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Abstract

We prove that Rado’s Boundedness Conjecture from Richard Rado’s 1933 famous dissertation
Studien zur Kombinatorik is true if it is true for homogeneous equations. We then prove the first
nontrivial case of Rado’s Boundedness Conjecture: if a1, a2, and a3 are integers, and if for every
24-coloring of the positive integers (or even the nonzero rational numbers) there is a monochromatic
solution to the equation a1x1 +a2x2 +a3x3 =0, then for every finite coloring of the positive integers
there is a monochromatic solution to a1x1 + a2x2 + a3x3 = 0.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In 1916, while working on Fermat’s Last Theorem, Isaai Schur proved arguably the first
result in Ramsey theory [24]. Schur’s theorem states that for every positive integer r, there
is a least positive integer S(r) such that for every r-coloring of the positive integers from
1 to S(r) there is a monochromatic solution to x + y = z. In 1927, van der Waerden [29]
proved that for all positive integers k and r, there is a least positive integer W(k, r) such
that for every r-coloring of the positive integers from 1 to W(k, r) there is a monochromatic
k-term arithmetic progression. These results were followed by Richard Rado’s 1933 PhD
Thesis Studien zur Kombinatorik [19], a seminal work in Ramsey theory. With Schur as his
advisor, Rado proved a theorem that beautifully generalized the classical theorems of Schur
and van der Waerden.
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Let Ax = b be a finite system of linear equations, where all the entries of the matrix A and
column vector b are integers. Rado [19] called the system r-regular if for every r-coloring
of N, there is a monochromatic solution to the system Ax = b. If Ax = b is r-regular for
all positive integers r, then Ax = b is called regular. For example, Schur’s theorem implies
the following equation is regular:

(
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As another example, van der Waerden’s theorem with the strengthening that the common
difference of the arithmetic progression has the same color is equivalent to the statement
that the following system of k − 1 equations in k + 1 variables is regular:⎛
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Rado’s theorem completely classifies which finite systems of linear equations are regular
[19]. Let A be a m×n matrix with integer entries and let ci denote the ith column vector of A.
The matrix A is said to satisfy the columns condition if there exists a partition {1, 2, . . . , n} =
S1 ∪ . . . ∪ Su such that

∑
i∈S1

ci = 0 and for each t ∈ {2, 3, . . . , u}, ∑
i∈St

ci is a rational

linear combination of {ci : i ∈ ⋃t−1
k=1 Sk}. Rado’s theorem for finite systems of linear

homogeneous equations states that Ax = 0 is regular if and only if A satisfies the columns
condition. In particular, a linear homogeneous equation with nonzero coefficients is regular
if and only if a nonempty subset of the coefficients sums to zero. Rado made a beautiful
conjecture in his thesis that further differentiates those systems of linear equations that
are regular from those that are not regular. This outstanding conjecture, known as Rado’s
Boundedness Conjecture, has remained open for all but the trivial cases [17].

Conjecture 1 (Rado [19]). For all positive integers m and n, there exists a positive integer
k(m, n) such that if a system of m linear equations in n variables is k(m, n)-regular, then
the system is regular.

Over the past seven decades, Rado’s Boundedness Conjecture has received considerable
attention [3–5,8,15–17,23]. Deuber [8] called the problem “intriguing”, while more recently,
Hindman, Leader, and Strauss [17] called it one of the major open questions in partition
regularity.

Rado proved that Conjecture 1 is true if it is true in the case when m = 1, that is, for
linear equations [19]. In Section 2, we use a result of Straus [28] to further reduce Rado’s
Boundedness Conjecture to the case of linear homogeneous equation.

Theorem 1. Rado’s Boundedness Conjecture is true if for all positive integers n there exists
a positive integer k(n) such that every linear homogeneous equation in n variables that is
k(n)-regular is regular.
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Following Rado, if a system of linear equations Ax = b is not regular, then we define
the degree of regularity of this system, denoted by dorN(Ax = b), to be the largest integer
r such that Ax = b is r-regular. If Rado’s Boundedness Conjecture is true, then the degree
of regularity of every nonregular system of m linear equations in n variables is at most
k(m, n) − 1. Rado showed that the equation ax1 + bx2 + c = 0 is regular or has degree
of regularity at most 1, hence k(1, 2) = 2. According to Guy [16], every 3-coloring of
{1, 2, . . . , 45} contains a monochromatic solution to x + 2y − 5z = 0. Since the equation
x+2y−5z = 0 is 3-regular, then k(1, 3)�4. The only upper bounds known on the degree of
regularity of certain families of homogeneous equations in 3 variables that are independent
of the coefficients are due to Rado [5,19]. Rado [19] handled the cases (i), (ii), (iii), and (iv)
below.

(i) If b ∈ Q and b is not of the form 2l where l ∈ Z, then dorN(bx1 + bx2 − x3 = 0)�3.
(ii) For every l ∈ Z, either 2lx1+2lx2−x3 = 0 is regular, or dorN(2lx1+2lx2−x3 = 0)�5.

(iii) Let p be a prime number and let b1, b2, b3, � ∈ Z. If � �= 0 and p is not a factor of
b1b2b3(b1 + b2), then either b1x1 + b2x2 + p�b3x3 = 0 is regular, or
dorN(b1x1 + b2x2 + p�b3x3 = 0)�5.

(iv) Let p be a prime number and let b1, b2, b3 ∈ Z, where p is not a factor of b1b2b3. If
�, �, � ∈ Z are pairwise distinct, then dorN(p�b1x1 + p�b2x2 + p�b3x3 = 0)�7.

There are linear homogeneous equations in 3 variables like 6x1 + 10x2 = 15x3 that are
not covered by the Rado’s four results.

In Section 3, we prove several coloring lemmas that give bounds on the degree of regularity
of linear homogeneous equations in three variables. Using these lemmas, in Section 4
we prove our main theorem, Theorem 2, which resolves Rado’s Boundedness Conjecture
when n = 3.

