期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:118
Metric characterization of apartments in dual polar spaces
Article
Pankov, Mark
关键词: Apartment;    Dual polar space;    Hypercube graph;    Isometric embedding;   
DOI  :  10.1016/j.jcta.2010.12.009
来源: Elsevier
PDF
【 摘 要 】

Let Pi be a polar space of rank n and let G(k)(Pi), k is an element of {0, ..., n - 1} be the polar Grassmannian formed by k-dimensional singular subspaces of Pi. The corresponding Grassmann graph will be denoted by Gamma(k)(Pi). We consider the polar Grassmannian G(n - 1)(Pi) formed by maximal singular subspaces of Pi and show that the image of every isometric embedding of the n-dimensional hypercube graph H-n in Gamma(n - 1)(Pi) is an apartment of G(n - 1)(Pi). This follows from a more general result concerning isometric embeddings of H-m, m <= n in Gamma(n - 1)(Pi). As an application, we classify all isometric embeddings of Gamma(n - 1)(Pi) in Gamma(n' - 1)(Pi'), where Pi' is a polar space of rank n' >= n. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2010_12_009.pdf 166KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:3次