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Buch, Kresch, Shimozono, Tamvakis, and Yong defined Hecke 
insertion to formulate a combinatorial rule for the expansion 
of the stable Grothendieck polynomials Gπ indexed by 
permutations in the basis of stable Grothendieck polynomials 
Gλ indexed by partitions. Patrias and Pylyavskyy introduced 
a shifted analogue of Hecke insertion whose natural domain 
is the set of maximal chains in a weak order on orbit closures 
of the orthogonal group acting on the complete flag variety. 
We construct a generalization of shifted Hecke insertion for 
maximal chains in an analogous weak order on orbit closures 
of the symplectic group. As an application, we identify a 
combinatorial rule for the expansion of “orthogonal” and 
“symplectic” shifted analogues of Gπ in Ikeda and Naruse’s 
basis of K-theoretic Schur P -functions.
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1. Introduction

1.1. Hecke words

Let S∞ denote the group of permutations of the positive integers P := {1, 2, 3, . . . }
with finite support. Define si = (i, i +1) ∈ S∞ for i ∈ P so that S∞ = 〈s1, s2, s3, . . . 〉. In 
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examples, we write elements of S∞ in one-line notation and identify the word π1π2 · · ·πn

with the permutation π ∈ S∞ that has π(i) = πi for i ≤ n and π(i) = i for i > n.
Let U∞ denote the free Z-module with a basis given by the symbols Uπ for π ∈ S∞. 

Set Ui := Usi for i ∈ P . The abelian group U∞ has a unique ring structure with

UπUi =
{
Uπsi if π(i) < π(i + 1)
Uπ if π(i) > π(i + 1)

for π ∈ S∞ and i ∈ P .

This is the usual one-parameter Iwahori-Hecke algebra Hq = Z[q]-span{Tπ : π ∈ S∞}
of S∞ but with q = 0 and Uπ = −Tπ; see [18, Theorem 7.1]. We retain the following 
terminology from [4]:

Definition 1.1. A Hecke word for π ∈ S∞ is any word i1i2 · · · il such that Uπ =
Ui1Ui2 · · ·Uil .

Let H(π) be the set of Hecke words for π ∈ S∞. The reduced words for π are its 
Hecke words of minimal length. Let R(π) denote the set of reduced words for π ∈ S∞. 
If π = 321 ∈ S∞ then

R(π) = {121, 212} ⊂ {121, 212, 1121, 1221, 1211, 1212, 2212, 2112, 2122, 2121, . . .}

= H(π).

Let �(π) denote the length of a permutation π ∈ S∞, given by the common length of 
every reduced word in R(π) or, equivalently, by the number of pairs (i, j) ∈ P × P with 
i < j and π(i) > π(j). We also write �(w) to denote the length of a word w, where we 
use the term word to mean a finite sequence of positive integers.

Buch, Kresch, Shimozono, Tamvakis, and Yong proved the following in [4]:

Theorem 1.2 (See [4]). There is a bijection from Hecke words for π ∈ S∞ to pairs (P, Q)
where P is an increasing tableau whose row reading word is a Hecke word for π and Q
is a standard set-valued tableau with the same shape as P .

Here, an increasing tableau means an assignment of positive integers to the boxes of the 
Young diagram of a partition such that rows and columns are strictly increasing. The row 
reading word is formed by concatenating the rows of such a tableau, starting with the last 
row. A standard set-valued tableau is defined in the same way as an increasing tableau, 
except that the values assigned to each box are the disjoint blocks of a partition of 
{1, 2, . . . , n} for some n, and a list of nonempty finite sets S1, S2, . . . is strictly increasing 
if max(Si) < min(Si+1) for all i.

The authors of [4] constructed a bijection called Hecke insertion to realize the pre-
ceding theorem. Restricted to reduced words for permutations, Hecke insertion coincides 
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with the Edelman-Greene insertion algorithm, which is itself a generalization of the 
well-known Robinson-Schensted-Knuth (RSK) insertion algorithm.

There are two natural “shifted” analogues of Hecke insertion, whose properties are 
the central topic of this article. We provide an overview of these maps in the next two 
sections.

1.2. Orthogonal Hecke words

Let I∞ = {z ∈ S∞ : z2 = 1} denote the set of involutions in the symmetric group 
S∞. The Z-module M∞ := Z-span{Uz ∈ U∞ : z ∈ I∞} is a right U∞-module under the 
linear action ◦̂ : M∞ ×U∞ → M∞ with Uz ◦̂Uπ := Uπ−1UzUπ for z ∈ I∞ and π ∈ S∞.

Definition 1.3. An orthogonal Hecke word for z ∈ I∞ is any word i1i2 · · · il such that

Uz = Uil · · ·Ui2Ui1Ui2 · · ·Uil = (· · · ((Ui1 ◦̂ Ui2) ◦̂ Ui3) ◦̂ · · · ) ◦̂ Uil .

Let G = GLn(C) be the general linear group of n × n invertible matrices and write 
B ⊂ G for the subgroup of upper triangular matrices. The orthogonal group K = On(C)
acts with finitely many orbits on the flag variety G/B. The closures of these K-orbits are 
in bijection with the set of involutions In := {z ∈ I∞ : z(i) = i for i > n}. Orthogonal 
Hecke words (at least, those of minimal length) for elements z ∈ In correspond to 
maximal chains in the weak order on K-orbit closures defined in [35, §1.2] (see also [5,
31]).

Let HO(z) be the set of orthogonal Hecke words for z ∈ I∞. To match the notation 
in [8,9,11] we write R̂(z) for the set of words of minimal length in HO(z) and refer to 
the elements of R̂(z) as involution words for z. The same sequences, read in reverse 
order, are called reduced S-expressions in [13,17] and reduced I∗-expressions in [15,23]. 
For example, if z = 321 ∈ I∞ then

R̂(z) = {12, 21} ⊂ {12, 21, 112, 122, 121, 212, . . . } = HO(z).

The following is an analogue of Theorem 1.2 for orthogonal Hecke words. This state-
ment is essentially [29, Theorem 5.18], but to deduce our phrasing one also requires [7, 
Corollary 2.18].

Theorem 1.4 (See [7,29]). There is a bijection from orthogonal Hecke words for z ∈ I∞
to pairs (P, Q) where P is an increasing shifted tableau whose row reading word is an 
orthogonal Hecke word for z and Q is a standard shifted set-valued tableau with the same 
shape as P .

For relevant preliminaries on shifted tableaux, see Section 2.2. Patrias and Pylyavskyy 
proved this theorem by constructing another bijection, called shifted Hecke insertion in 
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[7,11,29], between words and pairs of shifted tableaux. We refer to this correspondence 
as orthogonal Hecke insertion to distinguish it from our second shifted map.

1.3. Symplectic Hecke words

Our main results concern a new “symplectic” variant of orthogonal Hecke insertion. 
The domain of this correspondence is the set of symplectic Hecke words defined as follows.

Let Θ : P → P be the permutation with Θ(i) = i − (−1)i for i ∈ P , so that Θ is 
the infinite product of cycles (1, 2)(3, 4)(5, 6) · · · . Define F∞ = {π−1Θπ : π ∈ S∞}. The 
elements of F∞ are the fixed-point-free involutions of P that agree with Θ outside a 
finite set of inputs. Each permutation in F∞ therefore has infinite support, so I∞ and 
F∞ are disjoint.

For each z ∈ F∞, there exists an even integer n ∈ 2P such that z(i) = Θ(i) for all 
i > n. Thus, one way to represent an element z ∈ F∞ with a finite amount of data is to 
just list the values z1z2 · · · zn where zi = z(i) and n is the even integer just mentioned. 
We identify this finite sequence with the element of F∞ that maps i 	→ zi for i ∈ [n] and 
i 	→ i − (−1)i for i > n. An arbitrary word z1z2 · · · zn with even length n represents an 
element of F∞ in this way if and only if {z1, z2, . . . , zn} = {1, 2, . . . , n} and whenever 
j = zi we have i = zj 
= j.

Let N∞ be the free Z-module with basis {Nz : z ∈ F∞}. Results of Rains and Vazirani 
[30] imply that N∞ has a unique structure as a right U∞-module with multiplication 
satisfying

NzUi =

⎧⎪⎪⎨⎪⎪⎩
Nsizsi if z(i) < z(i + 1)
Nz if i + 1 
= z(i) > z(i + 1) 
= i

0 if i + 1 = z(i) > z(i + 1) = i

for z ∈ F∞ and i ∈ P .

This follows specifically from [30, Theorems 4.6 and 7.1] with q = 0; see also [24, §4.2].

Definition 1.5. A symplectic Hecke word for z ∈ F∞ is any word i1i2 · · · il such that

Nz = NΘUi1Ui2 · · ·Uil .

To explain this terminology, again let G = GLn(C) and write B ⊂ G for the subgroup 
of upper triangular matrices. When n is even, the set of orbits of the symplectic group 
K = Spn(C) acting on G/B is naturally in bijection with the set of fixed-point-free 
involutions Fn := {z ∈ F∞ : z(i) = Θ(i) for i > n}. Symplectic Hecke words for elements 
of Fn correspond to maximal chains in the weak order on these K-orbit closures studied 
in [5,31,35].

Let HSp(z) be the set of symplectic Hecke words for z ∈ F∞. The shortest elements 
of HSp(z) are the words i1i2 . . . il of minimal length with z = sil · · · si2si1Θsi1si2 · · · sil . 
Following the convention of [8,9,12], we write R̂FPF(z) for the set of such words, which 
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we refer to as FPF-involution words for z. These elements are a special case of Rains and 
Vazirani’s notion of reduced expressions for quasi-parabolic sets [30, Definition 2.11]. If 
z = 4321 ∈ F∞ then

R̂FPF(z) = {21, 23} ⊂ {21, 23, 221, 211, 213, 223, 233, 231, . . . } = HSp(z).

Since NΘUi = 0 if i odd, every symplectic Hecke word begins with an even letter. The 
following analogue of Theorem 1.2 reappears in a more explicit form as Theorem 3.27.

Theorem 1.6. There is a bijection from symplectic Hecke words for z ∈ F∞ to pairs 
(P, Q) where P is an increasing shifted tableau whose row reading word is a symplectic 
Hecke word for z and Q is a standard shifted set-valued tableau with the same shape 
as P .

To prove this theorem, we will construct another shifted analogue of Hecke insertion, 
which we call symplectic Hecke insertion. Besides being a bijection, symplectic Hecke in-
sertion is a length- and descent-preserving map in an appropriate sense; see Theorem 4.4.

Although not all words are symplectic Hecke words, one can define orthogonal Hecke 
insertion as a special case of symplectic Hecke insertion. Thus, Theorem 1.6 is a gener-
alization of Theorem 1.4, and our analysis of symplectic Hecke insertion lets us recover 
many known properties of orthogonal Hecke insertion, along with some new ones, in 
Section 4.2.

1.4. Stable Grothendieck polynomials

A primary application of Hecke insertion in [4] was to describe a rule for the expansion 
of the stable Grothendieck polynomials Gπ indexed by permutations π ∈ S∞ in the basis 
of stable Grothendieck polynomials Gλ indexed by partitions λ. We briefly recall this 
rule.

A pair of words of the same length (w, i) is a compatible sequence if i = (i1 ≤ i2 ≤
· · · ≤ il) is a weakly increasing of positive integers with ij < ij+1 whenever wj ≤ wj+1. 
Let β, x1, x2, x3, . . . , be commuting indeterminates. The stable Grothendieck polynomial
of π ∈ S∞ is the power series

Gπ =
∑
(w,i)

β�(w)−�(π)xi ∈ Z[β][[x1, x2, . . . ]] (1.1)

where the sum is over compatible sequences (w, i) with w ∈ H(π), and xi := xi1xi2 · · ·xil . 
For the definition of Gλ when λ is a partition, see Theorem 5.2.

Theorem 1.7 (See [4, Theorem 1]). If π ∈ S∞ then Gπ =
∑

λ aπλβ
|λ|−�(π)Gλ where the 

sum is over all partitions λ, and aπλ is the finite number of increasing tableaux T of 
shape λ whose row reading words are Hecke words for π−1.
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Remark 1.8. The power series denoted Gπ in [2,4] and [3] are the special cases of (1.1)
with β = −1 and β = 1, respectively. This poses no loss of generality, since as long as 
β 
= 0 one can recover the generic form of Gπ from any specialization by a simple change 
of variables.

The elements of I∞ and F∞ index two natural families of “shifted” stable Grothendieck 
polynomials. For y ∈ I∞ and z ∈ F∞, write �̂(y) and �̂FPF(z) for the common lengths 
of all words in R̂(y) and R̂FPF(z), respectively; see (5.1) for explicit formulas for these 
numbers. We define the shifted stable Grothendieck polynomial of y ∈ I∞ and z ∈ F∞
to be the power series

GPO
y =

∑
(w,i)

β�(w)−�̂(y)xi and GPSp
z =

∑
(w,i)

β�(w)−�̂FPF(z)xi (1.2)

where the sums are over compatible sequences with w ∈ HO(y) and w ∈ HSp(z), respec-
tively.

Ikeda and Naruse [19] have defined a family of K-theoretic Schur P -functions GPλ

indexed by strict partitions λ. These functions represent Schubert classes in the K-theory 
of torus equivariant coherent sheaves on the maximal orthogonal Grassmannian [19, 
Corollary 8.1]. As an application of our results on symplectic Hecke insertion, we prove 
the following in Section 5:

Theorem 1.9. Let y ∈ I∞ and z ∈ F∞. Then GPO
y =

∑
λ byλβ

|λ|−�̂(y)GPλ and GPSp
z =∑

λ czλβ
|λ|−�̂FPF(z)GPλ where the sums are over all strict partitions λ, and byλ and czλ

are the finite numbers of increasing shifted tableaux T of shape λ whose row reading 
words are orthogonal Hecke words for y and symplectic Hecke words for z, respectively.

The power series Gπ are of interest as the stable limits of the Grothendieck polynomials
Gπ defined in [21] to represent the classes of the structure sheaves of Schubert varieties 
in the K-theory of the complete flag variety. The precise relationship is that Gπ =
limn→∞ G1m×π where 1m × π denotes the permutation with i 	→ i for i ≤ m and 
i 	→ m + π(i −m) for i > m. Wyser and Yong [35] have introduced analogous K-theory 
representatives for the orbits of the symplectic group acting on the complete flag variety. 
It is shown in [26,27] that the stable limits of Wyser and Yong’s polynomials coincide (up 
to a minor change of variables) with the symmetric functions {GPSp

z }z∈F∞ ; moreover, for 
each strict partition λ, there exists a corresponding “Grassmannian” involution zλ ∈ F∞
such that GPSp

zλ
= GPλ.

Contrary to what one might expect, the symmetric functions {GPO
y }y∈I∞ do not arise 

in the same way by taking the stable limits of K-theory representatives for the orbits of 
the orthogonal group acting on the complete flag variety. It is an open problem to find 
general formulas for these K-theory representatives and their stable limits. At the same 
time, it also remains to find a geometric interpretation of GPO

y for y ∈ I∞.
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Here is a short outline of the rest of this article. Section 2, includes some preliminary 
results on Hecke words and tableaux. Section 3 constructs the symplectic Hecke inser-
tion algorithm and its inverse. In Section 4 we discuss three related maps. Section 4.1
formulates a semistandard version of our insertion algorithm. In Section 4.2, we explain 
how orthogonal Hecke insertion arises as a special case of symplectic Hecke insertion. 
Section 4.3 provides a discussion of the simplified forms of orthogonal and symplectic 
Hecke insertion obtained by restricting the domain of each map to (FPF-)involution 
words. Section 5, finally, contains the proof of Theorem 1.9.
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2. Preliminaries

We fix the following notation: let P = {1, 2, 3, . . . }, N = {0, 1, 2, . . . }, and [n] = {i ∈
P : i ≤ n} for n ∈ N. A word is finite sequence of positive integers. We write �(w) for 
the length of a word w, vw for the concatenation of words v and w, and ∅ for the unique 
empty word.

2.1. Hecke words

A congruence is an equivalence relation ∼ on words with the property that v ∼ w

implies avb ∼ awb for all words a and b. Define =Br to be the congruence generated by 
the usual Coxeter braid relations for S∞; i.e., let =Br denote the strongest congruence 
with ij =Br ji and i(i + 1)i =Br (i + 1)i(i + 1) for all i, j ∈ P with |i − j| > 1. Write 
≡Br for the strongest congruence with ij ≡Br ji and jkj ≡Br kjk and i ≡Br ii for all 
i, j, k ∈ P with |i − j| > 1. The following is well-known.

Theorem 2.1. If π ∈ S∞ then R(π) is an equivalence class under =Br while H(π) is an 
equivalence class ≡Br. A word is reduced if and only if its equivalence class under =Br
contains no words with equal adjacent letters.