Theorem 2. If a1, a2, a3 ∈ Z and for every 24-coloring of the positive integers (or even the
nonzero rational numbers) there is a monochromatic solution to a1x1 + a2x2 + a3x3 = 0,
then for every finite coloring of the positive integers there is a monochromatic solution to
a1x1 + a2x2 + a3x3 = 0.

Bialostocki et al. [5] determined the degree of regularity of the equation x1−2x2+x3 = b

for b not a multiple of 6. This equation is an inhomogeneous variant on three term arithmetic
progressions. In Section 5, we settle the remaining case by showing that for each b ∈ Z−{0}
there exists a 4-coloring of the positive integers without a monochromatic solution to x1 −
2x2 + x3 = b. In Section 6, we consider analogues of Rado’s Boundedness Conjecture for
the ring of real numbers and for other rings. We also discuss without proof some of the results
of the paper [13], which demonstrate that the degree of regularity over the real numbers of
some linear homogeneous equations depends on the axioms we choose for set theory. We
discuss a result on the growth of Rado numbers which is proved in [12] and a result that is
proved in [14] that heavily relies on Theorem 2 and strengthens a conjecture of Landman and
Robertson. In the concluding subsection, we pose a modular version of Rado’s Boundedness
Conjecture.
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2. Proof of Theorem 1: a reduction to the homogeneous case

While solving Ramsey problems in Euclidean geometry, Erdős et al. [10] proved upper
bounds on the degree of regularity of certain inhomogeneous linear equations in fields.
Straus [28] followed this with a group theoretic version of the result. The order ord(b) of an
element b in an additive group G is the least positive integer l such that lb = 0. If no such l
exists, then ord(b) = ∞. The following lemma is implicit in [28], though stated differently.

Lemma 1 (Straus [28]). Let A be an abelian group (written additively) and let b be a
nonzero element of A. For 1� i�n − 1, let fi : A → A be n − 1 functions, m of which are
distinct; m�n − 1. Define fn = − ∑n−1

i=1 fi and

r =

⎧⎪⎨
⎪⎩

(2n − 2)m if ord(b) is even or ord(b) = ∞;(⌈
(2n−2)p

p−1

⌉)m

where p is the largest prime divisor of ord(b),

if ord(b) is odd.

Then there exists a r-coloring of A without a monochromatic solution to the inhomogeneous
equation

n∑
i=1

fi(xi) = b.

Under the conditions of Lemma 1, since m�n − 1 and p must be an odd prime, then we
have

r �
{

(2n − 2)n−1 if ord(b) is even or ord(b) = ∞;
(3n − 3)n−1 if ord(b) is odd.

Bialostocki et al. [5] proved that if
∑n

i=1 ai = 0 and b �= 0, then the degree of regularity
of the inhomogeneous equation a1x1+· · ·+anxn = b is at most 2

∑n
i=1 |ai |−1. Their upper

bound is independent of b, but still dependent on the ai . Under more general conditions than
Bialostocki et al. [5] covered, part (1) of Theorem 3 gives an upper bound on the degree of
regularity that is independent of b and the ai .

Theorem 3. Let a1, . . . , an, b be integers such that b �= 0 and define s := ∑n
i=1 ai .

(1) If b is not a multiple of s, then the equation a1x1 +· · ·+anxn = b is not (3n−3)n−1-
regular.

(2) If b/s ∈ N, then the equation a1x1 + · · · + anxn = b is regular.
(3) If −b/s ∈ N, then, for all r ∈ N, the equation a1x1 + · · · + anxn = b is r-regular if

and only if the equation a1x1 + · · · + anxn = 0 is r-regular.

Proof. (1) We have two cases, s = 0 and s �= 0.
Case 1: s = 0. Using Lemma 1 with the additive group A = Z and the functions fi(x) =
aix for 1� i�n, then there exists a (2n − 2)n−1-coloring of the integers without any
monochromatic solutions to the equation a1x1 + · · · + anxn = b.
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Case 2: s �= 0. Hence b /≡ 0 (mod s). Using Lemma 1 with the additive group A = Zs and
the functions fi(x) = aix, then there exists a (3n − 3)n−1-coloring of the integers without
any monochromatic solutions to the equation a1x1 + · · · + anxn = b.

(2) b/s ∈ N. Setting xi = b/s for each i, 1� i�n, yields a monochromatic solution to
the equation a1x1 + · · · + anxn = b for every coloring of the positive integers.

(3) −b/s ∈ N. If c1 is a coloring of the positive integers without a monochromatic
solution to the equation a1x1 + · · · + anxn = 0, then for the coloring c′

1 of the positive
integers defined by c′

1(x) = c1(x − b/s) there are no monochromatic solutions to the
equation a1x1 + · · · + anxn = b, and the number of colors of c′

1 is at most the number
of colors of c1. In the other direction, if c2 is a coloring of the positive integers without a
monochromatic solution to a1x1 + · · · + anxn = b, then for the coloring c′

2 of the positive
integers defined by c′

2(x) = c2((1 − b/s)x + b/s) there are no monochromatic solutions to
the equation a1x1 + · · · + anxn = 0, and the number of colors of c′

2 is at most the number
of colors of c2. Therefore, we have constructively proved (3). �

Theorem 1 clearly follows from Theorem 3 and Rado’s result that Rado’s Boundedness
Conjecture is true if it is true in the case that m = 1.

3. Coloring lemmas

In this section, we prove the coloring lemmas which are the main element of the proof of
Theorem 2. Given a graph G, let �(G) and �(G) denote its chromatic number and maximum
degree, respectively. For S ⊂ N, define the difference graph of S, denoted by G(S), to be
a graph with vertex set V = Z and edge set E = {(v, w) : v, w ∈ Z, |v − w| ∈ S}. A
difference graph is an undirected Cayley graph of the group (Z, +) with generators being
the elements of S. Every vertex of G(S) has degree 2|S|, and in particular, �(G(S)) = 2|S|.
We will need a folklore lemma on the chromatic number of difference graphs due to Chen,
Chang, and Huang [6], which we prove for completeness.

Lemma 2 (Chen et al. [6]). For all subsets S ⊂ N, we have

�(G(S))� |S| + 1 = �(G(S))

2
+ 1.

