn−1 is measured as the

inner product between the vectors.
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Table 1
Parameters of the metric spaces.

X Hn
q , q � 2 Jn,w Sn−1

dμ q−n
(n

i

)
(q − 1)i (w

i )(
n−w

i )
(n

w)
Γ (n/2)

2πn/2 (1 − x2)(n−3)/2 dx

hi
(n

i

)
(q − 1)i

(n
i

) − ( n
i−1

) (n+i−2
i

) + (n+i−3
i−1

)
ai − i+1

q − (i+1)(w−i)(n−w−i)
(n−2i−1)(n−2i)

n−2+i
n−2+2i

bi
i+(q−1)(n−i)

q
(n+2)w(n−w)−ni(n−i+1)

(n−2i)(n−2i+2)
0

ci − (n−i+1)(q−1)
q − (w−i+1)(n−w−i+1)(n−i+2)

(n−2i+2)(n−2i+3)
i

n−2+2i

To illustrate the above ideas, let us consider the Hamming case X = Hn
q . A typical isometry of

X is a permutation of coordinates followed by a permutation of symbols in every coordinate, i.e.,

G = Sq � Sn . An orthogonal basis of the space V i is formed of functions φi, j(x) = e
2π i

q (α1xl1 +···+αi xli
) ,

where 1 � l1 < · · · < li � n is an i-subset of [n] and αm ∈ Zq\0, m = 1, . . . , i. There are hi = (n
i

)
(q − 1)i

linearly independent functions φi, j of this form. Then pi is a Krawtchouk polynomial Ki(x) of degree
i whose explicit form can be found from (1). We have

Ki(x) =
i∑

j=0

(−1) j
(

x

j

)(
n − x

i − j

)
(q − 1)i− j.

In particular, Ki(0) = (n
i

)
(q − 1)i ,

K0(x) = 1, K1(x) = n(q − 1) − qx,

K2(x) = 1

2

{
q2x2 − q(2qn − q − 2n + 2)x + (q − 1)2n(n − 1)

}
. (4)

For X = Jn,w the polynomials pi form a certain family of discrete Hahn polynomials [7]. The Hahn
polynomial of degree i is given by

Q i(x) =
((

n

i

)
−

(
n

i − 1

)) i∑
j=0

(−1) j

( i
j

)(n+1−i
j

)
(w

j

)(n−w
j

) (
x

j

)
.

Finally, for Sn−1 the functions pi are given by the Gegenbauer polynomials Gi(t). The explicit form
and properties of these polynomials are well known. All the information about them that we need is
listed in Table 1 together with the corresponding properties of Ki and Q i . There is no single reference
with the proofs of these formulas although they are mentioned in many places. The primary sources
are Koekoek and Swarttouw [17] (or the recent book [16]) or Andrews et al. [2, Chapter 6], but the
normalizations there are different from the ones used above. Hahn polynomials are also discussed by
Delsarte in [5] (without being identified as such) and [7].

The following bound on s-codes is well known. It was proved by Delsarte [5,6] for codes in Q -
polynomial association schemes which includes Hn

q and Jn,w , and by Delsarte et al. [8] for codes in

Sn−1.

Theorem 1. Let C be an s-code in a compact distance-transitive space X. Then

|C| � h0 + h1 + · · · + hs. (5)

For X = Sn−1 and s = 2 this theorem gives the bound |C| � 1
2 n(n + 3). This estimate was recently

improved in [20] where it was shown that if the inner products between distinct code words take
values t1, t2, and t1 + t2 � 0, then |C| � 1

2 n(n + 1). The proof relies on the method of linearly in-
dependent polynomials. Subsequently, Nozaki [21] proved a general bound on spherical s-codes. His
theorem builds upon Delsarte’s ideas and is included here for completeness.