There are versions of this theorem for orthogonal and symplectic Hecke words. Define 
=O (respectively, ≡O) to be the transitive closure of =Br (respectively, ≡Br) and the 
relation with w1w2w3w4 · · ·wn ∼ w2w1w3w4 · · ·wn for all words with at least two letters. 
The following combines [9, Theorems 6.4 and 6.10]; the first claim is also equivalent to 
[15, Theorem 3.1]:

Theorem 2.2 (See [9]). If z ∈ I∞ then R̂(z) is an equivalence class under =O while HO(z)
is an equivalence class under ≡O. A word is an involution word for some z ∈ I∞ if and 
only if its equivalence class under =O contains no words with equal adjacent letters.
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Theorems 2.1 and 2.2 imply that there are finite sets A(z) ⊂ B(z) ⊂ S∞ with

R̂(z) = �
π∈A(z)

R(π) and HO(z) = �
π∈B(z)

H(π). (2.1)

For example, A(321) = {231, 312} ⊂ {231, 312, 321} = B(321). Following [9], we refer to 
the elements of A(z) as atoms for z and to the elements of B(z) as Hecke atoms.

Fix z ∈ I∞ and suppose a1 < a2 < a3 < . . . are the integers a ∈ P such that a ≤ z(a). 
Define bi = z(ai) for each i ∈ P and let αmin(z) = (a1b1a2b2a3b3 · · · )−1 ∈ S∞ where in 
the word a1b1a2b2a3b3 we omit bi whenever ai = bi. Write πi = π(i) for π ∈ S∞ and 
i ∈ P . Let ∼B be the strongest equivalence relation on S∞ with π−1 ∼B σ−1 whenever 
there are integers a < b < c and an index i ∈ P such that πiπi+1πi+2 and σiσi+1σi+2
both belong to {cba, bca, cab} while πj = σj for all j /∈ {i, i + 1, i + 2}. The following is 
another consequence of [9, Theorems 6.4 and 6.10].

Theorem 2.3 (See [9]). If z ∈ I∞ then αmin(z) ∈ A(z) and B(z) = t{w ∈ S∞ :
αmin(z) ∼B w}.

Define =Sp (respectively, ≡Sp) to be the transitive closure of =Br (respectively, ≡Br) 
and the relation with w1w2w3 · · ·wn ∼ w1(w2+2)w3 · · ·wn whenever w1 = w2+1. Recall 
that R̂FPF(z) is the set of minimal length words in HSp(z). A word is a symplectic Hecke 
word (respectively, an FPF-involution word) if it is an element of HSp(z) (respectively, 
R̂FPF(z)) for some z ∈ F∞.

Theorem 2.4. If z ∈ F∞ then R̂FPF(z) and HSp(z) are equivalence class under =Sp and 
≡Sp, respectively. A word is a symplectic Hecke word if and only if its equivalence class 
under ≡Sp contains no words that begin with an odd letter. A symplectic Hecke word is 
an FPF-involution word if and only if its equivalence class under =Sp contains no words 
with equal adjacent letters.

Proof. The claim that R̂FPF(z) is an equivalence class under =Sp for each z ∈ F∞ follows 
from [9, Theorem 6.22]. Since N∞ is a U∞-module and NΘUiUi−1 = NΘUiUi+1 whenever 
i ∈ 2P is even, Theorem 2.1 implies that each set HSp(z) for z ∈ F∞ is preserved by 
≡Sp.

The following argument is similar to the proof of [9, Theorem 6.18]. Define ∼BFPF to 
be the strongest equivalence relation on S∞ with π−1 ∼BFPF σ−1 whenever there are 
integers a < b < c < d and an even index i ∈ 2N such that πi+1πi+2πi+3πi+4 and 
σi+1σi+2σi+3σi+4 both belong to {adbc, bcad, bdac} while πj = σj for all j /∈ {i + 1, i +
2, i + 3, i + 4}. In this case there is a word w such that H(π) and H(σ) each contain one 
of w(2i +1)(2i) or w(2i − 1)(2i) or w(2i − 1)(2i +1)(2i), so H(π−1) ∪H(σ−1) is a subset 
of an equivalence class under ≡Sp.

No symplectic Hecke word can begin with an odd letter or with (2i)(2i +1)(2i −1)(2i)
for any i ∈ P , since NΘU2iU2i+1U2i−1 = Nz for z ∈ F∞ with 2i +1 = z(2i) > z(2i +1) =
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2i. Suppose w is a symplectic Hecke word for z ∈ F∞. Then w ∈ H(π−1) for some 
π ∈ S∞, and the preceding observations imply that π2i−1 < π2i for all i ∈ P and that 
we never have π2i−1π2iπ2i+1π2i+2 = cdab for numbers a < b < c < d. Using these facts, 
it is an exercise to show that π−1 ∼BFPF σ−1 for some σ ∈ S∞ with σ2i−1 < σ2i and 
σ2i−1 < σ2i+1 for all i ∈ P . Now define y ∈ F∞ to be the fixed-point-free involution 
with y(σ2i−1) = σ2i for all i ∈ P . [9, Theorem 6.22] asserts that H(σ−1) ⊂ HSp(y); since 
v ≡Sp w for all v ∈ H(σ−1) and since HSp(z) is preserved by ≡Sp, we must have y = z. 
We conclude that if a1 < a2 < . . . are the elements of {a ∈ P : a < z(a)} listed in order 
and bi = z(ai), then every symplectic Hecke word for z is equivalent under ≡Sp to every 
Hecke word for the permutation βmin(z) := (a1b1a2b2 · · · )−1.

Next, consider an equivalence class under ≡Sp that is not equal to HSp(z) for any 
z ∈ F∞. Suppose w is a word of minimal length in this class, so that w is not a sym-
plectic Hecke word. Let n be minimal such that the initial subword w1w2 · · ·wn is not a 
symplectic Hecke word. Since ∅ ∈ R̂FPF(Θ), we have n > 0. Our minimality assumptions 
imply that if π := sw1sw2 · · · swn−1 ∈ S∞ then w1w2 · · ·wn−1 is an FPF-involution word 
for z := π−1Θπ ∈ F∞ and z(wn) = wn + 1. Therefore {π(wn), π(wn+1)} = {2i − 1, 2i}
for some i ∈ P , and we have w1w2 · · ·wn ≡Br (2i − 1)w1w2 · · ·wn−1. We conclude that a 
word is not a symplectic Hecke word if and only if it is equivalent under ≡Sp to a word 
that begins with an odd letter.

A similar argument shows that a symplectic Hecke word is an involution word if and 
only if its equivalence class under =Sp contains no words with equal adjacent letters. We 
omit the details. �

Theorems 2.1 and 2.4 imply that there are finite subsets AFPF(z) ⊂ BFPF(z) ⊂ S∞
with

R̂FPF(z) = �
π∈AFPF(z)

R(π) and HSp(z) = �
π∈BFPF(z)

H(π) (2.2)

for each z ∈ F∞. For example, AFPF(4321) = {3124, 1342} ⊂ {3124, 1342, 3142} =
BFPF(4321). We again refer to elements of AFPF(z) as atoms for z and to elements of 
BFPF(z) as Hecke atoms. The notation “BFPF(z)” is used in [9, §6.2] to denote a slightly 
larger set. If ∼BFPF and βmin(z) are defined as above, then the proof of Theorem 2.4
reduces to the following statement:

Theorem 2.5. If z ∈ F∞ then βmin(z) ∈ AFPF(z) and BFPF(z) = {w ∈ S∞ : βmin(z) ∼BFPF

w}.

2.2. Tableaux

Recall that P is the set of positive integers. Throughout, we use the term tableau to 
mean any map from a finite subset of P × P to P . We refer to the domain of a tableau 
as its shape, and write ∅ for the unique tableau whose shape is the empty set.



10 E. Marberg / Journal of Combinatorial Theory, Series A 173 (2020) 105216
A tableau has m rows (respectively, n columns) if its shape is contained in [m] × P

but not [m − 1] × P (respectively, P × [n] but not P × [n − 1]). The ith row and jth 
column of a tableau T refer to the tableaux formed by restricting T to the subset of its 
domain in {i} × P and P × {j}.

Let T be a tableau with shape D. We write (i, j) ∈ T to mean that (i, j) ∈ D and 
define Tij := T (i, j) for (i, j) ∈ T . A tableau T is increasing if Tab < Txy whenever 
(a, b), (x, y) ∈ T are distinct positions with a ≤ x and b ≤ y. If (i, j) ∈ T then the 
tableau formed by “removing box (i, j) from T” is the restriction of T to D−{(i, j)}. If 
(i, j) ∈ T then the tableau formed by “replacing the value of box (i, j) in T by c” is the 
map with domain D that has (i, j) 	→ c and agrees with T on the subdomain D−{(i, j)}. 
If (i, j) /∈ T then the tableau formed by “adding c to box (i, j) in T” is the map with 
domain D � {(i, j)} that extends T and has (i, j) 	→ c.

Example 2.6. We draw tableaux in French notation, so that each row is placed on top 
of the previous one. For example, the tableau T = {(1, 1) 	→ 1, (1, 2) 	→ 2, (2, 3) 	→
3, (3, 2) 	→ 4} is

· 4 ·
· · 3
1 2 ·

(2.3)

The following tableaux are increasing with shape {(1, 1), (1, 2), (1, 3), (2, 2)}:

4
2 3 4

5
2 3 4

4
2 3 5

8
1 4 9 (2.4)

Let T be a tableau. The row reading word (respectively, column reading word) of 
T is the finite sequence row(T ) (respectively, col(T )) whose entries are the values Tij

as (i, j) ranges over the domain of T such that (−i, j) (respectively, (j, −i)) increases 
lexicographically. For example, the row reading word of the tableau in (2.3) is 4312, 
while the column reading word of that tableau is 1423. The tableaux in (2.4) have row 
reading words 4234, 5234, 4235, and 8149, and column reading words 2434, 2534, 2435, 
and 1849, respectively.

Let ≺ be the strict partial order on P × P that has (a, b) ≺ (x, y) if and only if 
a ≤ x and b ≤ y and (a, b) 
= (x, y). A tableau T is row-column-closed if whenever 
(a, b), (x, y) ∈ T and (a, b) ≺ (x, y), it holds that (a, y) ∈ T . The following picture 
illustrates this condition. If the two boxes in the first diagram are in the domain of T
then T must also contain the third box:

· ·
· · ·
· ·

⇒
· ·
· · ·
·

Finally, define Coxeter-Knuth equivalence to be the strongest congruence K∼ with cab K∼
acb and bca K∼ bac and aba K∼ bab for all positive integers a, b, c ∈ P with a < b < c.
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Lemma 2.7. If T is an increasing, row-column-closed tableau, then row(T ) K∼ col(T ).

Proof. Form w by reading the last column of T in reverse order. Form U from T by 
removing the last column. Then U is also row-column-closed, col(T ) = col(U)w, and by 

induction row(U) K∼ col(U). It is a manageable exercise to check that row(T ) K∼ row(U)w, 
so row(T ) K∼ col(T ). �

The northeast (respectively, southwest) diagonal reading word of a tableau T is the 
finite sequence dNE(T ) (respectively, dSW(T )) whose entries are the values Tij as (i, j)
ranges over the domain of T such that (j − i, i) (respectively, (j − i, −i)) increases 
lexicographically. Equivalently, the northeast (respectively, southwest) diagonal reading 
word is formed by reading the entries of each diagonal from left to right (respectively, 
top to bottom), starting with the first diagonal. For example, the tableau T in (2.3)
has dNE(T ) = 4123 and dSW(T ) = 4132. The tableaux in (2.4) have northeast diagonal 
reading words 2434, 2534, 2435, and 1849, and southwest diagonal reading words 4234, 
5234, 4235, and 8149, respectively.

A tableau T is row-diagonal-closed if whenever (a, b), (x, y) ∈ T and (a, b) ≺ (x, y)
and Δ := (y − x) − (b − a) ≥ 0, it holds that (x, y − Δ) ∈ T . The following picture 
illustrates this condition:

· · · ·
· · · · ·
· · · ·

⇒
· · ·
· · · · ·
· · · ·

A tableau T is column-diagonal-closed if whenever (a, b), (x, y) ∈ T and (a, b) ≺ (x, y)
and Δ := (b − a) − (y − x) ≥ 0, it holds that (a + Δ, b) ∈ T . The following picture 
illustrates this condition:

· ·
· · ·
· · ·
· · ·
· ·

⇒
· ·
· · ·
· ·

· · ·
· ·

Lemma 2.8. If T is an increasing, row-diagonal-closed tableau, then row(T ) K∼ dSW(T ).

Proof. Form w by reading the first diagonal (i.e., the diagonal containing all (i, j) ∈ T

for which j − i is minimal) of T in reverse order. Form U from T by removing the 
first diagonal. Then U is row-diagonal-closed, dSW(T ) = wdSW(U), and by induction 

row(U) K∼ dSW(U). It is an easy exercise to check that row(T ) K∼ wrow(U), so row(T ) K∼
dSW(T ). �
Lemma 2.9. If T is an increasing, column-diagonal-closed tableau, then col(T ) K∼ dNE(T ).

Proof. Suppose T is an increasing, column-diagonal closed tableau, and write T † for its 
transpose. By the previous lemma row(T †) K∼ dSW(T †). Write wr for the word given by 
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reversing w. Then u K∼ v if and only if ur K∼ vr. The lemma follows since col(T )r =
row(T †) and dNE(T )r = dSW(T †). �

A tableau T is shifted if for some strict partition λ = (λ1 > λ2 > · · · > λl > 0), the 
domain of T is the shifted Young diagram SDλ := {(i, i + j − 1) ∈ [l] × P : 1 ≤ j ≤ λi}.

Corollary 2.10. If T is an increasing shifted tableau then row(T ) K∼ col(T ) K∼ dNE(T ) K∼
dSW(T ).

Proof. Such a tableau is row-column-closed, row-diagonal-closed, and column-diagonal-
closed. �

A set-valued tableau is a map from a finite subset of P × P to the set of nonempty, 
finite subsets of the marked alphabet M = {1′ < 1 < 2′ < 2 < 3′ < 3 < . . . }. Most 
of our conventions for referring to tableaux extend to set-valued tableaux without any 
complication. However, with set-valued tableaux, it is possible to add multiple entries to 
a given box.

A set-valued tableau T is increasing if max(Tab) < min(Txy) whenever (a, b), (x, y) ∈ T

are distinct positions with a ≤ x and b ≤ y. The length (or degree) of a set-valued tableau 
T is the sum of the sizes of its entries; we denote this quantity by |T | :=

∑
(i,j)∈T |Tij |.

A shifted set-valued tableau T is standard if T is increasing, no primed number belongs 
to any box of T on the main diagonal, and exactly one of i or i′ appears in some box 
of T for each i ∈ {1, 2, . . . , |T |}. The entries of a standard set-valued tableaux T must 
be pairwise disjoint and cannot contain i or i′ for any integer i /∈ {1, 2, . . . , |T |}. The 
following are standard shifted set-valued tableaux with length 6 and with shape SDλ for 
λ = (2, 1):

56

12 3′4

6

123 4′5′

6

1 2345

456

1 2′3′

A standard shifted set-valued tableau corresponds to a directed path starting at the 
empty partition in what Patrias and Pylyavskyy call the Möbius deformation of the 
shifted Young lattice [29, §5.2]. The length of this walk is the length of the set-valued 
tableau.

3. Symplectic Hecke insertion

3.1. Forward transitions

Consider the following class of “almost shifted” tableaux:
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Definition 3.1. A shifted insertion state is a tableau that is either (a) increasing, shifted, 
and nonempty or (b) formed by adding to an increasing shifted tableau with m − 2 rows 
and n − 2 columns an extra box (i, j) contained in either {m} × [n − 1] or [m − 1] ×{n}.

A shifted insertion state is terminal in case (a). The position (i, j) in case (b) is the 
state’s outer box. A non-terminal insertion state is initial if its outer box is in the first 
row.

Example 3.2. The following are all shifted insertion states:

· · · ·
· · · ·
· · · ·
· · 4 ·

· · · ·
· · · ·
· 4 · ·
2 3 · ·

· · · ·
· · · ·
· 4 · ·
2 3 · 2

· · · ·
· · · ·
· 4 · 3
2 3 · ·

· 3 · ·
· · · ·
· 4 · ·
2 3 · ·

· · 3 ·
· · · ·
· 4 · ·
2 3 · ·

The first and third states are initial, while the second is terminal.

To define symplectic Hecke insertion, we will give the set of shifted insertion states 
the structure of a weighted directed graph whose edges are labeled by pairs of positive 
integers. We call this the forward transition graph. Terminal insertion states are local 
sinks in this graph, while every other state has a unique outgoing edge. Edges between 
shifted insertion states belong to three families, which we now describe.

Let U be a non-terminal shifted insertion state that has m −2 rows and n −2 columns 
when its outer box is removed. Assume the outer box of U is (i, n). Suppose Uin is 
maximal in its row and j ∈ P is minimal with i ≤ j and (i, j) /∈ U . The unique outgoing 
edge from U is then as follows:

(R1) If moving the outer box of U to position (i, j) yields an increasing shifted tableau 

V , then there is an edge U
(i,j)−−−→ V .

(R2) If moving the outer box of U to position (i, j) does not yield an increasing shifted 

tableau, then there is an edge U
(i,j)−−−→ V where V is formed from U by removing 

the outer box (i, n).

Next, suppose there exists a minimal index x ∈ P with (i, x) ∈ U and Uin < Uix. Define 
T to be the tableau formed from U by replacing the value in box (i, x) by Uin and then 
removing the outer box (i, n). For the moment, assume i < x.