Proof. The proof uses a greedy coloring. Start with a set of |S|+1 colors. Let � : Z → N

be the bijection defined by �(0) = 1, and for n ∈ N, �(n) = 2n and �(−n) = 2n + 1. We
color the integers in order induced by �(n). For each n ∈ Z, at the moment when n needs
to be colored, there are at most |S| vertices adjacent to n that have already been colored. By
the pigeonhole principle, of the |S| + 1 colors, there is a color c such that n is not adjacent
to an integer that is already colored c. Then we assign n the color c. Hence, this algorithm
gives a proper (|S| + 1)-coloring of G(S). �

We continue with an important definition.

Definition 1. Let p be a prime number. Any q ∈ Q − {0} may be uniquely expressed as
q = q1p

e

q2
, where e, q1 ∈ Z, q2 ∈ N, gcd(q1, q2) = 1, and p is not a factor of q1 or q2. If
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q ∈ Q−{0}, define vp(q) to be the above-determined e, and if q = 0, define vp(q) = +∞.
We call vp(q) the order of p in q.

The following straightforward lemma gives a basic property of the order function vp.

Lemma 3. If t1, t2, t3 ∈ Q, vp(t1)�vp(t2)�vp(t3) and vp(t1 + t2 + t3) > vp(t1), then
vp(t1) = vp(t2). If, furthermore vp(t1 + t2 + t3) > vp(t3), then also vp(t1 + t2) = vp(t3).

Another useful fact we will use is that vp(t1t2) = vp(t1) + vp(t2) for all primes p and t1,
t2 ∈ Q. The following lemma is the first of the four coloring lemmas in this section.

Lemma 4. If a, b, and c are integers and 0 = vp(a) < vp(b) < vp(c), then there exists a
4-coloring C of the nonzero rational numbers such that if x, y, z ∈ Q − {0} are the same
color, then vp(ax + by + cz) = min{vp(ax), vp(by), vp(cz)}. In particular, there are no
monochromatic solutions to ax + by + cz = 0 in this 4-coloring of Q − {0}.

Proof. Let S = {vp(b), vp(c), vp(c)− vp(b)} ⊂ N and G(S) be the difference graph of S.
By Lemma 2, �(G)�4. Let C′ : V (G) → {0, 1, 2, 3} be a proper 4-coloring of G, and define
C(q) := C′(vp(q)). Assume for contradiction that x, y, and z are nonzero rational numbers
all of the same color and vp(ax + by + cz) > min(vp(ax), vp(by), vp(cz)). By Lemma
3, vp(ax) = vp(by), vp(ax) = vp(cz), or vp(by) = vp(cz). So vp(x) − vp(y) = vp(b),
vp(x) − vp(z) = vp(c), or vp(y) − vp(z) = vp(c) − vp(b). But this contradicts that C′ is
a proper coloring of G(S) and x, y, and z are all the same color. �

We remark here that Lemma 4 improves the upper bound Rado proved on the degree of
regularity in the case that vp(a1), vp(a2), and vp(a3) are pairwise distinct from 7 to 3.

Lemma 5. If a, b, c, and s are integers, s is positive, and p is prime such that 0 = vp(c) <

vp(a) = vp(b)�vp(a+b) < svp(b), then there exists a (3s+3)-coloring C of the nonzero
rational numbers such that vp(ax +by +cz)� max(vp(ax), vp(by), vp(cz)) for x, y, and z
all the same color. In particular, there are no monochromatic solutions to ax +by +cz = 0
in this (3s + 3)-coloring of Q − {0}.

Proof. We construct a product coloring C = C0 × C1 that satisfies the above. For q ∈
Q − {0}, we define C0(q) := 	 vp(q)

vp(b)

 mod(s + 1). The coloring C0 colors entire intervals

of vp values (open on one side) of length vp(b) the same color, periodically with period
s + 1, in s + 1 colors. Let a0 = ap−vp(a) and b0 = bp−vp(b). Since vp(a + b) < svp(b)

and vp(a) = vp(b), then vp(a0 + b0) < (s − 1)vp(b). Let g ∈ Z
pvp(a0+b0)+1 be defined

as g :≡ −a0b
−1
0 (mod pvp(a0+b0)+1). We note that g is a unit of Z

pvp(a0+b0)+1 and g /≡
1 (mod pvp(a0+b0)+1) since a0 + b0 /≡ 0 (mod pvp(a0+b0)+1). Let G be the Cayley graph on
the multiplicative group of units of Z

pvp(a0+b0)+1 such that (x, y) is an edge of G if and only if

y ≡ gx (mod pvp(a0+b0)+1) or x ≡ gy (mod pvp(a0+b0)+1). For x and y vertices of G, (x, y)

is an edge of G if and only if a0x + b0y ≡ 0 (mod pvp(a0+b0)+1) or a0y + b0x ≡ 0 (mod
pvp(a0+b0)+1). By the construction of G, every vertex of G has degree at most 2. Therefore,
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there exists a proper 3-coloring C′ : V (G) → {0, 1, 2} of the vertices of G. The proper
coloring C′ satisfies a0x + b0y /≡ 0 (mod pvp(a0+b0)+1) for units x and y of Z

pvp(a0+b0)+1

of the same color. For q ∈ Q − {0}, we define C1(q) := C′(q1q
−1
2 ), where q = q1p

vp(q)

q2
is

the unique representation of q as in Definition 1, and q1q
−1
2 is taken mod pvp(a0+b0)+1.

Assume for contradiction that there exists x, y, z ∈ Q − {0} of the same color such that
vp(ax+by+cz) > max(vp(ax), vp(by), vp(cz)). By Lemma 3,vp(ax) = vp(by)�vp(cz),
vp(ax) = vp(cz)�vp(by), or vp(by) = vp(cz)�vp(ax). If vp(by) = vp(cz), then
vp(b) + vp(y) = vp(z), which implies z and y are different colors by the coloring C0.
If vp(ax) = vp(cz), then vp(a) + vp(x) = vp(z), which implies x and z are differ-
ent colors by the coloring C0. So vp(ax) = vp(by)�vp(cz) = vp(z) and by Lemma
3, vp(ax + by) = vp(cz) = vp(z). By the coloring C1, vp(z) = vp(ax + by) <

vp(y)+vp(b)+vp(a0 +b0)+1. So then vp(z)−vp(y) ∈ [vp(b), vp(b)+vp(a0 +b0)] ⊂
[vp(b), svp(b)]. But by coloring C0, if vp(z) − vp(y) ∈ [vp(b), svp(b)], then y and z are a
different color, contradicting the assumption that x, y, and z are the same color. �

The proof of Lemma 6 is similar to the proof of Lemma 5.