We will need a result in matrix analysis known as Ostrowski’s theorem [14, pp. 224–225].
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Theorem 2. Let F , S be N × N real matrices, and let F be symmetric. Let the eigenvalues of F and S S T be
arranged in increasing order, i.e., λi(F ) � λ j(F ), λi(S S T ) � λ j(S S T ), i < j. For each k = 1, . . . , N there exists
a real number θk, 0 � θk � λN (S S T ) such that

λk
(

S F S T ) = θkλk(F ).

Theorem 3. (Nozaki [21].) Let C = {x1, . . . , xM} ⊂ X be an s-code with distances d1, . . . ,ds. Consider the poly-
nomial f (x) = ∏s

i=1(di − x) and suppose that its expansion in the basis {pi} has the form f (x) = ∑
i f i pi(x).

Then

|C| �
∑

i: f i>0

hi .

Proof. Let |C| = M and consider the M × hl matrix Hl given by (Hl)i, j = φl, j(xi), where i =
1, . . . , M; j = 1, . . . ,hl . Let H = (H0, H1, . . . , Hs) and consider the M × M matrix A = H FH t where

F = f0 I1 ⊕ f1 Ih1 ⊕ · · · ⊕ f s Ihs

is a direct sum. By (1) the general entry of A equals Ax,y = f (d(x, y)), which implies that A = f (0)IM .
Here our arguments deviate from [21]. Let S = [ H

0

]
be an N × N matrix, N = ∑s

i=0 hi , and let

A′ = S F S T . The eigenvalues of A′ are 0 and f (0) with multiplicities N − M and M , respectively. By
Ostrowski’s theorem, to every positive eigenvalue of A′ there corresponds a positive eigenvalue of F ,
i.e.,

M = ∣∣{k: λk
(

A′) > 0}∣∣ �
∣∣{k: λk(F ) > 0}∣∣,

which was to be proved. �
To apply this theorem let us compute some coefficients of the polynomial f (x).

Lemma 4. Let f (x) = ∏s
i=1(di − x) = ∑s

i=0 f i pi(x). Then

fs = (−1)srsc1c2 · · · cs (s � 1),

f s−1 = (−1)srs−1c1 · · · cs−1

s∑
j=1

(b j−1 − d j) (s � 2).

Proof. We have

f (x) = (−1)s(xs − (d1 + · · · + ds)xs−1) + · · · .
In the following we use the relation L(xm pk) = 0, valid for all 0 � m < k, and relations (2) and (3).
We compute

(−1)s f s = rsL
(
xs ps

) = rsL
(
xs−1(as ps+1 + bs ps + cs ps−1)

)
= rscsL

(
xs−1 ps−1

) = · · · = rsc1c2 · · · cs.

Next we claim that

L
(
xs ps−1

) = c1c2 · · · cs−1(b0 + b1 + · · · + bs−1), s � 2.

Indeed, L(x2 p1) = L(x(b1 p1 + c1)) = b1c1 + b0c1. Now let us assume that

L
(
xs−1 ps−2

) = c1c2 · · · cs−2(b0 + b1 + · · · + bs−2).

Then
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L
(
xs ps−1

) = L
(
xs−1(bs−1 ps−1 + cs−1 ps−2)

)
= bs−1c1c2 · · · cs−1 + cs−1

(
c1c2 · · · cs−2(b0 + b1 + · · · + bs−2)

)
as was to be proved. Next,

f s−1 = rs−1L
(
(−1)s(xs − (d1 + · · · + ds)xs−1)ps−1

)
= (−1)srs−1

(
c1c2 · · · cs−1(b0 + b1 + · · · + bs−1) − (d1 + · · · + ds)c1 · · · cs−1

)
= (−1)srs−1c1 · · · cs−1

(
(b0 + b1 + · · · + bs−1) − (d1 + · · · + ds)

)
. �

The next theorem provides an improvement of the general bound (5). It will be used in subsequent
sections to establish the main results of this paper.

Theorem 5. Let C be a code in a compact distance-transitive space X with distances d1, . . . ,ds. Let the num-
bers bi, ci , i � 0 be defined by (2) and let

D = b0 + · · · + bs−1 − d1 − · · · − ds.