(R3) Suppose the tableau T is not increasing. If i +1 < x or row i +1 of U is nonempty, 
then there is an edge U

(i,x)−−−→ V where V is formed from U by moving box (i, n)
to (i + 1, n) and changing its value to Uix, as in this picture:
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U =

⎧⎪⎨⎪⎩
· · · · · ·
· · ∗ ∗ · ·
· 2 4 5 · 3
∗ ∗ 3 ∗ · ·

⎫⎪⎬⎪⎭ (i,x)
−−−→

⎧⎪⎨⎪⎩
· · · · · ·
· · ∗ ∗ · 4
· 2 4 5 · ·
∗ ∗ 3 ∗ · ·

⎫⎪⎬⎪⎭ = V as T =

⎧⎪⎨⎪⎩
· · · · ·
· · ∗ ∗ ·
· 2 3 5 ·
∗ ∗ 3 ∗ ·

⎫⎪⎬⎪⎭ .

Here and in the next two cases, the circled entry indicates the location of box (i, x).
(R4) If the tableau T is increasing, then there is an edge U

(i,x)−−−→ V where V is formed 
from T by adding an outer box in row i + 1 with value Uix, as in the following 
picture:

U =

⎧⎪⎨⎪⎩
· · · · · ·
· · ∗ ∗ · ·
· 2 4 5 · 3
∗ ∗ 2 ∗ · ·

⎫⎪⎬⎪⎭ (i,x)
−−−→

⎧⎪⎨⎪⎩
· · · · · ·
· · ∗ ∗ · 4
· 2 3 5 · ·
∗ ∗ 2 ∗ · ·

⎫⎪⎬⎪⎭ = V as T =

⎧⎪⎨⎪⎩
· · · · ·
· · ∗ ∗ ·
· 2 3 5 ·
∗ ∗ 2 ∗ ·

⎫⎪⎬⎪⎭ .

(D1) If Uii ≤ Uin < Ui,i+1 (so that x = i + 1) and row i + 1 of U is empty, but the 

tableau T is not increasing, then there is an edge U
(i,i+1)−−−−→ V where V is formed 

from U by moving box (i, n) to (m, i + 1) and changing its value to Ui,i+1, as in 
the following picture:

U =

⎧⎪⎨⎪⎩
· · · · · ·
· · · · · ·
· 2 4 5 · 3
∗ ∗ 3 ∗ · ·

⎫⎪⎬⎪⎭ (i,i+1)
−−−−−→

⎧⎪⎨⎪⎩
· · 4 · ·
· · · · ·
· 2 4 5 ·
∗ ∗ 3 ∗ ·

⎫⎪⎬⎪⎭ = V as T =

⎧⎪⎨⎪⎩
· · · · ·
· · · · ·
· 2 3 5 ·
∗ ∗ 3 ∗ ·

⎫⎪⎬⎪⎭ .

In the next three cases, assume x = i so that (i, i) ∈ U and Uin < Uii.

(D2) If the entries Uin and Uii have the same parity but the tableau T is not increasing, 
then there is an edge U

(i,i)−−−→ V where V is formed from U by moving box (i, n)
to (m, i + 1) and changing its value to Uii, as in the following picture:

U =

⎧⎪⎪⎨⎪⎪⎩
· · · · ·
· · · · ·
· 6 7 · 4
∗ 4 ∗ · ·

⎫⎪⎪⎬⎪⎪⎭
(i,i)−−−→

⎧⎪⎪⎨⎪⎪⎩
· · 6 ·
· · · ·
· 6 7 ·
∗ 4 ∗ ·

⎫⎪⎪⎬⎪⎪⎭ = V as T =

⎧⎪⎪⎨⎪⎪⎩
· · · ·
· · · ·
· 4 7 ·
∗ 4 ∗ ·

⎫⎪⎪⎬⎪⎪⎭ .

(D3) If the entries Uin and Uii have the same parity and the tableau T is increasing, 
then there is an edge U

(i,i)−−−→ V where V is formed from T by adding an outer box 
in column i + 1 with value Uii, as in the following picture:

U =

⎧⎨⎩
· · · · ·
· · · · ·
· 6 7 · 4
∗ 3 ∗ · ·

⎫⎬⎭ (i,i)−−−→

⎧⎨⎩
· · 6 ·
· · · ·
· 4 7 ·
∗ 3 ∗ ·

⎫⎬⎭ = V as T =

⎧⎨⎩
· · · ·
· · · ·
· 4 7 ·
∗ 3 ∗ ·

⎫⎬⎭ .
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(D4) If the entries Uin and Uii have different parities, then there is an edge U
(i,i)−−−→ V

where V is the tableau formed from U by moving box (i, n) to (m, i + 1) and 
changing its value to Uii + 1, as in the following picture:

U =

⎧⎨⎩
· · · · ·
· · · · ·
· 4 6 · 3
∗ ∗ ∗ · ·

⎫⎬⎭ (i,i)−−−→

⎧⎨⎩
· · 5 ·
· · · ·
· 4 6 ·
∗ ∗ ∗ ·

⎫⎬⎭ = V.

For the last family of edges, continue to suppose U is a non-terminal shifted insertion 
state that has m − 2 rows and n − 2 columns when its outer box is removed, but now 
assume that this outer box is (m, j). If Umj is maximal in its column and i ∈ P is 
minimal with (i, j) /∈ U , then the unique outgoing edge from U is as follows:

(C1) If moving the outer box of U to position (i, j) yields an increasing shifted tableau 

V , then there is an edge U
(i,j)−−−→ V .

(C2) If moving the outer box of U to position (i, j) does not yield an increasing shifted 

tableau, then there is an edge U
(i,j)−−−→ V where V is formed from U by removing 

the outer box (m, j).

Finally, suppose there exists a minimal index x ∈ P with (x, j) ∈ U and Umj < Uxj . For 
this case, define T to be the tableau formed from U by replacing the value in box (x, j)
by Umj and then removing the outer box (m, j).

(C3) If the tableau T is not increasing, then there is an edge U
(i,j)−−−→ V where V is 

formed from U by moving box (m, j) to (m, j + 1) and changing its value to Uxj, 
as in the following picture:

U =

⎧⎪⎪⎨⎪⎪⎩
· · 4 · ·
· · · · ·
· 4 6 · ·
∗ ∗ 3 ∗ ·

⎫⎪⎪⎬⎪⎪⎭
(x,j)−−−→

⎧⎪⎪⎨⎪⎪⎩
· · · 6 ·
· · · · ·
· 4 6 · ·
∗ ∗ 3 ∗ ·

⎫⎪⎪⎬⎪⎪⎭ = V as T =

⎧⎪⎪⎨⎪⎪⎩
· · · · ·
· · · · ·
· 4 4 · ·
∗ ∗ 3 ∗ ·

⎫⎪⎪⎬⎪⎪⎭ .

Here and in the next case, the circled entry indicates the location of box (x, j).
(C4) If the tableau T is increasing, then there is an edge U

(i,j)−−−→ V where V is formed 
from T by adding an outer box in column j + 1 with value Uxj , as in the following 
picture:

U =

⎧⎪⎪⎨⎪⎪⎩
· · 5 · ·
· · · · ·
· 4 6 ∗ ·
∗ ∗ 4 ∗ ·

⎫⎪⎪⎬⎪⎪⎭
(x,j)−−−→

⎧⎪⎪⎨⎪⎪⎩
· · · 6 ·
· · · · ·
· 4 5 ∗ ·
∗ ∗ 4 ∗ ·

⎫⎪⎪⎬⎪⎪⎭ = V as T =

⎧⎪⎪⎨⎪⎪⎩
· · · · ·
· · · · ·
· 4 5 ∗ ·
∗ ∗ 4 ∗ ·

⎫⎪⎪⎬⎪⎪⎭ .

This completes our definition of the forward transition graph.
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We refer to edges of types (R1)-(R4), (D1)-(D4), and (C1)-(C4), respectively, as row 
transitions, diagonal transitions, and column transitions between shifted insertion states. 
When the position labeling an edge is unimportant, we simply write that U → V is 
forward transition.

A unique path leads from any shifted insertion state to a terminal state in the forward 
transition graph. If a shifted insertion state with its outer box removed has m − 2 rows 
and n − 2 columns, then this path consists of at most max{m, n} − 1 edges, so the 
following is well-defined:

Definition 3.3. Suppose T is an increasing shifted tableau and a ∈ P . Write T ⊕ a for 
the (initial) shifted insertion state formed by adding a to the second unoccupied box in 
the first row of T . If the maximal directed path from T ⊕ a to a terminal state in the 
forward transition graph is

T ⊕ a = U0
(i1,j1)−−−−→ U1

(i2,j2)−−−−→ U2
(i3,j3)−−−−→ · · · (il,jl)−−−−→ Ul (3.1)

then we define T
Sp←−− a to be the increasing shifted tableau Ul and call the sequence of 

positions (i1, j1), (i2, j2), . . . , (il, jl) the bumping path of inserting a into T .

We refer to the operation transforming (T, a) to T
Sp←−− a as symplectic Hecke insertion. 

With slight abuse of notation, we sometimes refer to (i1, j1), (i2, j2), . . . , (il, jl) as the 

“bumping path of T Sp←−− a” and to the sequence of tableaux (3.1) as the “insertion path 

of T Sp←−− a.”

Example 3.4. We have

6
4 5

Sp←−− 2 = 6
2 4 5 and 4

2 3 5
Sp←−− 2 = 4

2 3 5

since the corresponding insertion paths in the forward transition graph are⎧⎨⎩
· · · · ·
· · · · ·
· 6 · · ·
4 5 · 2 ·

⎫⎬⎭ (1,1)−−−→
D3

⎧⎨⎩
· 4 · · ·
· · · · ·
· 6 · · ·
2 5 · · ·

⎫⎬⎭ (1,2)−−−→
C4

⎧⎨⎩
· · 5 · ·
· · · · ·
· 6 · · ·
2 4 · · ·

⎫⎬⎭ (1,3)−−−→
C1

⎧⎨⎩
· · · · ·
· · · · ·
· 6 · · ·
2 4 5 · ·

⎫⎬⎭ ,

⎧⎨⎩
· · · · ·
· · · · ·
· 4 · · ·
2 3 5 · 2

⎫⎬⎭ (1,2)−−−→
R3

⎧⎨⎩
· · · · ·
· · · · ·
· 4 · · 3
2 3 5 · ·

⎫⎬⎭ (2,2)−−−→
D4

⎧⎨⎩
· · 5 · ·
· · · · ·
· 4 · · ·
2 3 5 · ·

⎫⎬⎭ (2,3)−−−→
C2

⎧⎨⎩
· · · · ·
· · · · ·
· 4 · · ·
2 3 5 · ·

⎫⎬⎭ .

3.2. Symplectic K-Knuth equivalence

Recall the definition of K∼ from before Lemma 2.7. Define K-Knuth equivalence to be 

the strongest congruence 
K≈ with cab 

K≈ acb and bca 
K≈ bac and aba 

K≈ bab and a 
K≈ aa for 

all positive integers a, b, c ∈ P with a < b < c.
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We have symplectic analogues of these relations. Say that two words are connected 
by a symplectic Coxeter-Knuth move if one word is obtained from the other in one of 
these ways:

• By interchanging the first two letters when these have the same parity.
• If the first two letters are a(a − 1) for some a ≥ 2, by changing these letters to 

a(a + 1).

Write 
Sp∼ (respectively, 

Sp≈) for the strongest equivalence relation that has v Sp∼ w (re-
spectively, v

Sp≈ w) whenever v and w are words that are connected by a symplectic 

Coxeter-Knuth move, or that satisfy v K∼ w (respectively, v K≈ w). We call these relations 
symplectic Coxeter-Knuth equivalence and symplectic K-Knuth equivalence. For example, 
21 

K≈ 211 
Sp∼ 231 K∼ 213.

The object of this section is to prove that if T is an increasing shifted tableau 
and a ∈ P is a positive integer such that row(T )a is a symplectic Hecke word, then 

row(T )a 
Sp≈ row(T Sp←−− a). This will require several lemmas involving the following tech-

nical condition:

Definition 3.5. Let T be a shifted insertion state with outer box (i, j). Assume T with its 
outer box removed has m −2 rows and n −2 columns, and set Txy := ∞ for all positions 
(x, y) /∈ T . When j = n, we say that T is weakly admissible if the following condition 
holds:

• Either i = 1 or there exists a column x ≥ i with Ti−1,x ≤ Tin < Tix.

When i = m, we say that T is weakly admissible if the following condition holds:

• Either Tmj = Tj−1,j or there exists a row x < j with Tx,j−1 ≤ Tmj < Txj .

Finally, we also say that any terminal shifted insertion state is weakly admissible.

Example 3.6. All of the shifted insertion states in Example 3.2 are weakly admissible. 
The following states are not weakly admissible:

· · · · ·
· · · · ·
· 4 · · 5
2 3 6 · ·

· · · ·
· · · ·
· 5 · 3
2 4 · ·

· · · ·
· 4 · ·
· · · ·
2 3 · ·

2 · · ·
· · · ·
· 5 · ·
3 4 · ·

· 4 · ·
· · · ·
· 5 · ·
2 3 · ·

· · 2 ·
· · · ·
· 4 · ·
2 3 · ·

Any initial insertion state is weakly admissible. A weakly admissible insertion state 
cannot have its outer box in the first column. This property naturally lends itself to 
inductive arguments.
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Proposition 3.7. If U → V is an edge in the forward transition graph then V is weakly 
admissible.

Proof. This is easy to check directly from the definition of the forward transition 
graph. �

Our first two lemmas relate symplectic K-Knuth equivalence to row and column 
transitions.

Lemma 3.8. Suppose U → V is a row transition between weakly admissible shifted inser-
tion states. Then row(U) K≈ row(V ). If row(U) is reduced then row(U) K∼ row(V ).

Proof. If U → V is of type (R1) then row(U) = row(V ), and if U → V is of type (R4) 
then it is easy to check that row(U) K∼ row(V ).

Suppose the outer box of U occurs in the first row and this row has the form

c1 c2 · · · cp · b

where c1 < c2 < · · · < cp and p ≥ 0. If U → V is of type (R2), then we must have 

cp = b, so row(U) is not reduced and row(U) K≈ row(V ). If U → V is of type (R3), then 

ci = b < ci+1 for a unique index i ∈ [p − 1], in which case row(U) K∼ row(V ).
Next suppose the outer box of U is in row k > 1 and rows k − 1 and k of U have the 

form

· c1 c2 · · · ci · · · cp · · · b

a0 a1 a2 · · · ai · · · ap · · · aq · ·

where 0 ≤ p < q and a0 < a1 < · · · < aq and c1 < c2 < · · · < cp and ai < ci for all 
i ∈ [p]. If p = 0 then q > 0 and a1 
= b since U is weakly admissible, in which case the 
edge U → V is necessarily of type (R1).

Suppose U → V is of type (R2) so that p > 0 and cp ≤ b. Since U is weakly 
admissible, we must have ap+1 ≤ b. If cp = b then row(U) is not reduced and we again 

have row(U) K≈ row(V ). Assume cp < b. Then ap+1 = b since otherwise moving b to the 
column adjacent to cp would produce an increasing tableau. In this case row(U) is not 
reduced since it contains the consecutive subword ba0a1 · · · apb where a0 < a1 < · · · <
ap < cp < b. We conclude that U → V cannot be of type (R2) if row(U) is a reduced 

word. To show that row(U) K≈ row(V ) in this case, it suffices to check that we have 

cpba0a1 · · · apb 
K≈ cpa0a1 · · · apb, or equivalently that

(p + 1)(p + 2)123 · · · p(p + 2) K≈ (p + 1)123 · · · p(p + 2) (3.2)
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for any integer p ≥ 2. Proving this is an instructive exercise; in brief, one should move 
p +2 all the way to the right, then apply a braid relation, then move p +1 all the way to 
right, then apply another braid relation, then use p + 1 as a witness to commute p and 
p + 2, then combine the two final letters (which are both p + 2), and then finally move 

p + 1 back to the start of the word. We conclude that row(U) K≈ row(V ).
Finally suppose U → V is of type (R3). Then p ≥ 2 since there exists a minimal index 

i ∈ [p − 1] with ci ≤ b < ci+1. If ci = b then we have row(U) K∼ row(V ) as before, so 
assume ci < b < ci+1. Since replacing ci+1 by b does not produce an increasing tableau, 
we must have b ≤ ai+1. Since U is weakly admissible, b = ai+1 so row(U) is again not 
reduced as it contains the consecutive subword ba0a1 · · · aib where a0 < a1 < · · · < ai <

ci < b. We conclude that if row(U) is reduced then row(U) K∼ row(V ). To show that 
row(U) K≈ row(V ), we must check that

c1c2 · · · cpba0a1 · · · aib
K≈ ci+1c1c2 · · · cpa0a1 · · · aib. (3.3)

To prove this, let w = ci+2ci+3 · · · cp. We first observe that cici+1wb 
K∼ cici+1bw

K≈
cicici+1bw

K∼ cici+1cibw
K∼ ci+1cici+1bw

K∼ ci+1cici+1wb 
K∼ cici+1ciwb 

K∼ cici+1wcib. 
The identity (3.2) implies that ciba0a1 · · · aib 

K≈ cia0a1 · · · aib, and it is easy to check 

that cici+1wci
K∼ cici+1ciw

K∼ ci+1cici+1w = ci+1cici+1 · · · cp and c1c2 · · · ci−1ci+1ci
K∼

ci+1c1c1 · · · ci. Combining these equivalences gives (3.3), so row(U) K≈ row(V ) as desired. 
This completes the proof of the lemma. �
Lemma 3.9. Suppose U → V is a column transition between weakly admissible shifted 

insertion states. Then col(U) K≈ col(V ). If col(U) is reduced then col(U) K∼ col(V ).