Lemma 6. If a, b, c, and s are integers, s is positive, and 0 = vp(a) = vp(b)�vp(a+b) <
s−1
s

vp(c), then there exists a (3s + 3)-coloring C of the nonzero rational numbers such
that vp(ax + by + cz)� max(vp(ax), vp(by), vp(cz)) for x, y, and z the same color. In
particular, there are no monochromatic solutions to ax + by + cz = 0 in this (3s + 3)-
coloring of Q − {0}.

Proof. We construct a product coloring C = C0 × C1 that satisfies the above. For q ∈
Q − {0}, we define C0(q) := 	 svp(q)

vp(c)

 mod(s + 1). The coloring C0 colors intervals of vp

values (open on one side) of length vp(b)

s
all in the same color, periodically with period s+1,

in s + 1 colors. Let g ∈ Z
pvp(a+b)+1 be defined as g :≡ −ba−1 (mod pvp(a+b)+1). We note

that g is a unit of Z
pvp(a+b)+1 and g �≡ 1 (mod pvp(a+b)+1) since a+b /≡ 0 (mod pvp(a+b)+1).

Let G be the Cayley graph on the multiplicative group of units of Z
pvp(a+b)+1 such that (x, y)

is an edge of G if and only if x ≡ gy (mod pvp(a+b)+1) or y ≡ gx (mod (pvp(a+b)+1).
So (x, y) is an edge of G if and only if ax + by ≡ 0 (mod pvp(a+b)+1) or ay + bx ≡
0 (mod pvp(a+b)+1). Since every vertex of G has degree at most 2, then there exists a
proper 3-coloring C′ : V (G) → {0, 1, 2} of the vertices of G. The proper coloring C′
satisfies ax + by /≡ 0 (mod for pvp(a+b)+1) for units x and y of Z

pvp(a+b)+1 of the same

color. For q ∈ Q − {0}, we define C1(q) := C′(q1q
−1
2 ), where q = q1p

vp(q)

q2
is the unique

representation of q as in Definition 1, and q1q
−1
2 is taken (mod pvp(a+b)+1).

Assume for contradiction that there exists x, y, and z the same color such that vp(ax+by+
cz) > max(vp(ax), vp(by), vp(cz)). By Lemma 3, vp(ax) = vp(by)�vp(cz), vp(ax) =
vp(cz)�vp(by), or vp(by) = vp(cz)�vp(ax). If vp(ax) = vp(cz), then vp(x) = vp(c)+
vp(z), which implies x and z are different colors by the coloring C0. If vp(by) = vp(cz),
then vp(y) = vp(c) + vp(z), which implies y and z are different colors by the coloring
C0. So vp(ax) = vp(by)�vp(cz), and by Lemma 3, vp(ax + by) = vp(cz). By the
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coloring C1, vp(x)�vp(c) + vp(z) = vp(ax + by) < vp(x) + vp(a + b) + 1. So then

vp(x) − vp(z) ∈ [vp(c) − vp(a + b), vp(c)] ⊂ [ vp(c)

s
, vp(c)]. But by coloring C0, if

vp(x) − vp(y) ∈ [ vp(c)

s
, vp(c)], then x and y are a different color. �

The following lemma is only used in one of the cases of the proof of Theorem 2.

Lemma 7. If a1, −a2, −a3, and l are positive integers such that a1 < −a2 < −a3 and
(−a2)

l−1 �(−a2−a3)(a1)
l−2, then there exists a 2l-coloring of R−{0} without a monochro-

matic solution to a1x1 + a2x2 + a3x3 = 0.

Proof. It is enough to construct an l-coloring C : R>0 → {1, . . . , l} of the positive real
numbers without a monochromatic solution to a1x1 +a2x2 +a3x3 = 0, since we can extend
the coloring C to a 2l-coloring of the nonzero real numbers by defining C(r) = −C(−r) if
r < 0. Let d = − a2

a1
and define C : R>0 → {1, . . . , l} by C(r) = 	logd r
 (mod l). Assume

for contradiction that x1, x2, x3 ∈ R>0 are all the same color and a1x1 + a2x2 + a3x3 = 0.
So

x1 = −a2x2 − a3x3

a1
� −a2

a1
max(x2, x3) = d max(x2, x3).

Hence 	logd(x1)
�	logd(max(x2, x3))
 + 1. By the coloring C, since x1 and max(x2, x3)

are the same color, then logd(x1) > logd(max(x2, x3)) + (l − 1). But

a1x1 = −a2x2 − a3x3 �(−a2 − a3) max(x2, x3) < (−a2 − a3)d
1−lx1

= (−a2 − a3)

(
−a2

a1

)1−l

x1,

which contradicts (−a2)
l−1 �(−a2 − a3)(a1)

l−2. �

4. Proof of Theorem 2

Here we give the proof of Theorem 2, using the coloring lemmas from Section 3. The
following lemma combines Lemmas 5 and 6.