(a) Suppose that ci < 0, i = 1,2, . . . and D � 0. Then

|C| � h0 + h1 + · · · + hs−2 + hs.

(b) Suppose that ci > 0, i = 1,2, . . . . Then

|C| �
{h0 + h1 + · · · + hs−2 s ≡ 1(mod 2) and D � 0,

h0 + h1 + · · · + hs−1 s ≡ 1(mod 2) and D < 0,

h0 + h1 + · · · + hs−2 + hs s ≡ 0(mod 2) and D � 0.

Proof. The proof uses Theorem 3 and is completed by the analysis of the signs of f s and f s−1 for the
cases specified in the theorem. �
Remark. It is possible to evaluate other coefficients of the polynomial f (x) in Lemma 4 which will
lead to further refinements of bound (5) from Theorem 3. However the conditions on the distances
will involve higher-degree symmetric functions of them, which limits somewhat their usefulness.

Example 1. Consider the binary extended Golay code G24 of length n = 24 and cardinality 4096. The
distances between distinct codevectors of G24 are 8, 12, 16, and 24 [19, p. 67]. Since G24 is a linear
code, it contains the all-zero vector and therefore also the vector 1 = 124 of all ones. Therefore, if x is
a codevector then so is the vector 1+x. Deleting one vector from each of such pairs, we obtain a code
G o

24 of cardinality 2048 = (24
1

) + (24
3

)
with distances d1 = 8,d2 = 12,d3 = 16. From Table 1, bi = 12 for

all i, so D = 0, and Theorem 5(a) implies that for any code C ∈ H24
2 with distances 8, 12, 16, we have

|C| � h0 + h1 + h3. However,

(8 − x)(12 − x)(16 − x) = 3

4
K1(x) + 3

4
K3(x),

meaning that f0 = 0, so the bound can be tightened to |C| � h1 + h3. In other words, the Golay “half-
code” G o

24 is an optimal 3-distance code of length 24. This example will be generalized in Section 4
below.

In the following sections we will use another general bound on codes known as Delsarte’s “linear
programming” bound [5]. For s-codes this bound gives

Theorem 6 (Delsarte). Let C ⊂ X be an s-code with distances d1, . . . ,ds. Then

|C| � max

{
1 + α1 + · · · + αs:

s∑
αi pk(di) � −pk(τ0), k � 0; αi � 0, i = 1, . . . , s

}
.

i=1
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Here τ0 = 0 for the Hamming and Johnson spaces and τ0 = 1 for the sphere Sn−1 .

3. Constant weight codes and intersecting families

Call a family F = {F1, F2, . . .} of subsets of an n-element set w-uniform if |Fi | = w, i = 1,2, . . . ,
and call it s-intersecting if ∀Fi ,F j |Fi ∩ F j | ∈ {w, 	1, . . . , 	s} for some 	1, . . . , 	s,0 � 	i < w . For two sub-
sets F1, F2 with |F1 ∩ F2| = 	 the distance between their indicator vectors x1, x2 equals d J (x1, x2) =
w − 	. Thus, the indicator vectors of F form an s-code C in Jn,w .

Theorem 7. (Ray-Chaudhuri–Wilson [22].) Let F be a w-uniform s-intersecting family. Then

|F | �
(

n

s

)
. (6)

Proof. Follows from (5) and Table 1. �
Deza, Erdös, and Frankl [9] showed that for n � w

(3w
w

)
this estimate can be improved to

|F | �
s∏

i=1

n − 	i

w − 	i
. (7)

The particular case {	1, . . . , 	s} = {w − s, w − s + 1, . . . , w − 1} corresponds to the celebrated Erdös–
Ko–Rado theorem [11]. According to it, if n � (w − s + 1)(s + 1) then

|F | �
(

n − w + s

s

)
.

Note also that generally (6) is best possible because the bound is met by F = ([n]
w

)
. Several general-

izations of Theorem 7 were obtained in [1,3,23]. We obtain the following general improvement of this
theorem.

