期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:113
On Rado's Boundedness Conjecture
Article
Fox, J ; Kleitman, DJ
关键词: rado;    partition regularity;    Rado's Boundedness Conjecture;   
DOI  :  10.1016/j.jcta.2005.07.004
来源: Elsevier
PDF
【 摘 要 】

We prove that Rado's Boundedness Conjecture from Richard Rado's 1933 famous dissertation Studien zur Kombinatorik is true if it is true for homogeneous equations. We then prove the first nontrivial case of Rado's Boundedness Conjecture: if a(1), a(2), and a(3) are integers, and if for every 24-coloring of the positive integers (or even the nonzero rational numbers) there is a monochromatic solution to the equation a(1)x(1) + a(2)x(2) + a(3)x(3) = 0, then for every finite coloring of the positive integers there is a monochromatic solution to a(1)x(1) + a(2)x(2) + a(3)x(3) = 0. (c) 2005 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2005_07_004.pdf 245KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次