Lemma 8. Let d1, d2, d3, b1, b2, b3 be nonzero integers that are pairwise relatively prime.
For i ∈ {1, 2, 3} , let ai = bidi+1di+2, where subscripts are taken mod 3. Let s be a positive
integer. If every (3s + 3)-coloring of Q −{0} has a monochromatic solution to the equation
a1x1 + a2x2 + a3x3 = 0, then for i ∈ {1, 2, 3}, the following four equivalence relations
hold:

(ai + ai+1)
s ≡ 0 (mod bs−1

i+2 ds2

i+2), (1)

(a1 + a2 + a3)
s ≡ 0 (mod (b1b2b3)

s−1), (2)
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((a1 + a2)(a1 + a3)(a2 + a3))
2s−2(a1 + a2 + a3)

s2−2s+2≡0 (mod (a1a2a3)
s2−s), (3)

(a1 + a3)
s(a2 + a3)

s(a1 + a2)
s2 ≡ 0 (mod (a1a2)

s−1as2−s
3 ). (4)

Proof. If ai +ai+1 /≡ 0 (mod ds
i+2) for some i ∈ {1, 2, 3}, then there exists a prime p that is

a factor of di+2 such that 0 = vp(ai+2) < vp(ai) = vp(ai+1)�vp(ai +ai+1) < svp(ai+1).
In Lemma 5, we prove in this case there exists a (3s + 3)-coloring of the nonzero rational
numbers without a monochromatic solution to the equation a1x1 + a2x2 + a3x3 = 0.

If (ai +ai+1)
s /≡ 0 (mod bs−1

i+2 ) for some i ∈ {1, 2, 3}, then there exists a prime p that is a

factor of bi+2 such that vp(ai +ai+1) < ( s−1
s

)vp(ai+2). In Lemma 6, we prove in this case
there exists a (3s + 3)-coloring of the nonzero rational numbers without a monochromatic
solution to the equation a1x1 + a2x2 + a3x3 = 0.

Therefore, if for every (3s + 3)-coloring of the nonzero rational numbers there is a
monochromatic solution to the equation a1x1 + a2x2 + a3x3 = 0, then for i ∈ {1, 2, 3}
both ai + ai+1 ≡ 0 (mod ds

i+2) and (ai + ai+1)
s ≡ 0 (mod bs−1

i+2 ) hold. Since di+2 and bi+2
are relatively prime, we can combine these congruences to get (1) in Lemma 8. The other
congruences in Lemma 8 all follow from (1).

We now prove that equivalence relation (1) implies equivalence relation (2). It is enough
to prove that svp(a1 + a2 + a3)�(s − 1)vp(b1b2b3) for every prime factor p of b1b2b3.
For p a prime factor of bi , (s − 1)vp((b1b2b3)) = (s − 1)vp(bi) since b1, b2, and b3 are
pairwise relatively prime. Since vp(ai+1 + ai+2)�( s−1

s
)vp(ai), then

svp((ai+1 + ai+2) + ai)�(s − 1)vp(ai) = (s − 1)vp(bi) = (s − 1)vp(b1b2b3).

We use equivalence relations (1) and (2) to establish equivalence relation (3). It is enough
to prove that

(2s − 2)(vp(a1 + a2) + vp(a1 + a3) + vp(a2 + a3))

+(s2 − 2s + 2)vp(a1 + a2 + a3)�(s2 − s)vp(a1a2a3)

for every prime factor p of a1a2a3. We recall that the set {b1, b2, b3, d1, d2, d3} consists of
pairwise relatively prime integers. For p a prime factor of di ,

(s2 − s)vp(a1a2a3) = (2s2 − 2s)vp(di)�(2s − 2)vp(ai+1 + ai+2).

For p a prime factor of bi ,

(s2 − s)vp(a1a2a3) = (s2 − s)vp(bi)

� (2s − 2)vp(ai+1 + ai+2) + (s2 − 2s + 2)vp(a1 + a2 + a3).

We have therefore established (3) from (1).
We remark that by considering prime factors of bi and di for i ∈ {1, 2, 3}, equivalence

relation (4) follows from (1) in a similar way. �

We now have all the necessary lemmas to prove Theorem 2.

Proof of Theorem 2. Assume for contradiction that the equation a1x1+a2x2+a3x3 = 0 is
not regular but for every 24-coloring of the nonzero rational numbers, there is a monochro-
matic solution to the equation a1x1 + a2x2 + a3x3 = 0. By Rado’s theorem, we have
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0 /∈ {a1 + a2, a1 + a3, a2 + a3, a1 + a2 + a3}. We may assume the coefficients a1, a2, a3
are nonzero integers satisfying gcd(a1, a2, a3) = 1 since Rado handled the case when at
least one of the coefficients is 0 and we may divide the equation out by the greatest com-
mon divisor of the coefficients. Since gcd(a1, a2, a3) = 1, then for every prime number
p, 0 ∈ {vp(a1), vp(a2), vp(a3)}. Without loss of generality, we may further assume that
|a1|� |a2|� |a3| and a1 is positive.

Ifa1,a2, anda3 have the same sign, then coloring the positive numbers red and the negative
numbers blue has no monochromatic solution to a1x1+a2x2+a3x3 = 0. Therefore, without
loss of generality, we may assume that the coefficients do not all have the same sign.

For i ∈ {1, 2, 3}, we define di := gcd(ai+1, ai+2) and bi := ai

di+1di+2
where subscripts are

taken mod 3. Notice that the di’s and bi’s are integers satisfying gcd(di, dj ) = gcd(bi, bj ) =
gcd(bi, di) = 1 for i, j ∈ {1, 2, 3} and i �= j . If i, j ∈ {1, 2, 3}, i �= j , and gcd(bi, dj ) > 1,
then for a prime p that is a factor of dj and bi , we have vp(a1), vp(a2), and vp(a3) are all
distinct. In this case, Lemma 4 shows that there is a 4-coloring of the nonzero rational
numbers without a monochromatic solution to a1x1 + a2x2 + a3x3 = 0. Hence, for the
remainder of the proof, we can assume that d1, d2, d3, b1, b2, b3 are pairwise relatively
prime.

By Lemma 8, equivalence relations (1)–(4) all hold. We set s = 7, t = a1, v = a2
a1

, and
w = a3

a1
. Hence, t �1 and |w|� |v|�1. If v and w are positive, then the coefficients all have

the same sign and we are in a trivial case that we already settled. We therefore have three
possible cases to consider: when v and w are negative, when v is positive and w is negative,
and when w is negative and v is positive.