Proof. Suppose that U with its outer box removed has m − 2 rows and n − 2 columns, 
and that the outer box is (m, j). If there exists a row x with Ux,j−1 ≤ Umj < Uxj then 
the result follows by transposing the proof of Lemma 3.8; we omit the details. Assume 
instead that Umj = Uj−1,j . If (j, j) /∈ U then col(U) is not reduced and U → V is of 
type (C2), so col(U) K≈ col(V ). If (j, j) ∈ U then U → V is of type (C3), in which case 

col(U) K∼ col(V ). �
We need a more intricate lemma to handle diagonal transitions.

Lemma 3.10. Suppose U → V is a diagonal transition between weakly admissible shifted 
insertion states. Assume (i, n) is the outer box of U , so that (i, i) ∈ U .

(a) If U → V is of type (D1) and Uii ≡ Ui,i+1 (mod 2), then row(U) 
Sp≈ col(V ).

(b) If U → V is of type (D2), (D3), or (D4), all entries on the main diagonal of 
U have the same parity, and either Uin ≡ Uii (mod 2) or Uin = Uii − 1, then 

row(U) Sp∼ col(V ).
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In particular, if row(U) is a symplectic Hecke word then row(U) 
Sp≈ col(V ), and if row(U)

is a symplectic Hecke word that is also a reduced word then row(U) Sp∼ col(V ).

Proof. First assume that U → V is of type (D1) and Uii ≡ Ui,i+1 (mod 2). Let c1 = Uii, 
c2 = Ui,i+1, and b = Uin. Then c1 ≤ b < c2 and row i + 1 of U is empty, so V is formed 
from U by removing box (i, n) and adding c2 to an outer box in column i + 1, as in the 
following picture:

U =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

· · · · · ·
· · · · · ·
· c1 c2 · · · · b

∗ ∗ ∗ · · · · ·

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(i,i+1)−−−−→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

· · c2 · · ·
· · · · · ·
· c1 c2 · · · · ·
∗ ∗ ∗ · · · · ·

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= V.

If i = 1 then we must have c1 = b and it follows that row(U) K∼ row(V ). If i > 1 then 

the last paragraph of the proof of Lemma 3.8 implies that row(U) K≈ row(V ), and that 
if row(U) is reduced then row(U) K∼ row(V ).

The word row(V ) begins with c2c1c2. Suppose c1 and c2 have the same parity. This 
must hold if row(U) is a symplectic Hecke word, since then c1 and c2 must both be even 
by Theorem 2.4. In any case, row(V ) is then unreduced so row(U) is also unreduced. 
Let T be the increasing shifted tableau formed by removing the outer box of V . As 
row(V ) 

Sp≈ row(T ) and col(V ) K≈ col(T ) and row(T ) K∼ col(T ) by Corollary 2.10, we have 

row(U) K≈ row(V ) 
Sp≈ row(T ) K∼ col(T ) K≈ col(V ). This proves part (a).

For part (b), assume that U → V is of type (D2), (D3), or (D4) and that U has m −2
rows. Let a = Uin and bj = Ujj for j ∈ [m − 2], so that a < bi and b1 < b2 < · · · < bm−2. 
Suppose b1, b2, . . . , bm−2 all have the same parity. Define Ũ to be the tableau formed 
from U by doubling the row and column indices of all boxes and then moving the outer 
box of U to position (2i − 1, 2i − 1). For example, writing b := bi, we might have

U =

⎧⎪⎨⎪⎩
· · ∗ · ·
· b ∗ · a

∗ ∗ ∗ · ·

⎫⎪⎬⎪⎭ and Ũ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · · · · ∗
· · · · · ·
· · · b · ∗
· · a · · ·
· ∗ · ∗ · ∗
· · · · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.4)

Let T be the increasing shifted tableau formed from U by omitting the outer box and the 
main diagonal and then translating all boxes left one column. Clearly row(U) = row(Ũ), 
and we have dNE(T ) K∼ dSW(T ) by Corollary 2.10. There are two cases to consider.

First suppose a ≡ bi (mod 2) so that U → V is of type (D2) or (D3). If (i − 1, i) ∈ U

then Ui−1,i ≤ a, so the tableau Ũ is increasing, row-diagonal-closed, and column-
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diagonal-closed. Therefore row(U) = row(Ũ) K∼ dSW(Ũ) and col(Ũ) K∼ dNE(Ũ) by Lem-
mas 2.8 and 2.9, and it is easy to see that col(V ) K∼ col(Ũ). To show that row(U) Sp∼ col(V ), 
it suffices to check that dNE(Ũ) Sp∼ dSW(Ũ). Let δ = b1 · · · bi−1abi · · · bm−2 be the 
word formed by reading the main diagonal of Ũ and let δ′ be its reverse, so that 
dNE(Ũ) = δ · dNE(T ) and dSW(Ũ) = δ′ · dSW(T ). Since dNE(T ) K∼ dSW(T ), it is enough 

to show that δ Sp∼ δ′. This is straightforward since δ is strictly increasing with all letters 
of the same parity.

Next suppose a = bi − 1 so that U → V is of type (D4). Define Ṽ to be the tableau 
formed from Ũ by moving box (2i −1, 2i −1) to (2i +1, 2i +1) and adding 2 to its value. 
For example, if U is as in our earlier picture (3.4) where b = bi and ã = a + 2 = b + 1, 
then we would have

Ṽ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · · · · ∗
· · · · ã ·
· · · b · ∗
· · · · · ·
· ∗ · ∗ · ∗
· · · · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Observe that row(U) = row(Ũ) and col(V ) = col(Ṽ ). Both Ũ and Ṽ are increas-
ing, row-diagonal-closed, and column-diagonal-closed, so Lemmas 2.8 and 2.9 imply 

that row(Ũ) K∼ dSW(Ũ) and col(Ṽ ) K∼ dNE(Ṽ ). To show that row(U) Sp∼ col(V ), it 
suffices to check that dNE(Ṽ ) Sp∼ dSW(Ũ). Let δ = b1 · · · bi(bi + 1)bi+1 · · · bm−2 and 
δ′ = bm−2 · · · bi(bi−1)bi−1 · · · b1, so that dNE(Ṽ ) = δ ·dNE(T ) and dSW(Ũ) = δ′ ·dSW(T ). It 
is enough to show that δ Sp∼ δ′ since dNE(T ) K∼ dSW(T ), and this is again straightforward. 
In either case row(U) Sp∼ col(V ), which proves part (b).

To prove the last assertion, assume that row(U) is a symplectic Hecke word. We 
have already seen that if U → V is of type (D1), then row(U) cannot be reduced but 
row(U) 

Sp≈ col(V ). Assume that U → V is of type (D2), (D3), or (D4). In view of part (b), 
it is enough to show that the entries on main diagonal of U are all even and that either 
Uin is even or Uin = Uii − 1. Define a = Uin and bj = Ujj for j ∈ [m − 2], so that a < bi
and b1 < b2 < · · · < bm−2. Since every letter preceding bj in row(U) is at least bj +2, and 
since every letter preceding a is at least bi, Theorem 2.4 implies that bi, bi+1, . . . , bm−2

are all even and that if a is odd then a = bi − 1. If i > 1 then bi−1 < Ui−1,i ≤ a since U
is weakly admissible, so it follows similarly that b1, b2, . . . , bi−2 are also even. The last 
thing to check is that bi−1 is even when i > 1. If bi−1 < a − 1 then this follows as before, 
and if bi−1 = a − 1 then we must have Ui−1,i = a, in which case row(U) has the form 
va(a −1)aw for some words v and w, where the smallest letter of v is at least a +1. Such 
a word has row(U) =Br (a − 1)va(a − 1)w so Theorem 2.4 implies that bi−1 = a − 1 is 
also even. �
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We arrive at the main theorem of this section.

Theorem 3.11. Suppose T is an increasing shifted tableau and a ∈ P is such that row(T )a
is a symplectic Hecke word. The following properties then hold:

(a) The tableau T
Sp←−− a is increasing and shifted with row(T Sp←−− a) 

Sp≈ row(T )a.
(b) If row(T )a is an FPF-involution word then row(T Sp←−− a) Sp∼ row(T )a.

Proof. Let T⊕a = U0 → U1 → · · · → Ul = T
Sp←−− a be the insertion path of T Sp←−− a. The 

initial state T⊕a is weakly admissible, so each Ui is weakly admissible by Proposition 3.7. 
The terminal state T

Sp←−− a is increasing and shifted by construction. Lemmas 3.8, 
3.9, and 3.10 imply that row(T )a = row(T ⊕ a) 

Sp≈ col(T Sp←−− a) and that row(T )a 
Sp∼

col(T Sp←−− a) if row(T )a is an FPF-involution word. Since col(T Sp←−− a) K∼ row(T Sp←−− a)
by Corollary 2.10, the theorem follows. �
3.3. Inverse transitions

From any word w = w1 · · ·wn, one may form a tableau (· · · ((∅ 
Sp←−− w1) 

Sp←−− w2) 
Sp←−−

· · · ) Sp←−− wn. If w is a symplectic Hecke word, then only certain states arise when per-
forming this sequence of insertions. The results in this section will show that the following 
technical conditions precisely characterize such insertion states.

Definition 3.12. Let T be a shifted insertion state with outer box (i, j). Assume T with 
box (i, j) removed has m − 2 rows and n − 2 columns. When j = n, we say that T is 
admissible if:

• T is weakly admissible, i.e., i = 1 or Ti−1,x ≤ Tin < Tix for some x ≥ i.
• The row reading word of T is a symplectic Hecke word.
• If Tin = Ti−1,i then (i, i) ∈ T .

When i = m, we say that T is admissible if:

• T is weakly admissible, i.e., Tmj = Tj−1,j or Tx,j−1 ≤ Tmj < Txj for some x < j.
• The column reading word of T is a symplectic Hecke word.
• If Tmj = Tj−1,j then (j, j) /∈ T or Tmj is odd, and if Tmj = Tx,j−1 then x > 1.

In addition, we say that a terminal shifted insertion state is admissible if its row (equiv-
alently, column) reading word is a symplectic Hecke word.

The following propositions identify two important consequences of this definition.
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Proposition 3.13. Suppose T is an admissible shifted insertion state. Assume that T has 
r rows with its outer box removed (if one exists). The diagonal entries Tii for i ∈ [r] are 
then all even.

Proof. If T has no outer box, then T is an increasing shifted tableau and row(T ) is a 
symplectic Hecke word. In this case, it is easy to see that row(T ) is equivalent under 
=Br to a word beginning with Tii for each i ∈ [r]. All of these entries must be even by 
Theorem 2.4.

Assume T has an outer box. If this box is in the last column, then the result follows by 
the argument in the last paragraph of the proof of Lemma 3.10. Let m = r+2 and suppose 
instead that the outer box is (m, j) for some column j. Since T is weakly admissible 
and since removing the outer box leaves an increasing tableau, it follows that col(T ) is 
equivalent under =Br to a word beginning with Tii for each i ∈ [r] − {j}. Each of these 
numbers must be even by Theorem 2.4. Assume (j, j) ∈ T so that Tmj < Tjj . If Tmj <

Tjj − 1 then the argument above shows that Tjj is even. Assume a := Tmj = Tjj − 1. 
Since T is weakly admissible, this holds only if Tmj = Tj−1,j , but then col(T ) has the 
form va(a +1)aw where every letter in v is at most a −1, so col(T ) =Br v(a +1)va(a +1)w
and it follows by Theorem 2.4 that Tjj = a + 1 is again even. �

Suppose T is a shifted insertion state that occupies m − 2 rows with its outer box 
removed. Set word(T ) := col(T ) if the outer box of T is in column m, and set word(T ) :=
row(T ) otherwise.

Proposition 3.14. Suppose U → V is a forward transition between shifted insertion states. 
Assume U is admissible. Then word(U) 

Sp≈ word(V ) and V is admissible.

Proof. Proposition 3.7 implies that V is weakly admissible. In view of Proposition 3.13, 
it follows from Lemmas 3.8, 3.9, and 3.10 that word(U) 

Sp≈ word(V ). This is enough to 
conclude that if V is terminal then V is admissible. Assume V is not terminal and that 
U and V with their outer boxes removed have m − 2 rows and n − 2 columns. It remains 
to check the minor technical conditions in Definition 3.12.

Suppose U → V is a row transition and the outer box of V is (i, n). The only way 
we can have Vin = Vi−1,i is if U → V is of type (R3), in which case (i, i) ∈ V , so V is 
admissible.

Suppose next that U → V is a diagonal transition and the outer box of V is (m, j), 
so that the outer box of U is (j − 1, n). Since a transition of type (D2) would require us 
to have j − 1 ≥ 2, we must have Vmj 
= V1,j−1. The only way we can have Vmj = Vj−1,j

is if U → V is of type (D1) or (D4), and in the first case (j, j) /∈ V , while in the second 
Vmj = Vj−1,j−1 + 1 must be odd. We conclude that V is admissible.

Finally, if U → V is a column transition and the outer box of V is (m, j), then there 
is no way we can have Vmj = V1,j−1 or Vmj = Vj−1,j , so V is again admissible. �
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Suppose T is a shifted tableau. A position (i, j) ∈ P × P is an outer corner of T if 
(i, j) /∈ T , either i = j or (i, j − 1) ∈ T , and either i = 1 or (i − 1, j) ∈ T . A position 
(i, j) ∈ P × P is an inner corner of T if (i, j) ∈ T but (i, j + 1) /∈ T and (i + 1, j) /∈ T . 
The inner (outer) corners are exactly the positions that can be removed from (added to) 
T while retaining a shifted tableau.

Lemma 3.15. Suppose U
(i,j)−−−→ V is a forward transition between shifted insertion states 

where U is admissible and V is terminal. Then U → V is a row or column transition 
and (i, j) is an inner or outer corner of V . In addition, the following properties hold:

(a) If U → V is a row transition and (i, j) is an outer corner of V , then i < j.
(b) If U → V is a column transition and (i, j) is an inner corner of V , then i < j.
(c) If U → V is a column transition and (i, j) is an outer corner of V , then i > 1.

Proof. The edge U → V cannot be a diagonal transition when V is terminal. Suppose 
U → V is a row transition. Since V is terminal, this transition is either of type (R1) or 
(R2). In the first case, (i, j) is an inner corner of V by definition, while in the second 
case, (i, j) must be an outer corner of V since U is weakly admissible. The only way it 
can happen that U → V is of type (R2) and i = j is if the value of the outer box of U
is equal to Ui−1,i and (i, i) /∈ U , but then U would not be admissible.

Suppose U → V is a column transition, necessarily of type (C1) or (C2). It fol-
lows as in the previous paragraph that (i, j) is an inner corner if U → V is of type 
(C1) and an outer corner of V if U → V is of type (C2). The only way it can hap-
pen that U → V is of type (C2) and i = 1 is if the value in the outer box of U is 
U1,j−1, but then U would not be admissible. Similarly, the only way it can happen 
that U → V is of type (C1) and i = j is if the outer box of U is the largest value in 
its column and all preceding columns, but then U would not even be weakly admissi-
ble. �

By Proposition 3.14, the family of admissible shifted insertion states spans a subgraph 
of the forward transition graph. We introduce a second directed graph on these states, 
which we call the inverse transition graph. We indicate that an edge goes from a state V
to U in this new graph by writing V � U , and refer to such edges as inverse transitions. It 
will turn out that the inverse transition graph is exactly the graph obtained by reversing 
all edges between admissible states in the forward transition graph. This will not be 
obvious from the definitions, however.

For the duration of this section, let V be an admissible shifted insertion state. If 
V is initial then it has no outgoing edges in the inverse transition graph. When V is 
not initial, we define the possible edges V � U in the inverse transition graph by a 
series of cases corresponding to the row, diagonal, and column transitions in the forward 
transition graph.
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First suppose V is a terminal state, i.e., an increasing shifted tableau such that row(V )
is a symplectic Hecke word. In the inverse transition graph, V has no incoming edges 
but multiple outgoing edges, of the following types:

(iR1) For each inner corner (i, j) of V , there is an edge V � U where U is formed from 
V by moving box (i, j) to an outer position in row i. It is clear that U is also 

admissible and that U (i,j)−−−→ V is a row transition of type (R1).
(iR2) For each outer corner (i, j) of V with i < j, there is an edge V � U where U

is formed from V by adding an outer box in row i whose value is whichever of 
Vi−1,j or Vi,j−1 is defined and larger, as in the following picture where box (i, j)
is circled:

V =

⎧⎨⎩ · · ∗ ∗ · · ·
· ∗ ∗ 2 · · ·
∗ ∗ ∗ ∗ 6 · ·

⎫⎬⎭ �
⎧⎨⎩ · · ∗ ∗ · · ·

· ∗ ∗ 2 · · 6
∗ ∗ ∗ ∗ 6 · ·

⎫⎬⎭ = U.

