| JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:117 |
| On geometric SDPS-sets of elliptic dual polar spaces | |
| Article | |
| De Bruyn, Bart | |
| 关键词: Dual polar space; Half-spin geometry; SDPS-set Spin embedding; Hyperplane; Valuation; | |
| DOI : 10.1016/j.jcta.2009.07.009 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Let n E N \ (0. 11 and let K and K' be fields such that K' is a quadratic Galois extension of K. Let Q -(2n + 1. K) be a nonsingular quadric of Witt index n in PG(2n + 1. K) whose associated quadratic form defines a nonsingular quadric Q+(2n + 1,11C) of Witt index n 1 in PG(2n + 1,1K'). For even n, we define a class of SDPS-sets of the dual polar space DQ -(2n + 1,1K) associated to Q -(2n +1, Cd), and call its members geometric SDPS-sets. We show that geometric SDPS-sets of DQ -(2n + 1,1K) are unique up to isomorphism and that they all arise from the spin embedding of DQ -(2n + 1, K). We will use geometric SOPS-sets to describe the structure of the natural embedding of D Q -(2n +1, K) into one of the half-spin geometries for Q (2n -1- 1. K'). C) 2009 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jcta_2009_07_009.pdf | 317KB |
PDF