Since 0 /∈ {a1 +a2, a1 +a3, a2 +a3, a1 +a2 +a3}, the left-hand side of the congruences
in Lemma 8 are nonzero integers. If n1 and n2 are nonzero integers such that n1 ≡ 0
(mod n2), then |n1|� |n2|. Substituting in s = 7, we arrive at inequalities (5) and (6) from
congruences (3) and (4), respectively.

|((1 + v)(1 + w)(v + w))12(1 + v + w)37|� |t53(vw)42|, (5)

|t9((w + v)7(1 + w)7(1 + v))49|� |v6w42|. (6)

In the case v is negative and w is positive, |(w + v)(w + 1)| < w2, |1 + w + v|� |w|,
and |1 + v| < v. Substituting this into inequalities (5) and (6), we have that |t53v30| < w19

and w28 < |t9v43|. Combining these last two inequalities, |(t53v30)
28
19 | < w28 < |t9v43|.

However, the exponents of t in this inequality satisfy 53( 28
19 ) > 9 and the exponents of v in

this inequality satisfy 30( 28
19 ) > 43, and so this inequality is false.

We get similar contradictions if v and w are both negative or v is positive and w is negative,
and these cases are handled in the appendix. When v and w are both negative and t �3, we
will only need to use inequalities (5) and (6) to arrive at a contradiction. When v and w are
negative and t = 1 or 2, we also use the inequality derived from Lemma 7 to arrive at a
contradiction. When v is positive and w is negative, we only need to use the inequalities
(5) and (6) to arrive at a contradiction when t �2. When v is positive and w is negative
and t = 1, we can use the inequalities derived from congruences (3) and (4) to arrive at a
contradiction. �
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5. The exact degree of regularity of some equations

Bialostocki et al. [5] proved that

dorZ(x − 2y + z = b) =
{

1 if b is odd,

2 if b is even and b /≡ 0 (mod 6).
(7)

In the remaining case, when b ≡ 0 (mod 6), Bialostocki et al. [5] showed that 3�dorZ

(x−2y+z = b)�7. We now prove that their lower bound is tight by exhibiting a 4-coloring
of the positive integers without a monochromatic solution to x−2y+z = b. If x ≡ m (mod
2b) with 0�m < 2b, assign the color c(x) = 	 2m

b

. This coloring has no monochromatic

solutions to x − 2y + z = b and uses only four colors. This result is a specific example of
Lemma 9. Lemma 9 follows from Lemma 1, though we include a separate proof since it is
short.

Lemma 9. If b is a positive integer, then there exists a 2n-coloring c : Z→{0, 1, . . . , 2n−1}
without any solutions to

∑n
i=1 xi = ∑n

i=1 yi + b.

Proof. For z ∈ Z, define then 2n-coloring c by c(z) = j if j
2n

� z
nb

− 	 z
nb


 <
j+1
2n

.
Then for 1� i�n, if xi has the same color as yi ,

∑n
i=1(xi − yi) /≡ b (mod 2b), hence∑n

i=1 xi �= ∑n
i=1 yi + b. �

We conjecture that Lemma 9 is tight.

Conjecture 2. For n ∈ N, there is bn ∈ N such that the equation

n∑
i=1

xi =
n∑

i=1

yi + bn (8)

is (2n − 1)-regular.

Straus [28] proved that if bn is the least common multiple of the first k positive integers
and n�bn, then every k-coloring of the positive integers has a solution to Eq. (8) with xi and
yi the same color for at least one i ∈ {1, . . . , n}. This implies that Eq. (8) is �(log n)-regular
for an appropriate bn.

6. Conclusion

6.1. The analogue of Rado’s Boundedness Conjecture for other rings

Let A be a matrix with entries in a ring R. The matrix A (and also the system Ax = 0 of
linear homogeneous equations) is called r-regular over R if for every r-coloring of R − {0}
there is a monochromatic solution to Ax = 0. The matrix A is called regular over R if it
is r-regular over R for all positive integers r. Generalizing his seminal thesis, Rado [20] in
1943 proved that for R a subring of C, matrix A is regular over R if and only if A satisfies
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the columns condition. If a matrix A is not regular over R, then the degree of regularity of
A over R, denoted by dorR(A), is the largest integer r such that A is r-regular over R. Using
a compactness argument, Radoičić and the first author [13] proved Theorem 4.

Theorem 4 (Fox and Radoičić [13]). Assume the axiom of choice. If A ∈ Zm×n and A is
not regular over R, then dorR(A) = dorZ(A).

We immediately deduce Corollary 1 from Theorems 2 and 4.

Corollary 1. Assume the axiom of choice. If a linear homogeneous equation in three vari-
ables with integer coefficients is 24-regular over R, then it is regular.

In [25], Shelah and Soifer gave an example of a graph on the real line whose chromatic
number depends on the axioms chosen for set theory. Motivated by this result, Radoičić and
the first author [13] gave an infinite class of equations each of whose degree of regularity over
R is independent of the Zermelo–Fraenkel axioms for set theory. For q ∈ Q − {−1, 0, 1},
the equation x1 + qx2 = q2x3 is not 3-regular over R in the Zermelo–Fraenkel–Choice
system of axioms, but the equation x1 + qx2 = q2x3 is 3-regular over R in a consistent
system of axioms with limited choice studied by Solovay [27]. Hence, the axiom of choice
is necessary in Theorem 4.

Another example they proved is that the equation x1 + 2x2 + 4x3 = 8x4 is not 4-regular
over R in the Zermelo–Fraenkel–Choice system of axioms, but is 4-regular over R in the
Solovay model. This result appears to be a specific case of a more general result.

Conjecture 3. If n > 2 is an integer and c : Q − {0} → {1, . . . , n} is an n-coloring of
the nonzero rational numbers such that there are no monochromatic solutions to

x1 + 2x2 + · · · + 2n−2xn−1 = 2n−1xn, (9)

then for all integers i and j and nonzero rational q, c(q) = c(2i3j q) if and only if i is a
multiple of n.