In this case U
(i,j)−−−→ V is a row transition of type (R2), so we have row(U) K≈

row(V ) by Lemma 3.8. It follows that U is also admissible.
(iC1) For each inner corner (i, j) of V with i < j, there is an edge V � U where U is 

formed from V by moving box (i, j) to an outer position in column j. It is clear 
that U is admissible and that U (i,j)−−−→ V is a column transition of type (C1).

(iC2) For each outer corner (i, j) of V with i > 1, there is an edge V � U where U is 
formed from V by adding an outer box in column j whose value is whichever of 
Vi−1,j or Vi,j−1 is defined and larger, as in the following picture:

V =

⎧⎪⎪⎨⎪⎪⎩
· · · · · ·
· · · · · ·
· ∗ 5 · · ·
∗ ∗ ∗ 3 ∗ ∗

⎫⎪⎪⎬⎪⎪⎭ �
⎧⎪⎪⎨⎪⎪⎩

· · · 5 · ·
· · · · · ·
· ∗ 5 · · ·
∗ ∗ ∗ 3 ∗ ∗

⎫⎪⎪⎬⎪⎪⎭ = U.

In this case U
(i,j)−−−→ V is a column transition of type (C2), so we have col(U) K≈

col(V ) by Lemma 3.9. Since i > 1, it follows that U is also admissible.

To distinguish between these edges, we write V
(i,j)�
row

U and V
(i,j)�
col

U to indicate the 

inverse transitions of type (iR1)-(iR2) and (iC1)-(iC2), respectively, corresponding to an 
inner or outer corner (i, j) of the terminal state V .

From this point on, we assume that the admissible state V is neither terminal nor 
initial. All such states will have a unique outgoing edge in the inverse transition graph. 
Suppose V with its outer box removed has m − 2 rows and n − 2 columns.

First assume that the outer box of V is (i, n) where i > 1. Since V is weakly admissible, 
there exists a maximal x ≥ i with Vi−1,x ≤ Vin, and it must hold that Vin < Vix and 
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Vin < Vi−1,x+1. The unique inverse transition starting at V then has one of the following 
types:

(iR3) If Vi−1,x = Vin, then there is an edge V � U where U is formed from V by moving 
box (i, n) to (i −1, n) and changing its value to be whichever of Vi−1,x−1 or Vi−2,x
is defined and larger, as in the following picture where box (i − 1, x) is circled:

V =

⎧⎪⎪⎨⎪⎪⎩
· · · · · ·
· · ∗ ∗ · 4
· 2 4 5 · ·
∗ ∗ 3 ∗ · ·

⎫⎪⎪⎬⎪⎪⎭ �
⎧⎪⎪⎨⎪⎪⎩

· · · · · ·
· · ∗ ∗ · ·
· 2 4 5 · 3
∗ ∗ 3 ∗ · ·

⎫⎪⎪⎬⎪⎪⎭ = U.

Here and in the next case, the circled entry indicates the location of box (i −1, x). 
Since V is admissible, we must have (i, i) ∈ V , so U

(i−1,x)−−−−−→ V is a row transition 
of type (R3). It follows from Lemma 3.8 that U is also admissible.

(iR4) If Vi−1,x < Vin, then there is an edge V � U where U is formed from V by moving 
box (i −1, x) to (i −1, n) and then box (i, n) to (i −1, x), as in the following picture:

V =

⎧⎪⎪⎨⎪⎪⎩
· · · · · ·
· · ∗ ∗ · 4
· 2 3 5 · ·
∗ ∗ 2 ∗ · ·

⎫⎪⎪⎬⎪⎪⎭ �
⎧⎪⎪⎨⎪⎪⎩

· · · · · ·
· · ∗ ∗ · ·
· 2 4 5 · 3
∗ ∗ 2 ∗ · ·

⎫⎪⎪⎬⎪⎪⎭ = U.

In this case U
(i−1,x)−−−−−→ V is a row transition of type (R4), so it follows by 

Lemma 3.8 that U is also admissible.

Next, assume the outer box of V is (m, j) and Vj−1,j−1 ≤ Vmj . Since V is weakly 
admissible, we must have Vmj ≤ Vj−1,j . The unique edge V � U is then of one of the 
following types:

(iD1) Suppose Vj−1,j−1 < Vmj = Vj−1,j and Vmj is even, so that (j, j) /∈ V . There is 
then an edge V � U where U is formed from V by moving box (m, j) to (j−1, n)
and changing its value to whichever of Vj−1,j−1 or Vj−2,j is defined and larger, as 
in the following picture:

V =

⎧⎪⎪⎨⎪⎪⎩
· · 4 · ·
· · · · ·
· 2 4 · ·
∗ ∗ 3 · ·

⎫⎪⎪⎬⎪⎪⎭ �
⎧⎪⎪⎨⎪⎪⎩

· · · · ·
· · · · ·
· 2 4 · 2
∗ ∗ 3 · ·

⎫⎪⎪⎬⎪⎪⎭ = U.

Since U
(j−1,j)−−−−−→ V is a diagonal transition of type (D1) and Uj−1,j−1 = Vj−1,j−1

and Uj−1,j = Vj−1,j are both even (by Proposition 3.13), Lemma 3.10(a) implies 
that U is also admissible.



E. Marberg / Journal of Combinatorial Theory, Series A 173 (2020) 105216 27
(iD2) Suppose Vj−1,j−1 = Vmj , so that j > 2 since V is admissible. If Vj−2,j−1 is even, 
then there is an edge V � U where U is formed from V by moving box (m, j) to 
(j − 1, n) and changing its value to Vj−2,j−1, as in the following picture:

V =

⎧⎪⎪⎨⎪⎪⎩
· · 4 · ·
· · · · ·
· 4 5 · ·
∗ 2 ∗ · ·

⎫⎪⎪⎬⎪⎪⎭ �
⎧⎪⎪⎨⎪⎪⎩

· · · · ·
· · · · ·
· 4 5 · 2
∗ 2 ∗ · ·

⎫⎪⎪⎬⎪⎪⎭ = U.

In this case, since Vj−1,j−1 is even by Proposition 3.13, U (j−1,j−1)−−−−−−−→ V is a diago-
nal transition of type (D2), so it follows from Lemma 3.10(b) and Proposition 3.13
that U is also admissible.

(iD3) If Vj−1,j−1 < Vmj < Vj−1,j and Vmj is even, then there is an edge V � U where 
U is formed from V by moving box (j− 1, j − 1) to (j− 1, n) and then box (m, j)
to (j − 1, j − 1), e.g.:

V =

⎧⎪⎪⎨⎪⎪⎩
· · 4 · ·
· · · · ·
· 2 5 · ·
∗ ∗ ∗ · ·

⎫⎪⎪⎬⎪⎪⎭ �
⎧⎪⎪⎨⎪⎪⎩

· · · · ·
· · · · ·
· 4 5 · 2
∗ ∗ ∗ · ·

⎫⎪⎪⎬⎪⎪⎭ = U.

In this case, since Vj−1,j−1 is even by Proposition 3.13, U (j−1,j−1)−−−−−−−→ V is a diago-
nal transition of type (D3), so it follows from Lemma 3.10(b) and Proposition 3.13
that U is also admissible.

(iD4) If Vj−1,j−1 < Vmj and Vmj is odd, then there is an edge V � U where U is formed 
from V by moving box (m, j) to (j − 1, n) and changing its value to Vj−1,j−1 − 1, 
as in this picture:

V =

⎧⎪⎪⎨⎪⎪⎩
· · 3 · ·
· · · · ·
· 2 5 · ·
∗ ∗ ∗ · ·

⎫⎪⎪⎬⎪⎪⎭ �
⎧⎪⎪⎨⎪⎪⎩

· · · · ·
· · · · ·
· 2 5 · 1
∗ ∗ ∗ · ·

⎫⎪⎪⎬⎪⎪⎭ = U.

In this case, Vj−1,j−1 is even by Proposition 3.13. By Theorem 2.4, we must 
have Vmj = Vj−1,j−1 + 1 since col(V ) is a symplectic Hecke word. Therefore 

U
(j−1,j−1)−−−−−−−→ V is a diagonal transition of type (D4), so Lemma 3.10(b) and 

Proposition 3.13 imply that U is admissible.
(iC3a) Suppose Vj−1,j−1 = Vmj , so that j > 2 since V is admissible. If Vj−2,j−1 is odd, 

then there is an edge V � U where U is formed from V by moving box (m, j) to 
(m, j − 1) and changing its value to Vj−2,j−1, as in the following picture:
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V =

⎧⎪⎪⎨⎪⎪⎩
· · 4 ·
· · · ·
· 4 5 ·
∗ 3 ∗ ∗

⎫⎪⎪⎬⎪⎪⎭ �
⎧⎪⎪⎨⎪⎪⎩

· 3 · ·
· · · ·
· 4 5 ·
∗ 3 ∗ ∗

⎫⎪⎪⎬⎪⎪⎭ = U.

In this case U
(j−1,j−1)−−−−−−−→ V is a column transition of type (C3), so Lemma 3.9

implies that col(U) K∼ col(V ). Although Um,j−1 = Uj−2,j−1 and (j − 1, j − 1) ∈ U , 
the number Um,j−1 is odd, so U is also admissible.

Finally, assume the outer box of V is (m, j) and Vmj < Vj−1,j−1. Since V is weakly 
admissible, there exists a maximal row x < j − 1 with Vx,j−1 ≤ Vmj , and it must hold 
that Vmj < Vxj and Vmj < Vx+1,j−1. The unique inverse transition V � U is then of 
one of the following types:

(iC3b) Suppose Vx,j−1 = Vmj , so that x > 1 since V is admissible. There is then an 
edge V � U where U is formed from V by moving box (m, j) to (m, j − 1) and 
changing its value to be whichever of Vx−1,j−1 or Vx,j−2 is defined and larger, as 
in the following picture:

V =

⎧⎪⎪⎨⎪⎪⎩
· · · 3 ·
· · · · ·
· 2 3 4 ·
∗ ∗ 1 ∗ ∗

⎫⎪⎪⎬⎪⎪⎭ �
⎧⎪⎪⎨⎪⎪⎩

· · 2 · ·
· · · · ·
· 2 3 4 ·
∗ ∗ 1 ∗ ∗

⎫⎪⎪⎬⎪⎪⎭ = U.

The circled entry indicates the location of box (x, j−1). In this case U
(x,j−1)−−−−−→ V

is a column transition of type (C3), so it follows from Lemma 3.9 that U is also 
admissible.

(iC4) If Vx,j−1 < Vmj then there is an edge V � U where U is formed from V by 
moving box (x, j − 1) to (m, j − 1) and then box (m, j) to (x, j − 1), as in the 
following picture:

V =

⎧⎪⎪⎨⎪⎪⎩
· · · 4 ·
· · · · ·
· 2 3 5 ·
∗ ∗ 2 ∗ ∗

⎫⎪⎪⎬⎪⎪⎭ �
⎧⎪⎪⎨⎪⎪⎩

· · 3 · ·
· · · · ·
· 2 4 5 ·
∗ ∗ 2 ∗ ∗

⎫⎪⎪⎬⎪⎪⎭ = U.

The circled entry indicates the location of box (x, j−1). In this case U
(x,j−1)−−−−−→ V

is a column transition of type (C4), so it follows from Lemma 3.9 that U is also 
admissible.

This completes our definition of the inverse transition graph.

Example 3.16. The four paths in the inverse transition graph starting at 4 5 are
2 3 4
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4 5
2 3 4

(2,3)�
row

⎧⎪⎪⎨⎪⎪⎩
· · · · ·
· · · · ·
· 4 · · 5
2 3 4 · ·

⎫⎪⎪⎬⎪⎪⎭ �
iR4

⎧⎪⎪⎨⎪⎪⎩
· · · · ·
· · · · ·
· 4 · · ·
2 3 5 · 4

⎫⎪⎪⎬⎪⎪⎭,

4 5
2 3 4

(1,4)�
row

⎧⎪⎪⎨⎪⎪⎩
· · · · ·
· · · · ·
· 4 5 · ·
2 3 4 · 4

⎫⎪⎪⎬⎪⎪⎭,

4 5
2 3 4

(2,3)�
col

⎧⎪⎪⎨⎪⎪⎩
· · 5 · ·
· · · · ·
· 4 · · ·
2 3 4 · ·

⎫⎪⎪⎬⎪⎪⎭ �
iD4

⎧⎪⎪⎨⎪⎪⎩
· · · · ·
· · · · ·
· 4 · · 3
2 3 4 · ·

⎫⎪⎪⎬⎪⎪⎭ �
iR3

⎧⎪⎪⎨⎪⎪⎩
· · · · ·
· · · · ·
· 4 · · ·
2 3 4 · 2

⎫⎪⎪⎬⎪⎪⎭,

4 5
2 3 4

(3,3)�
col

⎧⎪⎪⎨⎪⎪⎩
· · 5 · ·
· · · · ·
· 4 5 · ·
2 3 4 · ·

⎫⎪⎪⎬⎪⎪⎭ �
iD1

⎧⎪⎪⎨⎪⎪⎩
· · · · ·
· · · · ·
· 4 5 · 4
2 3 4 · ·

⎫⎪⎪⎬⎪⎪⎭ �
iR3

⎧⎪⎪⎨⎪⎪⎩
· · · · ·
· · · · ·
· 4 5 · ·
2 3 4 · 3

⎫⎪⎪⎬⎪⎪⎭.

Theorem 3.17. Let U and V be admissible insertion states. Then U → V is a forward 

transition if and only if V � U is an inverse transition. If V is terminal, then U
(i,j)−−−→ V

is a row (respectively, column) transition if and only if V (i,j)�
row

U (respectively, V (i,j)�
col

U) 
is an inverse transition.

Proof. We have already seen that if V � U is an inverse transition then U → V is a 

forward transition. Likewise, if V is terminal and V
(i,j)�
row

U or V (i,j)�
col

U is an inverse 

transition, then U
(i,j)−−−→ V is either a row or column transition, respectively. To show 

the converse of these statements, suppose U → V is a forward transition.
First assume V is not terminal. The edge V � U is then of type (iR3), (iR4), (iD1), 

(iD2), (iD3), (iD4), (iC3a), (iC3b), or (iC4). In each of these cases the required analysis 
is straightforward. In detail, suppose V is as in case (iR3). Adopt the notation from that 
definition. Then U must have outer box (i − 1, n) and all entries of U except the outer 
box must be the same as in V . In this case, we must have Vi−1,x−1 ≤ Ui−1,n and (when 
i > 2) Vi−2,x ≤ Ui−1,n since U is weakly admissible. These inequalities cannot both be 
strict, so U is the unique state with V � U .

A similar argument shows that V � U is an inverse transition if V is as in case (iC3b), 
or if V is as in case (iC3a) and U → V is a column transition. If V is as in case (iC3a) and 
U → V is not a column transition then U → V must be a diagonal transition, but this is 
impossible since (in our notation when defining the inverse transition graph) Uj−1,j−2 =
Vj−1,j−2 is odd (by hypothesis) and Uj−1,j−1 = Vj−1,j−1 is even (by Proposition 3.13) 
and the value in the outer box of U cannot be less than Uj−1,j−2 (since U is weakly 
admissible).

If V is as in case (iR4) or (iC4), then there is only one insertion state U , admissible or 
not, such that U → V is a forward transition. We are left to examine cases (iD1)-(iD4). 
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Cases (iD1) and (iD3) are dual to case (iD4). In all three cases, U → V cannot be a 
row or column transition since U is weakly admissible, and the parity constraints on the 
main diagonal and outer box of V imply that there exists a unique diagonal transition 
U → V . Therefore U must be the admissible state for which V � U is an inverse 
transition. Finally, if V is as in case (iD2), then there are exactly two weakly admissible 
states U such U → V is a forward transition. One of these is the state described in 
case (iD2). The other is formed by moving the outer box of V to position (m, j− 1) and 
changing its value to Vj−2,j−1. Although U → V is a valid column transition in this case, 
the state U is not admissible since Um,j−1 = Uj−2,j−1 is even and (j − 1, j − 1) ∈ U . 
Hence, once again, U must be the unique state for which V � U is an inverse transition.

Finally suppose V is terminal and U
(i,j)−−−→ V is a row transition, so that the outer 

box of U has the form (i, n). If (i, j) is an inner corner of V then obviously U → V is 
of type (R1) and U is the state described in case (iR1). If (i, j) is an outer corner of 
V , then i < j by Lemma 3.15 and U → V is of type (R2). In this case, we must have 
Ui,x−1 ≤ Uin and (when i > 1) Ui−1,x ≤ Uin since U is weakly admissible, but these 
inequalities cannot both be strict, so U is the state described in case (iR2). We conclude 

that V (i,j)�
row

U is an inverse transition. The argument to show that V (i,j)�
col

U is an inverse 

transition when U is admissible and U
(i,j)−−−→ V is a column transition is similar. �

3.4. Insertion tableaux and recording tableaux

We may now define the insertion and recording tableaux of symplectic Hecke insertion.