Theorem 8. Let F be a w-uniform s-intersecting family. Suppose that

	1 + · · · + 	s � s(w2 − (s − 1)(2w − n/2))

n − 2(s − 1)
. (8)

Then

|F | �
(

n

s

)
−

(
n

s − 1

)
n − 2s + 3

n − s + 2
. (9)

Proof. The proof will follow from Theorem 5(a). For it to hold, we need that

s∑
i=1

di = ws −
s∑

i=1

	i �
s−1∑
i=0

bi . (10)

Now take the value of bi from Table 1 and use induction to show that

s−1∑
i=0

(n + 2)w(n − w) − ni(n − i + 1)

(n − 2i)(n − 2i + 2)
= ws(n − w) − (s

2

)
n

n − 2(s − 1)
.

The proof is concluded by substituting this expression for
∑s−1

i=0 bi in (10). �
Let us show that the region of 	i ’s defined in (8) is not void. Write this inequality as∑

	i > ws − ws(n − w) − (s
2

)
n
.

n − 2(s − 1)
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As s � w � n/2, the numerator of the fraction is nonnegative and n − 2(s − 1) � n. Thus (8) will
hold if

∑
	l > w2s/n − (s

2

)
. This last inequality holds in turn if w is close to n/2 and the 	i s are

large. For instance if s = 2 then the Ray-Chaudhuri–Wilson bound can be tightened for all 	1 + 	2 >

(2w(w − 2)+n)/(n − 2). See also the example in the end of this section. The bound (9) is not as good
as (7) whenever the latter applies; on the other hand, (9) involves no restrictions on n.

Let us consider in more detail the case of 2- and 3-intersecting families, switching to the language
of constant weight codes.

Corollary 9. Let C ⊂ Jn,w be a code.

(a) Suppose that the distances between distinct vectors of C take values d1,d2 . If

d1 + d2 � 2w(n − w) − n

n − 2
(11)

then |C| � 1
2 (n − 1)(n − 2).

(b) Suppose that the distances between distinct vectors in C take values d1,d2,d3 . If

d1 + d2 + d3 � 3w(n − w) − 3n

n − 4

then |C| � n
6 (n2 − 6n + 11).

We note that a 2-distance constant weight code can be constructed by taking the
(n−w+2

2

)
vectors

with w − 2 ones in the first coordinates and the remaining 2 ones anywhere outside them. This code
attains the Erdös–Ko–Rado bound and in the case w = 3 is extremal for Part (a) of the above corollary
for all n � 6.

To establish the next result we will need the following result of Larman, Rogers, and Seidel [18],
restated here in the form convenient to us: Suppose that C ⊂ Hn

2 is a binary code with distances d1 < d2 ,

and |C| > 2n + 3. Then d1/d2 = (k − 1)/k where k is an integer satisfying 2 � k � 1
2 + √

n/2. Below we call
this relation for the numbers d1,d2 the LRS condition.

Proposition 10. (a) For 6 � n � 44 and 3 � w � n/2 with the exception of the cases (n, w) = (23,7),
(44,17) the size of a 2-distance code C ⊂ Jn,w satisfies |C| � 1

2 (n − 1)(n − 2).
(b) If n and w satisfy any of the following conditions:

6 � n � 8 and w = 3;
9 � n � 11 and 3 � w � 4;
12 � n � 14 or 25 � n � 34 and 3 � w � 5;
15 � n � 24 or 35 � n � 46 and 3 � w � 6,

then the maximum 2-distance code C ⊂ Jn,w satisfies |C| = 1
2 (n − w + 1)(n − w + 2).