Conjecture 3 has been verified for n = 3 and n = 4. While Conjecture 3 does not
appear exciting at first, the corollaries of Conjecture 3 are striking. The n-coloring c :
Q−{0}→Zn given by c(q)≡v2(q) (mod n) demonstrates that such a coloring as described
in Conjecture 3 exists. Hence, Conjecture 3 would imply that the degree of regularity of
Eq. (9) is n, which would resolve the following old conjecture of Rado [16,19].

Conjecture 4 (Rado [19]). For each positive integer n, there is a linear homogeneous
equation that has degree of regularity equal to n.

As shown in [13], Conjecture 3 would also imply that Eq. (9) is not n-regular over R

in the Zermelo–Fraenkel–Choice system of axioms, but is n-regular over R in the Solovay
model. The above results motivate the following question.
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Question 1. Is Corollary 1 still true if we do not assume the axiom of choice?

Bergelson et al. [4] showed that the natural analogue of Rado’s Boundedness Conjecture
for all commutative rings is not true even in three variables. They proved for R = ⊗∞

l=1Z2

and for each r ∈ N, there exists A = (a1, a2, a3) ∈ R3 such that A is r-regular over R
but not regular over R. In contrast with the result of Bergelson et al., Rado’s Boundedness
Conjecture in 3 variables is true for the ring ⊗∞

l=1Z.

Corollary 2. If a linear homogeneous equation in three variables is 192-regular over R =
⊗∞

m=1Z, then it is regular over R.

Proof. Let a1x1 + a2x2 + a3x3 = 0 be a nonregular linear homogeneous equation in R
with ai = (am,i)m∈N ∈ R for i ∈ {1, 2, 3}. Fix a set of 192 colors to color with. For each
m ∈ N, by considering just the elements of R all of whose coordinates are zero except the mth
coordinate, we see that the equation am,1xm,1 +am,2xm,2 +am,3xm,3 = 0 is nonregular over
Z. So there is a 24-coloring cm,0 of the nonzero integers without a monochromatic solution
to am,1xm,1 + am,2xm,2 + am,3xm,3 = 0. Also, for each i ∈ {1, 2, 3} (taking subscripts mod
3), there is a 2-coloring cm,i of the nonzero integers without a monochromatic solution to
am,ixm,i + am,i+1xm,i+1 = 0. Hence the 192-coloring cm = cm,0 × cm,1 × cm,2 × cm,3 of
the nonzero integers has no monochromatic solutions to

�1am,1xm,1 + �2am,2xm,2 + �3am,3xm,3 = 0,

with �i ∈ {0, 1} and not all �i equal to 0. We color each x = (xi)i∈N ∈ R − {0} the color
cm(xm), where m is the least coordinate such that xm �= 0. If there is a monochromatic
solution to a1x1 + a2x2 + a3x3 = 0 in R, then the first coordinate m in the solution that is
not all zeros must satisfy am,1xm,1 + am,2xm,2 + am,3xm,3 = 0 with not all xm,i equal to 0.
But by coloring cm, no such monochromatic solution exists. �

It would be interesting to give necessary and sufficient conditions for a product ring to
satisfy Rado Boundedness Conjecture.

We end this section with a simple related result. For a positive integer n, let s(n) =∑
p prime vp(n). So for positive integers m and n, s(mn) = s(m) + s(n).

Lemma 10. The equation a1x1 +· · ·+anxn = 0 is r-regular if and only if every r-coloring
of the integers greater than 1 contains a monochromatic solution to y

a1
1 · · · yan

n = 1.

Proof. Assume c : Z>1 → {1, . . . , r} is a r-coloring of the integers greater than 1 without
a monochromatic solution to y

a1
1 · · · yan

n = 1. Then the r-coloring c̄ : N → {1, . . . , r} of
the positive integers defined by c̄(n) := c(2n) does not have a monochromatic solution to
a1x1 + · · · + anxn = 0.

Assume c1 : N → {1, 2, . . . , r} is a r-coloring of the positive integers without a
monochromatic solution to a1x1 +· · ·+anxn = 0. Then the r-coloring c̄1 : N → {1, . . . , r}
of the positive integers defined by c̄1(n) := c1(s(n)) does not have a monochromatic solu-
tion to y

a1
1 · · · yan

n = 1. Therefore, we have proved that the equation a1x1+· · ·+anxn = 0 is
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r-regular if and only if every r-coloring of the integers greater than 1 contains a monochro-
matic solution to y

a1
1 · · · yan

n = 1. �

6.2. Further results

In this section, we discuss several new results that are closely related to Theorem 2 and the
results of Section 2. The r-color Rado number R(a1, . . . , an; r) is the minimum positive
integer N (if it exists) such that every r-coloring of the integers from 1 to N contains a
monochromatic solution to a1x1 + · · · + anxn = 0. If no such N exists, then by convention
we set R(a1, . . . , an; r) = ∞. Using ideas from Section 2, the first author proved the first
lower bounds on Rado numbers (under the constraint

∑n
i=1 ai �= 0) that are exponential in

the number of colors r and independent of the coefficients ai , but dependent on the number
of variables n.

Theorem 5 (Fox [12]). If
∑n

i=1 ai �= 0, then

R(a1, . . . , an; r)�(cn)
r ,

where cn = 2(2n)1−n
. If r �24 and a1 + a2 + a3 �= 0, then

R(a1, a2, a3; r)�c12
r
3 (10)

for an appropriate positive constant c.

The lower bound (10) uses already established lower bounds on the Schur numbers S(r) =
R(1, 1, −1; r) and the Rado number R(1, 2, −2; r). The best known lower bound on the
Schur numbers, due to Exoo [11], is S(r)�c(321)

r
5 . The lower bound R(1, 2, −2; r)�c12

r
3

is due to Abbott and Hanson [2], improving on earlier bounds of Salié and Abbott [1].
There is also a density analogue of Rado numbers [16,21,22]. Let �(a1, . . . , an; m) denote

the maximum size of a subset of integers in [1, m] such that a1x1 + · · · + anxn = 0 has
no solutions in the subset. If R(a1, . . . , an; r) > m, then taking the largest color class in a
r-coloring from 1 to m that is free of monochromatic solutions to a1x1 + · · · + anxn = 0,
we arrive at the inequality �(a1, . . . , an; m)� m

r
. Ruzsa [22] proved if

∑n
i=1 ai �= 0, then

�(a1, . . . , an; m)�m(2n)−n. Using results from Section 2, the first author [12] proved
�(a1, . . . , an; m)�m2−n(n − 1)1−n, which slightly improved on Ruzsa’s bound under the
same constraint. For n = 3, Ruzsa’s bound is �(a1, a2, a3; m)� m

216 and the improvement
gives �(a1, a2, a3; m)� m

32 . If a1x1 + a2x2 + a3x3 = 0 is not regular, then it follow from
Theorem 2 that �(a1, a2, a3; m)� m

24 . These lower bounds can be improved even further
using the tools developed in the proof of Theorem 2.