Definition 3.18. For a word w = w1w2 · · ·wn, let

PSp(w) = (· · · ((∅ Sp←−− w1)
Sp←−− w2)

Sp←−− · · · ) Sp←−− wn.

We call PSp(w) the insertion tableau of w under symplectic Hecke insertion.

By construction, PSp(w) is an increasing shifted tableau with at most �(w) boxes. The 
definition of PSp(w) makes sense for any word but the intended domain is the set of 
symplectic Hecke words.

Example 3.19. We compute some examples of insertion tableaux PSp(w):

PSp(62) = 2 6 , PSp(46) = 4 6 , PSp(67) = 6 7 ,

PSp(6224) = 6
2 4 , PSp(4626) = 2 4 6 , PSp(6752) = 2 6 7 ,

PSp(622453) = 4 6
2 3 5 , PSp(462634) = 4 6

2 3 4 , PSp(675245) = 6 7
2 4 5 .
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As usual, the last box in column j (respectively, row i) of a set-valued tableau T
refers to the position (i, j) where i ∈ P is maximal (respectively, j ∈ P is maximal) with 
(i, j) ∈ T .

Definition 3.20. For a symplectic Hecke word w = w1w2 · · ·wn, we inductively define a 
set-valued tableau QSp(w). Let QSp(∅) = ∅ and assume n > 0. Let (i, j) be the label of 
the last transition in the insertion path of PSp(w1 · · ·wn−1) 

Sp←−− wn. Form QSp(w) from 
QSp(w1 · · ·wn−1) as follows:

(a) If the last transition is of type (R1) then add n to box (i, j).
(b) If the last transition is of type (C1) then add n′ to box (i, j).
(c) If the last transition is of type (R2) then add n to the last box in column j − 1.
(d) If the last transition is of type (C2) then add n′ to the last box in row i − 1.

We call QSp(w) the recording tableau of w under symplectic Hecke insertion.

Lemma 3.15 ensures that QSp(w) is well-defined for any symplectic Hecke word w. By 
construction, QSp(w) is a standard shifted set-valued tableau of length |QSp(w)| = �(w).

Example 3.21. The symplectic Hecke words w of length 4 with PSp(w) = 4
2 3 are 2243, 

2433, 2443, 2423, 4423, 4233, 4243, and 4223. Their recording tableaux are

QSp(2243) =
4

12 3
, QSp(2433) =

34

1 2
, QSp(2443) =

4

1 23
, QSp(2423) =

4

1 23′
,

QSp(4423) =
4

12 3′
, QSp(4233) =

34

1 2′
, QSp(4243) =

4

1 2′3
, QSp(4223) =

4

1 2′3′
.

We also refer to the operation w 	→ (PSp(w), QSp(w)) as symplectic Hecke insertion. 
Before analyzing this map, we note two obvious corollaries of Theorem 3.11:

Corollary 3.22. If w is a symplectic Hecke word then w
Sp≈ row(PSp(w)).

Corollary 3.23. If w is an FPF-involution word then w
Sp∼ row(PSp(w)).

It follows that if v and w are symplectic Hecke words (respectively, FPF-involution 

words) with PSp(v) = PSp(w), then v
Sp≈ w (respectively, v Sp∼ w). Two symplectic Hecke 

words v and w can have v
Sp≈ w and PSp(v) 
= PSp(w), however. For example, we have 

265213 
Sp≈ 265231 but
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PSp(265213) = 6 7
2 3 5 7 and PSp(265231) = 6

2 3 6 7 .

This pathology does not seem to arise for the relation 
Sp∼ restricted to FPF-involution 

words:

Conjecture 3.24. If v and w are FPF-involution words with v
Sp∼ w then PSp(v) = PSp(w).

Remark (Note added in proof). Hiroshima has given a proof of this result in [14].

Fix z ∈ F∞. We describe how to invert the operation w 	→ (PSp(w), QSp(w)) for 
w ∈ HSp(z). Let P be an increasing shifted tableau, let Q be a standard set-valued 
tableau with the same shape as P , and let w be a word such that row(P )w ∈ HSp(z). 
Suppose Q has length n > 0. Then Q contains exactly one of n or n′, and this number 
must appear in an inner corner (i, j). Define V1 to be the unique admissible shifted 
insertion state such that:

• if {n} = Qij then P
(i,j)�
row

V1 is an inverse transition;

• if {n′} = Qij (so that i < j) then P
(i,j)�
col

V1 is an inverse transition;

• if {n} � Qij then P
(r,j+1)�
row

V1 is an inverse transition, where r is the row of the 

unique outer corner of Q in column j + 1;
• if {n′} � Qij (so that i < j) then P

(i+1,s)�
col

V1 is an inverse transition, where s is the 

column of the unique outer corner of Q in row i + 1.

Now let P � V1 � V2 � · · · � Vl be the maximal directed path in the inverse transition 
graph containing P � V1. The last state Vl is initial, so has the form P̂ ⊕ a for a shifted 
tableau P̂ and an integer a ∈ P . Set ŵ = aw, form Q̂ from Q by removing whichever of 
n or n′ appears, and define

uninsert(P,Q,w) := (P̂ , Q̂, ŵ). (3.5)

The set-valued tableau Q̂ is standard with length n − 1 and the same shape as P̂ . 
Theorem 3.17 implies that P = P̂

Sp←−− a, so row(P ) 
Sp≈ row(P̂ )a by Theorem 3.11 and 

row(P̂ )ŵ ∈ HSp(z). Thus, (P̂ , Q̂, ŵ) has the same properties as (P, Q, w), so we can 
iterate the operation uninsert.

Definition 3.25. Let z ∈ F∞. Given an increasing shifted tableau P with row(P ) ∈ HSp(z)
and a standard set-valued tableau Q with the same shape, define wSp(P, Q) to be the 
word such that

uninsert ◦ uninsert ◦ · · · ◦ uninsert︸ ︷︷ ︸(P,Q, ∅) = (∅, ∅, wSp(P,Q)). (3.6)

|Q| times
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Example 3.26. The word wSp(P, Q) has length |Q|, so wSp(P, Q) = ∅ when P = Q = ∅. 
If

P =
4

2 3
and Q =

4

1 2′3′

then wSp(P, Q) = 4223 since applying uninsert four times has the effect of mapping

(P,Q, ∅) 	→
(

2 4 , 1 2′3′ , 3
)

	→
(

2 4 , 1 2′ , 23
)
	→

(
4 , 1 , 223

)
	→ (∅, ∅, 4223).

A marked tableau is a set-valued tableau whose entries are singletons, or equivalently a 
map from a finite subset of P ×P to the marked alphabet M = {1′ < 1 < 2′ < 2 < . . . }.

Theorem 3.27. Let z ∈ F∞. Then w 	→ (PSp(w), QSp(w)) and (P, Q) 	→ wSp(P, Q) are 
inverse bijections between the set of symplectic Hecke words (respectively, FPF-involution 
words) for z of length n ∈ N and the set of pairs (P, Q) where P is an increasing shifted 
tableau with row(P ) ∈ HSp(z) (respectively, row(P ) ∈ R̂FPF(z)) and Q is a standard 
shifted set-valued (respectively, marked) tableau with length |Q| = n and the same shape 
as P .

Proof. Let P be an increasing shifted tableau, let Q be a standard set-valued tableau 
with the same shape as P , and let w = w1w2 · · ·wm be a word with row(P )w ∈ HSp(z). 
Suppose m > 0 and |Q| = n − 1 ≥ 0. We may assume by induction that (P, Q) =
(PSp(v), QSp(v)) for some symplectic Hecke word v. Define P̌ := P

Sp←−− w1 = PSp(vw1)
and form Q̌ from Q according to the rules in Definition 3.20 so that Q̌ = QSp(vw1). Then 
set w̌ := w2w3 · · ·wm and define

insert(P,Q,w) := (P̌ , Q̌, w̌). (3.7)

The set-valued tableau Q̌ is standard with the same shape as P̌ . Since row(P̌ )w̌
Sp≈

row(P )w1w̌ = row(P )w by Theorem 3.11, it holds that row(P̌ )w̌ ∈ HSp(z). We can 
therefore iterate the operation insert, and it is easy to see that if w ∈ HSp(z) then

insert ◦ insert ◦ · · · ◦ insert︸ ︷︷ ︸
�(w) times

(∅, ∅, w) = (PSp(w), QSp(w), ∅). (3.8)

Let T m
n be the set of triples (P, Q, w) where P is an increasing shifted tableau, Q is a 

standard set-valued tableau of length n with the same shape as P , and w is a word of 
length m such that row(P )w ∈ HSp(z). The formulas (3.5) and (3.7) give well-defined 
maps insert : T m+1

n → T m
n+1 and uninsert : T m

n+1 → T m+1
n for all m, n ∈ N. In view of 
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(3.6) and (3.8), it suffices to show that these maps are inverse bijections. The hard work 
needed to check this claim has already been done, however: what needs to be shown is 
equivalent to Theorem 3.17.

Finally, observe that if w ∈ R̂FPF(z) then we must have �(w) = |PSp(w)| since w
Sp≈

row(PSp(w)), so QSp(w) is a marked tableau. Conversely, if w ∈ HSp(z) but PSp(w) ∈
R̂FPF(z) and QSp(w) is a marked tableau then |QSp(w)| = |PSp(w)| so w ∈ R̂FPF(z) since 
�(w) = |QSp(w)|. �

In the following corollary, we say that a shifted tableau has shape λ if its domain is 
the shifted Young diagram SDλ = {(i, i + j − 1) ∈ P × P : 1 ≤ j ≤ λi}.

Corollary 3.28. Fix n ∈ 2P and let zmax = n · · · 321 ∈ F∞ be the fixed-point-free invo-
lution with zmax(i) = n + 1 − i for i ≤ n and zmax(i) = i − (−1)i for i > n. The map 
w 	→ QSp(w) is then a length-preserving bijection from symplectic Hecke words for zmax
to standard shifted set-valued tableaux of shape λ = (n − 2, n − 4, . . . , 6, 4, 2). Conse-
quently, the size of R̂FPF(zmax) is the number of standard shifted marked tableaux of this 
shape.

One can compute |R̂FPF(zmax)| using well-known hook length formulas; see [8, Theo-
rem 1.4].

Proof. Consider the shifted tableau T whose first row is 234 · · · (n −1), whose second row 
is 456 · · · (n − 1), whose third row is 678 · · · (n − 1), and so forth, and whose last row is 
(n −2)(n −1). It is easy to check that row(T ) ∈ R̂FPF(zmax). It follows from Theorem 2.4
that every symplectic Hecke word for zmax has at least (n − 2) +(n − 4) + · · ·+2 letters, 
each of which is at most n − 1. Since T is the only increasing shifted tableau with 
(n −2) +(n −4) + · · ·+2 boxes, with entries in {1, 2, . . . , n −1}, and with no odd entries 
on the main diagonal, we conclude that T is the insertion tableau of every symplectic 
Hecke word for zmax, so the result follows from Theorem 3.27. �
Example 3.29. If n = 8 and w = 426175342132 then w ∈ R̂FPF(zmax) and

(PSp(w), QSp(w)) =

⎛⎜⎜⎝
6 7

4 5 6 7

2 3 4 5 6 7

,

8 11′

6 7′ 9′ 12′

1 2′ 3 4′ 5 10′

⎞⎟⎟⎠ .

A result of Sagan [32] describes a fast algorithm for sampling standard shifted marked 
tableaux of a given shape uniformly at random. Combining this with the preceding 
corollary gives an algorithm for generating FPF-involution words for n · · · 321 ∈ F∞
uniformly at random.

There is a fascinating literature on the properties of random reduced words for 
n · · · 321 ∈ S∞, called random sorting networks by Angel, Holroyd, Romik, and Virág 
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in [1]. The bijections in this article would make it possible to conduct a similar study of 
random (FPF-)involution words.

4. Variations

4.1. Semistandard insertion

Suppose T is an increasing shifted tableau and a ∈ P . Let (i1, j1), (i2, j2), . . . , (il, jl)
be the bumping path resulting from inserting a into T to form T

Sp←−− a, as described in 
Definition 3.3. The next result shows that this sequence contains at most two diagonal 
positions, which must be consecutive. We refer to the positions up to and including 
the first diagonal position as row-bumped positions, and to any subsequent positions as 
column-bumped positions. If (it, jt) is a row-bumped position then it = t, while if (it, jt)
is a column-bumped position then jt = t. If t ∈ [l−1] is the index of the last row-bumped 
position then (it, jt) = (t, t) and jt+1 = t + 1.

Proposition 4.1. Maintain the setup of the previous paragraph. Suppose t ∈ [l] is the index 
of the bumping path’s last row-bumped position. The following properties then hold:

(a) One has j1 ≥ j2 ≥ · · · ≥ jt ≥ t and if t < l then t + 1 ≥ it+1 ≥ it+2 ≥ · · · ≥ il.
(b) If row(T )a is an FPF-involution word and t < l, then il < t + 1.
(c) If (i, j) is column-bumped and (i′, j′) is row-bumped then we do not have i ≤ i′

and j ≤ j′. In other words, no column-bumped position is weakly southwest of any 
row-bumped position.

(d) All positions in the bumping path are distinct.

Proof. Suppose U
(i,j)−−−→ V

(i′,j′)−−−−→ W are successive edges in the maximal directed path 
leading from T ⊕ a to a terminal shifted insertion state. Then (i, j) and (i′, j′) are 
consecutive positions in the bumping path.

Suppose (i, j) and (i′, j′) are both row-bumped. If U → V is a diagonal transition of 
type (D1), then i + 1 = j = i′ = j′. Otherwise, U → V must be a row transition and 
V → W must be a row transition or a diagonal transition of type (D2), (D3), or (D4), 
so i < j and i + 1 = i′ ≤ j′. In this case the value in the outer box of V is equal to Uij , 
which is strictly less than Ui+1,j = Vi+1,j if (i + 1, j) ∈ V , so j′ ≤ j.

Next, suppose (i, j) is row-bumped and (i′, j′) is column-bumped. Then U → V is a 
diagonal transition of type (D2), (D3), or (D4) and V → W is a column transition, so 
i = j = t and i′ ≤ j′ = j + 1 = t + 1.

Finally, suppose (i, j) and (i′, j′) are both column-bumped. Then U → V and V → W

are both column transitions, so j′ = j + 1. The value in the outer box of V is then equal 
to Uij , which is strictly less than Ui,j+1 = Vi,j+1 if (i, j+1) ∈ V , so i′ ≤ i. This completes 
the proof of part (a).
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Suppose the insertion path (3.1) of T Sp←−− a is T⊕a = U0
(i1,j1)−−−−→ U1

(i2,j2)−−−−→ · · · (il,jl)−−−−→
Ul. To prove part (b), assume row(T )a is a symplectic Hecke word and t < l. We will 
show that if il = t + 1 then row(T )a is not an FPF-involution word. Suppose rows t and 
t + 1 of Ut are

· w1 w2 · · · wm · ·

v0 v1 v2 · · · vm · · · vn

for some numbers v0 < v1 < · · · < vn and w1 < w2 < · · · < wm with vi < wi for i ∈ [m]. 
Write w0 for the value in the outer box of Ut, which will be in column t +1 since Ut−1 → Ut

is a diagonal transition of type (D2), (D3), or (D4). We must have w0 ≤ v1, and the 
only way we can have t + 1 = it+1 = it+2 = · · · = il is if vi = wi−1 for all i ∈ [m + 1]. 
But in this case the last edge Ul−1 → Ul would be a column transition of type (C2), 
so T

Sp←−− a would have the same number of boxes as T . Since row(T )a 
Sp≈ row(T Sp←−−)

by Theorem 3.11, it would follow that row(T )a is not an FPF-involution word. This 
completes the proof of part (b).

We turn to part (c). For each r ∈ [l], let ar be the value in the outer box of Ur−1, 
let br be the value in box (ir, jr) of Ur, and let cr be the value in box (ir, jr) of Ur−1. 
For example, if Ur−1 → Ur is a row transition and r < l, then these numbers would 
correspond to the following picture:

Ur−1 =

⎧⎪⎨⎪⎩
· ∗ ∗ · ·

∗ cr ∗ · ar

⎫⎪⎬⎪⎭ (ir,jr)−−−−→

⎧⎪⎨⎪⎩
· ∗ ∗ · ar+1

∗ br ∗ · ·

⎫⎪⎬⎪⎭ = Ur.

If r ∈ [l − 1] then either ar = br < cr = ar+1 or ar < br = cr = ar+1 or ar < br =
cr = ar+1 − 1, with the last case occurring only if the forward transition Ur−1 → Ur is 
of type (D4). Therefore ar ≤ br ≤ cr ≤ ar+1 and at least one inequality is strict for each 
r ∈ [l − 1].

We now argue by contradiction. Let r, s ∈ [l] be indices with r ≤ t < s. Suppose s is 
minimal such that is ≤ ir and js ≤ jr. Since it = jt = t and jt+1 = t + 1, we cannot 
have r = t < t + 1 = s, so r + 1 < s and br < cs. Part (a) and the minimality of s
imply that cs is the value in box (is, js) of each of the states Ur, Ur+1, . . . , Us−1. This 
is impossible, however, since Ur with its outer box removed is an increasing tableau. We 
conclude from this contradiction that ir < is or jr < js, which is equivalent to part (c).

