期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:161
On ranks and cranks of partitions modulo 4 and 8
Article
Mortenson, Eric T.1 
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词: Partitions;    Rank;    Crank;    Mock theta functions;   
DOI  :  10.1016/j.jcta.2018.07.009
来源: Elsevier
PDF
【 摘 要 】

Denote by p(n) the number of partitions of n and by N (a, M; n) the number of partitions of n with rank congruent to a modulo M. By considering the deviation D(a, M) := Sigma(infinity)(n=0) (N(a, M; n) - p(n)/M) q(n) , we give new proofs of recent results of Andrews, Berndt, Chan, Kim and Malik on mock theta functions and ranks of partitions. By considering deviations of cranks, we give new proofs of Lewis and Santa-Gadea's rank-crank identities. We revisit ranks and cranks modulus M = 5 and 7, with our results on cranks appearing to be new. We also demonstrate how deviations of ranks and cranks resolve Lewis' long-standing conjectures on identities and inequalities for rank crank differences of modulus M = 8. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2018_07_009.pdf 474KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次