Proof. Part (a). If the distances in C satisfy (11), then the upper bound in Part (a) follows from the
previous corollary. Otherwise we examine every pair of distances d1,d2. If a given pair does not satisfy
the LRS condition, then |C| � 2n + 3. If this condition is satisfied, we compute the Delsarte bound of
Theorem 6. Together these arguments produced an upper bound

(n−1
2

)
on the code size for all the

parameters in the statement.
Part (b). For all n, w � n/2 there exists a constant weight 2-distance code of size

(n−w+2
2

)
. The

matching upper estimates are established by computing the Delsarte bound. �
As an example of the arguments involved in the proof, let C be a two-distance code in Jn,w

with n = 13, w = 5. There are 10 possibilities for the distances d1,d2. The LRS condition is fulfilled
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if d1/d2 = (k − 1)/k,2 � k � 3. Thus, the pairs (1,3), (1,4), (1,5), (2,5), (3,4), (3,5), (4,5) do not
satisfy it, so for all these cases |C| � 29. Next we compute the Delsarte bound D(d1,d2) for the 3
remaining cases, obtaining D(1,2) = 45, D(2,3) = 33, D(2,4) = 27. This exhausts all the possible
cases, so we conclude that |C| � 45. As mentioned above, the extremal configuration has 45 vectors
at distances 1 or 2. This code meets both the Delsarte bound and the Erdös–Ko–Rado bound. This
establishes both parts of the last proposition in the case considered.

Likewise, if n = 18, w = 8, Corollary 9(a) applies whenever d1 + d2 � 8. For any such two-distance
code we obtain |C| � 136. The remaining possibilities for the distances are covered by the LRS condi-
tion or checked by computing the Delsarte bound. This establishes the corresponding case of Part (a)
of the proposition.

Generally, the Delsarte bound is better than the other bounds for n up to about 45 and is rather
loose (and difficult to compute) for greater n.

Note that the case n = 23, w = 7 is a true exception in Part (a) of Proposition 10. Indeed, the 253
vectors of weight 7 in the binary Golay code of length 23 have pairwise Johnson distances 4 and 6
[19, p. 69], which is greater than

(23
2

) = 231.

4. s-codes in the Hamming space

Let C ⊂ Hn
q be a code in which the distances between distinct codewords are d1,d2, . . . ,ds . Theo-

rem 5 implies the following bound.

Theorem 11. Suppose that

d1 + · · · + ds � s

q

[
(q − 1)n − 1

2
(q − 2)(s − 1)

] (
1

2
sn for q = 2

)
.

Then

|C| � 1 + n(q − 1) +
(

n

2

)
(q − 1)2 + · · · +

(
n

s − 2

)
(q − 1)s−2 +

(
n

s

)
(q − 1)s. (12)

This enables us to draw some conclusions for sets of binary vectors with few distances.

Theorem 12. (a) Let C be a binary code in which the distances between distinct codewords are d1 , d2 . If
d1 + d2 � n then |C| � 1

2 (n2 − n + 2).
(b) Let C be a binary code in which the distances between distinct codewords are d1 , d2 , d3 . If d1 +d2 +d3 �

3n/2 then

|C| � 1 + n +
(

n

3

)
.

If in addition none or two of the three distances d1,d2,d3 are > n/2 then

|C| � n +
(

n

3

)
.

Proof. Part (a) follows from the previous theorem.
Part (b). Consider the annihilator polynomial f (x) = (d1 − x)(d2 − x)(d3 − x) and let f0, . . . , f3 be

its coefficients in the Krawtchouk basis. We know that under the assumption of the theorem, f2 � 0.
This proves the first claim in Part (b). Further, by (3), the constant coefficient equals

f0 = −
(

n

2
− d1

)(
n

2
− d2

)(
n

2
− d3

)
+ n

4
(d1 + d2 + d3) − 3n2

8
.

If both assumptions in Part (b) of the theorem hold then f0 � 0. This proves the bound |C| � n +(n
3

)
. �
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Proposition 13. (a) If 6 � n � 74 with the exception of the values n = 47,53,59,65,70,71, or if n = 78,
then the size of a maximal code with 2 distances equals 1

2 (n2 − n + 2).
(b) If 8 � n � 22 or n = 24 then the size of a maximal code with 3 distances equals n + (n

3

)
.

(c) If 10 � n � 33 then the size of a maximal code with 4 distances equals 1 + (n
2

) + (n
4

)
.