Since ir = r and js = s for all r, s ∈ [l] with r ≤ t < s, the only way that repeated 
positions can occur in the bumping path is if some column-bumped position coincides 
with a row-bumped position. This is impossible by part (c), so part (d) holds. �
Proposition 4.2. Suppose T is an increasing shifted tableau and a, b ∈ P are integers with 

a ≤ b such that row(T )ab is a symplectic Hecke word. Let U = T
Sp←−− a and V = U

Sp←−− b. 
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Refer to the bumping paths of T Sp←−− a and U
Sp←−− b as the first and second bumping 

paths, respectively. Then:

(a) Suppose the ith element of the first path is row-bumped and the second path has length 
at least i. Then the ith elements of both paths are row-bumped and in row i, and the 
ith element of the first path is weakly left of the ith element of the second path.

(b) If the last position in the first path is row-bumped and occurs in column j, then the 
last position in the second path is row-bumped and occurs in column k where j ≤ k.

(c) Suppose the ith element of the second path is column-bumped. The first path then has 
length at least i, the ith elements of both paths are column-bumped and in column 
i, and the ith element of the first path is weakly below the ith element of the second 
path.

(d) If the last position in the second path is column-bumped and occurs in row j, then 
the last position in the first path is column-bumped and occurs in row i where i ≤ j.

Moreover, if row(T )ab is an FPF-involution word, then parts (a) and (c) hold with 
“weakly” replaced by “strictly” and the inequalities in parts (b) and (d) are strict.

Proof. Let T ⊕ a = U0 → U1 → · · · → Ul = U and U ⊕ b = V0 → V1 → · · · → Vm = V

be the insertion paths of T Sp←−− a and U
Sp←−− b, so that the ith elements of the first 

and second bumping paths are the labels of the edges Ui−1 → Ui and Vi−1 → Vi. By 
Proposition 3.14, all of the states Ui and Vi are admissible.

Suppose i ∈ [m] and the ith element of the first bumping path is row-bumped. All 
preceding elements of the first bumping path are then also row-bumped. Since a ≤ b, it 
is straightforward to check that for each j ∈ [i], the value in the outer box of Uj−1 is at 
most the value in the outer box of Vj−1, that the jth position in the second bumping 
path is row-bumped, and that this position appears in row j weakly to the right of the 
jth position in the first bumping path. This proves part (a).

Suppose the last position in the first bumping path is row-bumped. If m ≤ l then it 
follows from part (a) and Proposition 4.1 that the last position in the second bumping 
path is also row-bumped and occurs in a column weakly to the right of the column 
containing the last position in the first bumping path. If l ≤ m then l = m since part 
(a) implies that the lth position in the second bumping path is in the same row as 
and weakly to the right of the last position in the first bumping path, which is on the 
boundary of U . This proves part (b).

Suppose next that the ith element of the second bumping path is column-bumped. 
The last position in the second bumping path is then also column-bumped. By part (b), 
the last position in the first bumping path must therefore be column-bumped as well. 
Let r ∈ [l] and s ∈ [m] be the indices of the last row-bumped positions in the first 
and second bumping paths. The rth position in the first path is then (r, r) and the sth 
position in the second path is (s, s). Part (a) implies that r < s and obviously s < i. 
The last position in the first bumping path is in column l and weakly below row r by 
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Proposition 4.1. Since this position is on the boundary of U , we must have s < l. From 
these considerations, it is straightforward to check that the value in the outer box of 
Uj−1 is weakly less than the value in the outer box of Vj−1 for each j ∈ [i] ∩ [l] and that 
the jth position in the second bumping path is in the jth column and weakly above the 
jth position in the first bumping path for each j ∈ [i] ∩ [l] − [s]. Since the last position of 
the first bumping is on the boundary of U , it follows that i ≤ l, so this proves part (c).

Suppose finally that the last position in the second path is column-bumped. It follows 
from part (c) that m ≤ l and that the mth position in the first bumping path is in 
a row weakly below the last position in the second bumping path. By Proposition 4.1, 
the last position in the first bumping path is weakly below the mth position and also 
column-bumped. This proves part (d).

For the last assertion, note that if row(T )ab is an FPF-involution word, then a < b

and no forward transitions in the insertion paths of T Sp←−− a or U Sp←−− b are of type (R2), 
(D1), or (C2); moreover, transitions of type (R3), (D2), and (C3) only occur when a box 
adjacent to the bumped position is equal to the value in the outer box of the previous 
state. Given these observations, only minor changes to the preceding arguments are 
needed to deduce strict versions of parts (a), (b), (c), and (d). We omit these details. �

The descent set of a word w = w1w2 · · ·wn is Des(w) = {i ∈ [n − 1] : wi > wi+1}. 
The descent set of a standard shifted set-valued tableau T with length |T | = n is

Des(T ) =

⎧⎨⎩i ∈ [n− 1] :
i appears in T and (i + 1)′ appears in T , or
i appears in T and i + 1 appears in T in a row above i, or
i′ appears in T and (i + 1)′ appears in T in a column right of i′

⎫⎬⎭ .

Observe that i ∈ [n − 1] is not a descent of a set-valued tableau T if and only if i′ and 
i + 1 appear in T , or i and i + 1 appear in T with i + 1 in a column weakly right of i, 
or i′ and (i + 1)′ appear in T with (i + 1)′ in a row weakly above i′.

Example 4.3. If w = 426175342132 is the word from Example 3.29 and T = QSp(w) then

Des(w) = Des(T ) = {1, 3, 5, 6, 8, 9, 11}.

If U is the “doubled” tableau formed from T by moving all primed entries in a given box 
(x, y) ∈ T to the transposed position (y, x), then i ∈ [n − 1] is a descent if and only if 
the row of U containing i is strictly below the row of U containing i + 1.

Theorem 4.4. If w is a symplectic Hecke word then Des(w) = Des(QSp(w)).

Proof. Let w be a symplectic Hecke word of length n. Both descent sets are empty if 
n ∈ {0, 1} so assume n ≥ 2. Noting that the last position in any bumping path under 
symplectic Hecke insertion must be an inner or outer corner, it is straightforward to 
deduce from parts (b) and (d) of Proposition 4.2 that if i ∈ [n − 1] is not a descent of w



E. Marberg / Journal of Combinatorial Theory, Series A 173 (2020) 105216 39
then i is not a descent of QSp(w). Therefore Des(QSp(w)) ⊂ Des(w). We will show that 
this containment is equality using a counting argument and induction.

Fix m ∈ 2P . Let Wn be the set of symplectic Hecke words of length n with all letters 
less than m. Let W−

n , W0
n, and W+

n be the sets of words w ∈ Wn with wn−1 > wn, wn−1 =
wn, and wn−1 < wn, respectively. The maps w1w2 · · ·wn 	→ (m −w1)(m −w2) · · · (m −wn)
and w1w2 · · ·wn 	→ w1w2 · · ·wn−1 are bijections W−

n → W+
n and W0

n → Wn−1, so 
|Wn| = 2|W−

n | + |Wn−1|.
Now let Xn be the set of pairs (P, Q) where P is an increasing shifted tableau whose 

row reading word is a symplectic Hecke word with all letters less than m and Q is a 
standard set-valued tableau of length n with the same shape as P . Let X−

n be the set of 
pairs (P, Q) ∈ Xn with n − 1 ∈ Des(Q). Let X 0

n be the set of pairs (P, Q) ∈ Xn such that 
Q contains either n −1 and n in the same box or (n −1)′ and n′ in the same box. Finally 
define X+

n = Xn − X−
n − X 0

n . Removing n and n′ from Q gives a bijection X 0
n → Xn−1, 

and altering Q as follows gives a bijection X−
n → X+

n :

• If n′ is in the same row as n − 1 or (n − 1)′ but not the same box, remove the prime 
from n.

• If n −1 is in the same column as n or n′ but not the same box, add a prime to n −1.
• In all other cases when n − 1 ∈ Des(Q), interchange n − 1 with n and (n − 1)′ with 

n′.

We conclude that |Xn| = 2|X−
n | + |Xn−1|.

Theorem 3.27 implies that w 	→ (PSp(w), QSp(w)) is a bijection Wn → Xn, so |Wn| =
|Xn| for all n ∈ N and therefore |W−

n | = |X−
n |. Since Des(QSp(w)) ⊂ Des(w), the map 

w 	→ (PSp(w), QSp(w)) must restrict to a bijection W−
n → X−

n , so we have n − 1 ∈
Des(QSp(w)) if and only if n − 1 ∈ Des(w) for w ∈ Wn. As we may assume by induction 
that Des(QSp(w)) ∩ [n − 2] = Des(w) ∩ [n − 2], we conclude that Des(w) = Des(QSp(w))
for all symplectic Hecke words w. �

Theorem 4.4 allows us to formulate a semistandard version of symplectic Hecke inser-
tion. A weak set-valued tableau is a map from a finite subset of P ×P to the set of finite, 
nonempty multi-subsets of the marked alphabet M = {1′ < 1 < 2′ < 2 < 3′ < 3 < . . . }. 
All conventions for set-valued tableaux extend to weak set-valued tableaux without dif-
ficulty.

A weak set-valued tableau is shifted if its domain is the shifted Young diagram of 
a strict partition. A shifted weak set-valued tableau T is semistandard if the following 
conditions hold:

• If (a, b), (x, y) ∈ T have (a, b) 
= (x, y) and a ≤ x and b ≤ y, then max(Tab) ≤
min(Txy).

• No primed number belongs to any box of T on the main diagonal.
• Each unprimed number appears in at most one box in each column of T .
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• Each primed number appears in at most one box in each row of T .

A semistandard shifted set-valued tableau is a semistandard shifted weak set-valued 
tableau whose entries are sets. A semistandard shifted marked tableau is a semistan-
dard shifted set-valued tableau whose entries are all singleton sets. For example, the 
shifted weak set-valued tableaux

U =
5 6′6

1 2 2 2 3′6′
and V =

5 6′

2 2 6′
(4.1)

are both semistandard, and V is a shifted marked tableau. The weight of a weak set-
valued tableau T is the map wt(T ) : P → N whose value at i ∈ P is the number of times i
or i′ appears in T . It is convenient to represent as wt(T ) as a weak composition; for exam-
ple, if U and V are as in (4.1) then wt(U) = (1, 3, 1, 0, 1, 3) and wt(V ) = (0, 2, 0, 0, 1, 2).

Let w = w1w2 · · ·wm be a word of length m. Define a weakly increasing factorization
of w to be a weakly increasing sequence of positive integers i = (i1 ≤ i2 ≤ · · · ≤ im) with 
ij < ij+1 if j ∈ Des(w). The weight of such a factorization is the map μ : P → N with 
wt(a) = |{j ∈ [m] : ij = a}| for a ∈ P . The data of a weakly increasing factorization of 
w is equivalent to a decomposition of w into a countable sequence of weakly increasing 
subwords w = w1w2w3 · · · .

When w is a symplectic Hecke word of length m and i = (i1 ≤ i2 ≤ · · · ≤ im)
is a weakly increasing factorization of w, we define QSp(w, i) to be the shifted weak 
set-valued tableau formed from QSp(w) by replacing j by ij and j′ by i′j for each j ∈ [m]. 
E.g., if w = 426175342132 as in Example 3.29 and i = 122334556889, so that (w, i) ↔
(4)(26)(17)(5)(34)(2)()(13)(2), then

QSp(w, i) =

5 8′

4 5′ 6′ 9′

1 2′ 2 3′ 3 8′
.

We now have the following refinement of Theorem 3.27.

Theorem 4.5. Let z ∈ F∞. The correspondence (w, i) 	→ (PSp(w), QSp(w, i)) is a bi-
jection from weakly increasing factorizations of symplectic Hecke words (respectively, 
FPF-involution words) for z to pairs (P, Q) where P is an increasing shifted tableau with 
row(P ) ∈ HSp(z) (respectively, row(P ) ∈ R̂FPF(z)) and Q is a semistandard shifted 
weak set-valued (respectively, marked) tableau with the same shape as P . Moreover, 
(w, i) 	→ QSp(w, i) is a weight-preserving map.

Proof. Suppose i = (i1 ≤ i2 ≤ · · · ≤ im) is a weakly increasing factorization of a sym-
plectic Hecke word w = w1w2 · · ·wm ∈ HSp(z). The shifted weak set-valued tableau 
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QSp(w, i) has the same weight as i by construction. To check that QSp(w, i) is semistan-
dard, fix h ∈ {i1, i2, . . . , im} and suppose j ∈ N and b ∈ P are such that h = it if and 
only if t ∈ {j+1, j+2, . . . , j+ b}, so that Des(QSp(w)) ∩{j+1, j+2, . . . , j+ b −1} = ∅. 
Theorem 4.4 implies that there exists an integer 0 ≤ a ≤ b such that the primed num-
bers (j + 1)′, (j + 2)′, . . . , (j + a)′ all appear in QSp(w) and the unprimed numbers 
j + a + 1, j + a + 2, . . . , j + b all appear in QSp(w); moreover, none of the primed num-
bers can appear in different boxes in the same row of QSp(w) and none of the unprimed 
numbers can appear in different boxes in the same column. We conclude that QSp(w, i)
is weakly increasing in the required sense. Since this weak set-valued tableau obviously 
contains no primed numbers on the main diagonal, QSp(w, i) is semistandard.

Suppose Q is a semistandard shifted weak set-valued tableau. Following [7, §3.2], define 
the standardization of Q to be the standard shifted set-valued tableau st(Q) formed from 
Q by the following procedure. Start by replacing all 1s appearing in Q, read from left to 
right, by 1, 2, . . . , i. (Note that no 1′s appear in Q.) Then replace all 2′s appearing in Q, 
read bottom to top, by the primed numbers (i + 1)′, (i + 2)′, . . . (i + j)′. Then replace 
all 2s appearing Q, read left to right, by i + j + 1, i + j + 2, . . . , i + j + k. Then replace 
all 3′s appearing in Q, read bottom to top, by the primed numbers (i + j + k + 1)′, 
(i + j+k+2)′, . . . , (i + j+k+ l)′, and so on, continuing this substitution process for the 
numbers 3, 4′, 4, . . . , n′, n. If st(Q) has length m, then define iQ = (iQ1 ≤ iQ2 ≤ · · · ≤ iQm)
to be the weakly increasing sequence of positive integers with iQj = a if a or a′ appears 
in Q and changes to j or j′ in st(Q).

Now suppose (w, i) is a weakly increasing factorization of a symplectic Hecke word. Us-
ing Theorem 4.4, it is easy to see that every semistandard shifted weak set-valued tableau 
whose standardization is QSp(w) arises as QSp(w, i) for some choice of factorization i. It 
follows from Theorem 3.27 that the map described in the theorem is surjective. Similarly, 
it is straightforward to deduce that we recover (w, i) from (P, Q) := (PSp(w), QSp(w, i))
as w = wSp(P, st(Q)) and i = iQ. We conclude that the given map is also injective. 
The “marked” version of the theorem for FPF-involution words follows by the same 
argument. �
4.2. Orthogonal Hecke insertion

Given a word w = w1w2 · · ·wm, define 2[w] to be the word (2w1)(2w2) · · · (2wm). 
When T is an increasing tableau, write 2[T ] for the tableau formed by doubling every 
entry of T . When T has all even entries, define 1

2 [T ] by halving every entry analogously. 
For example,

2[3412] = 6824 and 1
2

[
6

2 4 8

]
= 3

1 2 4 .

If T has all even entries and a ∈ 2P then T
Sp←−− a has all even entries, so the following 

is well-defined:
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Definition 4.6. Given an increasing shifted tableau T and a ∈ P , let T O←− a :=
1
2

[
2[T ] Sp←−− 2a

]
.

We refer to the operation transforming (T, a) to T O←− a as orthogonal Hecke insertion. 
We could also define T O←− a exactly as we defined T

Sp←−− a, without any doubling of 
letters, by slightly modifying the forward transition graph from Section 3.1. All that is 
needed is to remove the parity condition from transition (D3) and omit transition (D4).

Any word with all even letters is a symplectic Hecke word, so the following is also 
well-defined.

Definition 4.7. For any word w, define PO(w) = 1
2 [PSp (2[w])] and QO(w) = QSp (2[w]).

We call PO(w) the insertion tableau and QO(w) the recording tableau of w under 
orthogonal Hecke insertion. If w = w1w2 · · ·wn then PO(w) = (· · · ((∅ O←− w1) 

O←−
w2) · · · ) O←− wn.

Example 4.8. If w = 451132 then

PO(w) =
3

1 2 4 5
and QO(w) =

5

1 2 3′4′ 6′
.

Proposition 4.9. The correspondence w 	→ (PO(w), QO(w)) is the shifted Hecke insertion 
algorithm introduced by Patrias and Pylyavskyy in [29, §5.3].

Proof. This is clear from comparing the rules (S1)-(S4) defining shifted Hecke insertion 
in [29, §5.3] with the forward transitions (R1)-(R4), (D1)-(D4), and (C1)-(C4) described 
in Section 3.1. �

The insertion and recording tableaux PO(w), QO(w) are denoted PS(w), QS(w) in 
[29, §5.3], PSK(w), QSK(w) in [7, §2], and PSH(w), QSH(w) in [11, §5].

