期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:173
A symplectic refinement of shifted Hecke insertion
Article
Marberg, Eric1 
[1] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
关键词: Symmetric groups;    Grothendieck polynomials;    Hecke insertion;    Schur P-functions;    Flag varieties;   
DOI  :  10.1016/j.jcta.2020.105216
来源: Elsevier
PDF
【 摘 要 】

Buch, Kresch, Shimozono, Tamvakis, and Yong defined Hecke insertion to formulate a combinatorial rule for the expansion of the stable Grothendieck polynomials G(pi) indexed by permutations in the basis of stable Grothendieck polynomials G(lambda) indexed by partitions. Patrias and Pylyavskyy introduced a shifted analogue of Hecke insertion whose natural domain is the set of maximal chains in a weak order on orbit closures of the orthogonal group acting on the complete flag variety. We construct a generalization of shifted Hecke insertion for maximal chains in an analogous weak order on orbit closures of the symplectic group. As an application, we identify a combinatorial rule for the expansion of orthogonal and symplectic shifted analogues of G(pi) in Ikeda and Naruse's basis of K-theoretic Schur P-functions. (c) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2020_105216.pdf 838KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次