Proof. Part (a). Observe that the size of the code C formed of all vectors of weight 2 and the all-zero
vector equals 1+(n

2

)
for all n � 3. It remains to show that even if d1 +d2 � n+1, no two-distance code

of length n for each value of n in the statement can have larger size. To establish this, for each n we
compute the Delsarte bound of Theorem 6 for all the possible distance values d1,d2,d1 + d2 � n + 1
that satisfy the LRS condition d1/d2 = (k − 1)/k. These computations show that in each case the
Delsarte bound is less than or equal to 1

2 (n2 − n + 2). This establishes our claim.
Part (b). We proceed in a way analogous to Part (a). Note that the code C formed of all vectors

of weights 1 and 3 has size |C| = n + (n
3

)
for all n � 3. We need to show that even if d1 + d2 + d3 �

3n/2 + 1, no three-distance code of length 8 � n � 22 or 24 can have larger size. To do this, we rely
on Part (b) of the previous theorem. Namely, for each n in the range and for all d1,d2,d3 such that
d1 + d2 + d3 � 3n/2 + 1 or that f0 > 0, we compute the Delsarte bound of Theorem 6 and verify that
it is less than or equal to the claimed code size.

Part (c). For n � 6, a 3-code of size 1+(n
2

)+(n
4

)
is formed of all vectors of weights 0, 2, 4. Therefore,

if f1 � 0 and f3 � 0 in the expansion

4∏
i=1

(di − x) =
4∑

i=0

f i Ki(x),

then the claim holds true. Otherwise, for every 10 � n � 33 and for every set of numbers d1, d2, d3,
d4 that fails these conditions, we compute the Delsarte bound and verify that it is less than or equal
to 1 + (n

2

) + (n
4

)
. �

Example 1 above shows that an extremal 3-distance code G o
24 of length n = 24 can be obtained

from the binary Golay code G24. A related example accounts for the omission of n = 23 from Part (b).
Indeed, the even subcode of the Golay code G23 (i.e., the dual code G⊥

23) has distances 8, 16, 24, but

its size 2048 is greater than 23 + (23
3

) = 1794, so this case is a true exception.

5. Spherical codes

Let C ⊂ Sn−1 be a code such that the inner product of any two distinct code vectors takes one of
the s values t1, . . . , ts . Let

Ms :=
(

n + s − 1

s

)
+

(
n + s − 2

s − 1

)
.

Theorem 14 (Delsarte–Goethals–Seidel, 1977). |C| � Ms.

Proof. Follows from (5) and Table 1 by the identity
∑p

k=0

(m+k
k

) = (m+p+1
p

)
. �

This result was improved in [20] as follows: If s = 2 and t1 + t2 � 0 then |C| � 1
2 n(n + 1). We now

have the following general improvement.

Theorem 15. Suppose that s is even and t1 + t2 + · · · + ts � 0, then

|C| � Ms−2 + n + 2s − 2

s

(
n + s − 3

s − 1

)
.
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Proof. Consider the polynomial g(x) = ∏s
i=1(x − ti). By Lemma 4 its leading coefficients in the basis

of Gegenbauer polynomials are

gs = rsc1c2 · · · cs > 0, gs−1 = rs(−t1 − t2 − · · · − ts)
∏

i

ci .

Thus, gs−1 � 0 if t1 + · · · + ts � 0 (since ci > 0 for all i). Then the last case of Theorem 5(b) applies,
and the result follows from Table 1. �

Any binary code can be mapped to Sn−1 by a distance-preserving mapping, so the bound for
spherical codes implies bounds on binary codes (both constant weight and unrestricted). However
the bounds thus obtained are generally inferior to the results derived in the corresponding discrete
spaces. This is because the bounds become progressively stronger as we move from a space to its
subspaces, so there is no gain in using the last theorem for binary codes.

The methods discussed in this paper are applicable to other distance-transitive spaces of interest to
geometry and combinatorics. We point to one such class of spaces, namely, q-analogs of the Hamming
and Johnson spaces, for which intersection theorems were studied in [12,13].
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