Proposition 4.9 lets us recover several facts about shifted Hecke insertion from what 
we have already shown about symplectic Hecke insertion. Write O∼ (respectively, O≈) for 
the strongest equivalence relation that has v O∼ w (respectively, v O≈ w) whenever v and 
w are words such that w is obtained from v by swapping its first two letters, or that 
satisfy v K∼ w (respectively, v K≈ w). The relation 

K≈ is called weak K-Knuth equivalence
in [3,11,7].

If v and w are words, then v
O≈ w if and only if 2[v] 

Sp≈ 2[w], and v O∼ w if and only if 
2[v] Sp∼ 2[w]. The next three results are immediate from Theorem 3.11 and Corollaries 3.22
and 3.23.
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Corollary 4.10. Let T be an increasing shifted tableau and a ∈ P .

(a) The tableau T O←− a is increasing and shifted and row(T O←− a) O≈ row(T )a.
(b) If row(T )a is an involution word then row(T O←−) O∼ row(T )a.

Corollary 4.11 ([7, Corollary 2.18]). If w is any word then w
O≈ row(PO(w)).

Corollary 4.12. If w is an involution word then w O∼ row(PO(w)).

Thus, if v and w are any words (respectively, involution words) with PO(v) = PO(w), 
then v

O≈ w (respectively, v O∼ w). The converse of this property does not hold in general 
(see [7, Remark 2.19]), but computations support the following, which also appears as 
[11, Conjecture 5.24]:

Conjecture 4.13. If v and w are involution words with v O∼ w then PO(v) = PO(w).

Remark (Note added in proof). A proof of this result now appears in [25].

Since Des(w) = Des(2[w]) for any word w, the following is clear from Theorem 4.4.

Corollary 4.14 ([7, Proposition 2.24]). If w is any word then Des(w) = Des(QO(w)).

It follows from Theorem 2.4 and Corollary 3.22 that if w is a symplectic Hecke word, 
then the insertion tableau PSp(w) has all even entries if and only if w has all even letters. 
The next result therefore follows from Theorem 3.27 and Corollary 4.11.

Corollary 4.15 ([29, Theorem 5.18]). Let z ∈ I∞. Then w 	→ (PO(w), QO(w)) is a bi-
jection from the set of orthogonal Hecke words (respectively, involution words) for z of 
length n ∈ N to the set of pairs (P, Q) in which P is an increasing shifted tableau with 
row(P ) ∈ HO(z) (respectively, row(P ) ∈ R̂(z)) and Q is a standard shifted set-valued 
(respectively, marked) tableau of length n with the same shape as P .

Finally, there is a semistandard version of the preceding corollary. If i = (i1 ≤ i2 ≤
· · · ≤ im) is a weakly increasing factorization of a word w = w1w2 · · ·wm, then i is 
also a weakly increasing factorization of 2[w] and we define QO(w, i) = QSp(2[w], i). For 
example, if w = 451132 as in Example 4.8 and i = 113335, so that (w, i) corresponds to 
(45)()(113)()(2), then

QO(w, i) =
3

1 1 3′3′ 5′
.

Given Corollaries 4.14 and 4.15, the following result has the same proof as Theorem 4.5.
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Corollary 4.16. Let z ∈ I∞. The correspondence (w, i) 	→ (PO(w), QO(w, i)) is a bijection 
from weakly increasing factorizations of orthogonal Hecke words (respectively, involution 
words) for z to pairs (P, Q) where P is an increasing shifted tableau with row(P ) ∈
HO(z) (respectively, row(P ) ∈ R̂(z)) and Q is a semistandard shifted weak set-valued 
(respectively, marked) tableau with the same shape as P . Moreover, (w, i) 	→ QO(w, i) is 
a weight-preserving map.

4.3. Involution Coxeter-Knuth insertion

Restricted to (FPF-)involution words, symplectic and orthogonal Hecke insertion re-
duce to less complicated algorithms, which refer to as (FPF-)involution Coxeter-Knuth 
insertion. Propositions 4.17 and 4.19 describe these bumping procedures, which are 
shifted analogues of Edelman-Greene insertion [6] and “reduced word” generalizations 
of Sagan-Worley insertion [33,34].

Proposition 4.17 (FPF-involution Coxeter-Knuth insertion). Let a be a positive integer. 
Suppose L is a row or column of an increasing tableau. One inserts a into L as follows:

Find the first entry b of L with a ≤ b. If no such entry exists then add a to the end of 
L and say that no entry is bumped, but refer to the added box as the bumped position. 
Otherwise:
• If a = b then leave L unchanged but say that a + 1 is bumped from the position 

directly following the position of b.
• If L is a row (rather than a column) and b is the first entry of L and a 
≡ b (mod 2), 

then leave L unchanged but say that a + 2 is bumped from the position of b.
• In all other cases replace b by a in L and say that b is bumped.

Now suppose T is an increasing shifted tableau such that row(T )a is an FPF-involution 
word.

1. Start by inserting a into the first row of T according to the rules above.
2. If no entry is bumped then the process terminates. Otherwise, an entry is bumped 

from some position of T . If this position is on the diagonal or if a position bumped in 
an earlier step was on the diagonal, then we continue by inserting the bumped entry 
into the next column; otherwise, we continue by inserting the bumped entry into the 
next row.

3. Repeat step 2 until we insert into a row or column and no entry is bumped.

The resulting tableau is T Sp←−− a and the sequence of bumped positions is the corresponding 
bumping path from Definition 3.3.

Using Theorem 2.4 and Lemmas 3.8, 3.9, and 3.10, it is straightforward but fairly 
tedious to deduce that the output of this algorithm coincides with Definition 3.3 when 
row(T )a is an FPF-involution word. We leave these details to the reader.
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Example 4.18. We compute PSp(w) and QSp(w) for the FPF-involution word w = 42312:

4 −→ 2 4 −→ 4
2 3 −→ 4

2 3 4 −→ 4 5
2 3 4 = PSp(42312)

1 −→ 1 2′ −→ 3
1 2′ −→

3
1 2′ 4′ −→

3 5′
1 2′ 4′ = QSp(42312).

The bumping path of PSp(4231) Sp←−− 2 is (1, 2), (2, 2), (2, 3).

Proposition 4.19 (Involution Coxeter-Knuth insertion). Let a be a positive integer. Sup-
pose L is a row or column of an increasing tableau. One inserts a into L as follows:

Find the first entry b of L with a ≤ b. If no such entry exists then add a to the end 
of L and say that no entry is bumped. Otherwise:
• If a = b then leave L unchanged but say that a + 1 is bumped from the position of 

b.
• If a 
= b then replace b by a in L and say that b is bumped.

Now suppose T is an increasing shifted tableau such that row(T )a is an involution word.

1. Start by inserting a into the first row of T according to the rules above.
2. If no entry is bumped then the process terminates. Otherwise, an entry is bumped 

from some position of T . If this position is on the diagonal or if a position bumped in 
an earlier step was on the diagonal, then we continue by inserting the bumped entry 
into the next column; otherwise, we continue by inserting the bumped entry into the 
next row.

3. Repeat step 2 until we insert into a row or column and no entry is bumped.

The resulting tableau is T O←− a from Definition 4.6.

We omit the proof of the proposition, which is straightforward from the results in 
Section 4.2.

Remark 4.20. It would be natural to define the bumping path of T O←− a to be the 

bumping path of 2[T ] Sp←−− 2a. However, this sequence does not coincide with the sequence 
of bumped positions in Proposition 4.19, although the two paths are closely related.

Example 4.21. We compute PO(w) and QO(w) for the involution word 42321:

4 −→ 2 4 −→ 4
2 3 −→ 4

2 3 4 −→ 4
1 2 3 4 = PO(42321)

1 −→ 1 2′ −→ 3
1 2′ −→

3
1 2′ 4′ −→

3
1 2′ 4′ 5′ = QO(42321).
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5. Stable Grothendieck polynomials

Recall the definition of the stable Grothendieck polynomial Gπ for π ∈ S∞ from (1.1). 
Let Ŝym be the free Z-module of arbitrary (formal) linear combinations of the Schur 
functions sλ. This module is a subring of Z[β][[x1, x2, . . . ]], and one has Gπ ∈ Ŝym for 
all π ∈ S∞ [4, §2].

Definition 5.1. Given a partition λ with k parts, let Gλ := Gπλ
where πλ ∈ S∞ is the 

permutation with πλ(i) = i + λk+1−i for i ∈ [k] and πλ(i) < πλ(i + 1) for i 
= k.

For a (weak) set-valued tableau T , define xT =
∏

(i,j)∈T

∏
e∈Tij

x|e| where |e| = |e′| =
e for e ∈ P . If U and V are as in (4.1) then xU = x1x

3
2x3x5x

3
6 and xV = x2

2x5x
2
6. 

Given a partition λ, define SetSSYT(λ) to be the family of set-valued tableaux T with 
domain Dλ := {(i, j) ∈ P × P : j ≤ λi}, whose entries are subsets of P , that are 
semistandard in the sense that if (a, b), (x, y) ∈ T are distinct with a ≤ x and b ≤ y, 
then max(Tab) ≤ min(Txy) with equality only if a = x.

Theorem 5.2 (Buch [2, Theorem 3.1]). If λ is a partition then

Gλ =
∑

T∈SetSSYT(λ)

β|T |−|λ|xT .

For π ∈ S∞, define π∗ ∈ S∞ by conjugating π by n · · · 321 where n ∈ N is minimal 
with π(i) = i for all i > n; the map w1w2 · · ·wl 	→ (n − w1)(n − w2) · · · (n − wl) is then 
a bijection H(π) → H(π∗). Define ω : Ŝym → Ŝym to be the Z[β]-linear involution with 
ω (

∑
λ cλsλ) =

∑
λ cλsλT for all coefficients cλ ∈ Z[β], where λT is the usual partition 

transpose.

Lemma 5.3. If π ∈ S∞ then ω(Gπ) = Gπ−1

(
x1

1−βx1
, x2

1−βx2
, . . .

)
= Gπ∗

(
x1

1−βx1
, x2

1−βx2
,

. . .
)
.

Proof. For n ∈ P and S ⊂ [n − 1], the associated fundamental quasi-symmetric function
is the power series LS,n :=

∑
xi1xi2 · · ·xin where the sum is over all weakly increasing se-

quences of positive integers i1 ≤ i2 ≤ · · · ≤ in with ij < ij+1 whenever j ∈ S. Let QSym
denote the Z-module generated by these functions. It is well-known that ω extends the 
linear map QSym → QSym with LS,n 	→ L[n−1]\S,n [22, §3.6]. Since Gπ is a symmetric lin-
ear combination of fundamental quasi-symmetric functions, ω(Gπ) =

∑
(w,i) β

�(w)−�(π)xi

where the sum is over pairs of words in which w = w1w2 · · ·wl ∈ H(π−1) and 
i = (i1 ≤ i2 ≤ · · · ≤ il) is such that ij < ij+1 whenever wj < wj+1. This is equal to 

Gπ−1

(
x1

1−βx1
, x2

1−βx2
, . . .

)
and, by similar reasoning, also to Gπ∗

(
x1

1−βx1
, x2

1−βx2
, . . .

) �
Lemma 5.4. If λ is a partition then ω(Gλ) = GλT

(
x1 , x2 , . . .

)
.
1−βx1 1−βx2
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Proof. This is equivalent to [20, Proposition 9.22] after observing that the func-
tions K̃λ and Jλ in [20] satisfy K̃λ(βx1, βx2, . . . ) = β|λ|Gλ and Jλ(βx1, βx2, . . . ) =
β|λ|GλT

(
x1

1−βx1
, x2

1−βx2
, . . .

)
. �

Recall that �̂(y) and �̂FPF(z) denote the common lengths of all words in R̂(y) and 
R̂FPF(z). Formulas for these numbers appear in [11, §2.3] and [12, §2.3]. For each z ∈ F∞, 
there is a minimal n ∈ 2N such that z(i) = i − (−1)i for all i > n; define z ∈ I∞ to 
be the involution with i 	→ z(i) for i ∈ [n] that fixes all i > n. If y = z has κ cycles of 
length two, then

�̂(y) = �(y)+κ
2 and �̂FPF(z) = �(y)−κ

2 . (5.1)

We turn to the shifted stable Grothendieck polynomials GPO
y and GPSp

z defined by (1.2). 
These functions can be expressed in terms of the sets B(y) and BFPF(z) from (2.1) and 
(2.2):

Proposition 5.5. If y ∈ I∞ and z ∈ F∞ then

GPO
y =

∑
π∈B(y)

β�(π)−�̂(y)Gπ and GPSp
z =

∑
π∈BFPF(z)

β�(π)−�̂FPF(z)Gπ.

This formulation shows that these power series belong to Ŝym. Let λ be a strict 
partition of n ∈ N. Write SetSMT(λ) for the set of semistandard shifted set-valued 
tableaux of shape λ, i.e., with domain SDλ := {(i, i + j−1) ∈ P ×P : 1 ≤ j ≤ λi}. Ikeda 
and Naruse introduce the following “K-theoretic Schur P -functions” in [19]:

Definition 5.6 (See [19, Theorem 9.1]). The K-theoretic Schur P -function indexed by a 
strict partition λ is GPλ =

∑
T∈SetSSMT(λ) β

|T |−|λ|xT ∈ Ŝym.

Lemma 5.7. If λ is a strict partition then ω(GPλ) = GPλ

(
x1

1−βx1
, x2

1−βx2
, . . .

)
.

Proof. It is an easy exercise from [16, Definition 10.1 and Corollary 10.10] to show that 
the lemma holds whenever λ = (n) is a partition with a single part. The general identity 
follows since ω is a (continuous) ring homomorphism and [28, Theorem 5.4] implies 
GPλ ∈ Z[β][[GP(n) : n ∈ P ]]. �

We can now prove Theorem 1.9 from the introduction.

Proof of Theorem 1.9. For a strict partition λ, let WeakSetSSMT(λ) be the set of 
semistandard weak set-valued tableaux of shape λ, as in Section 4.1. We have 
β|λ|GPλ

(
x1

1−βx1
, x2

1−βx2
, . . .

)
=

∑
T∈WeakSetSSMT(λ) β

|T |xT by [7, Proposition 3.5] (af-

ter making the substitution xi 	→ −βxi). On the other hand, β �̂FPF(z)ω(GPSp
z ) =
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∑
(w,i) β

�(w)xi where the sum is over pairs (w, i) such that w = w1w2 · · ·wl ∈ HSp(z)
and i = (i1 ≤ i2 ≤ · · · ≤ il) is a weakly increasing sequence of positive inte-
gers with ij < ij+1 whenever wj > wj+1. By Theorem 4.5, this sum is exactly ∑

λ czλ
∑

T∈WeakSetSSMT(λ) β
|T |xT . Combining these observations with Lemma 5.7, we 

have

ω(GPSp
z ) =

∑
λ

β|λ|−�̂FPF(z)czλGPλ

(
x1

1−βx1
, x2

1−βx2
, . . .

)
=

∑
λ

czλβ
|λ|−�̂FPF(z)ω(GPλ).

Now simply reapply ω. The formula for GPO
y follows in the same way via Corol-

lary 4.16. �
The operation S∞ → S∞ given by π 	→ π∗ preserves I∞. For z ∈ F∞, define z∗ ∈ F∞

by conjugating z by n · · · 321 where n ∈ 2N is minimal such that z(i) = i − (−1)i for all 
integers i > n; the map w1w2 · · ·wl 	→ (n − w1)(n − w2) · · · (n − wl) is then a bijection 
HSp(z) → HSp(z∗).

Corollary 5.8. If y ∈ I∞ and z ∈ F∞ and GPO
y = GPO

y∗ and GPSp
z = GPSp

z∗ .

Proof. Since GPO
y and GPSp

z are linear combinations of GPλ’s and since B(y∗) = {π∗ :
π ∈ B(y)} and BFPF(z∗) = {π∗ : π ∈ BFPF(z)}, this follows by combining Lemmas 5.3
and 5.7. �

The homogeneous symmetric functions F̂y and F̂ FPF
z obtained by setting β = 0 in 

GPO
y and GPSp

z are the (FPF)-involution Stanley symmetric functions studied in [8,
10–12]. Setting β = 0 in GPλ, alternatively, yields the well-known Schur P -function Pλ. 
Theorem 1.9 with β = 0 implies that F̂y and F̂ FPF

z are Schur-P -positive in the following 
sense:

Corollary 5.9 (See [11, Corollary 1.12] and [12, Theorem 1.1]). Let y ∈ I∞ and z ∈ F∞. 
Then F̂y =

∑
λ byλPλ and F̂ FPF

z =
∑

μ czμPμ where the sums are over strict partitions 
λ of �̂(y) and μ of �̂FPF(z), and the positive integers byλ and czμ are defined as in Theo-
rem 1.9.

Our interpretation of the coefficients in the Schur P -expansion of F̂ FPF
z in this result 

is new. Finally, setting β = 0 in Lemma 5.7 and Corollary 5.8 gives the following:

Corollary 5.10. If y ∈ I∞ and z ∈ F∞ and F̂y = ω(F̂y) = F̂y∗ and F̂ FPF
z = ω(F̂ FPF

z ) =
F̂ FPF
z∗ .
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