Theorem 6. If a1 + a2 + a3 �= 0, then

�(a1, a2, a3; m)� 2m

9
.

If a1 + a2 + a3 �= 0 and a1x1 + a2x2 + a3x3 = 0 is regular, then

�(a1, a2, a3; m)� m

2
.
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This lower bound is tight in the case that a1x1 + a2x2 + a3x3 = 0 is regular and a1 +
a2 + a3 �= 0 in the sense that �(1, 1, −1; m) = �m

2 
.
For positive integers a and b with a�b, Landman and Robertson [18] call the set {x, ax+

d, bx + 2d} an (a, b)-triple if x and d are positive integers. When (a, b) = (1, 1), this
definition coincides with that of a 3-term arithmetic progression. The degree of regularity
of (a, b), denoted dor(a, b), is the largest positive integer r (if it exists) such that every
r-coloring of the positive integers must have a monochromatic (a, b)-triple. Landman and
Robertson [18] conjectured that if (a, b) �= (1, 1), then dor(a, b) < ∞. In [14], the first
author and Radoičić settle Landman and Robertson’s conjecture by proving dor(a, b) < 24
if (a, b) �= (1, 1). The proof relies heavily on Theorem 2.

6.3. Conclusion on Rado’s Boundedness Conjecture

While we have proved that every nonregular linear equation in three variables is not 36-
regular, it is not even known if there is a nonregular linear equation in three variables that
is 4-regular.

Problem 1. Improve the bounds 4�k(1, 3)�36.

In an attempt to prove Rado’s Boundedness Conjecture for more than three variables,
we are led to Conjecture 5, which can be thought of as the modular version of Rado’s
Boundedness Conjecture.

Conjecture 5. For each positive integer n, there exists a positive integer K(n) such that if
q = pj is a prime power and {ai}ni=1 is a set of integers satisfying that for every nonempty
A ⊂ {ai}ni=1,

∑
a∈A a is not a multiple of q, then there exists a K(n)-coloring of the units

of Zq that does not contain a monochromatic solution to a1x1 + · · · + anxn ≡ 0 (mod q).

It is clear from a compactness argument that Conjecture 5 for n variables implies Rado’s
Boundedness Conjecture for n variables. Going one step further, we conjecture that Con-
jecture 5 in n − 1 variables implies Rado’s Boundedness Conjecture in n variables. Using
the tools we used in the coloring lemmas in Section 3, it is not hard to show that Conjecture
5 holds for n = 2 and K(2) = 3.
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Appendix A. The remaining cases

Here, we settle the remaining cases of Theorem 2 that we did not handle in detail in
Section 4.
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Case 1: v and w are both negative. Therefore, |v + 1|� |v|, |w + 1|� |w|, and |v + w +
1|� |v + w|�2|w|. Substituting these upper bounds into inequalities (5) and (6), we have
|249w19|� |t53v30| and |t927v43|� |w28|. Combining these last two inequalities,

|t927v43|� |w28|�(2−49t53v30)
28
19 .

This inequality fails for t �3. Therefore, we only have to check when t = 1 or t = 2. From
Lemma 7, since the equation a1x1 + a2x2 + a3x3 = 0 is 24-regular and we are in the case
when 0 < a1 < −a2 < −a3, then (with l = 12) we have (−a2)

l−1 < (−a2 − a3)(a1)
l−2

or equivalently, |vl−1| < |(v + w)|.
Case 1.1: t = 1 or 2. So |w| > |v|11 − |v|. Since a1 + a2 �= 0 and −a2 > a1, then we

have −v� 3
2 in this case. However, |216v43|� |t927v43|� |w|28 �(|v|11 − |v|)28, which is

not true for −v� − 3
2 .

Case 2: v is positive and w is negative. Therefore, |w+1|� |w|, |v+1|�2|v|, |v+w|� |w|,
and |v + w + 1|� |w|. Substituting these upper bounds into inequalities (5) and (6), we
have |212w19|� |t53v30| and |t9249v43|� |w28|. Combining these last two inequalities,

|t9249v43|� |w28|�(2−12t53v30)
28
19

This inequality fails for t �2. Therefore, we have only one more case to consider, when
t = 1. In the case that a1 = 1, we have the following stronger congruences which are easily
derived from equivalence relation (1).

If a1 = 1, then

(a2 + a3)
2s−2(1 + a2 + a3)

s2 ≡ 0 (mod (a2a3)
s(s−1)) (11)

and

(a2 + a3)
s−1(1 + a2)

s2 ≡ 0 (mod a
s(s−1)
3 ). (12)

We can use the inequalities that follow from the congruences (11) and (12). These inequal-
ities are

|(v + w)2s−2(1 + v + w)s
2 |� |(vw)s

2−s | (13)

and

|(v + w)s−1(1 + v)s
2 |� |(w)s

2−s |. (14)

Substituting in s = 7 and the inequalities |v + w|� |w| into inequality (14), we have

v� |w| 36
49 − 1. Notice that if inequality (13) is true, then by decreasing v we have inequality

(13) remains true. But then substituting in v = |w| 36
49 − 1 into inequality (13), we see that

inequality (13) is false for −w�3. However, this contradicts the fact that −w�3 since
t = 1, |w|� |v|, and a1 + a2 + a3 �= 0 in this case.

By exhausting all possible cases, we have shown that if a1x1 + a2x2 + a3x3 = 0 is
24-regular, then it is regular.
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