期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:129
Edge-reflection positivity and weighted graph homomorphisms
Article
Regts, Guus1,2 
[1] Univ Amsterdam, NL-1012 WX Amsterdam, Netherlands
[2] CWI, NL-1009 AB Amsterdam, Netherlands
关键词: Graph homomorphism;    Edge-coloring model;    Edge-reflection positivity;    Graph invariant;    Partition function;    Vertex model;   
DOI  :  10.1016/j.jcta.2014.09.006
来源: Elsevier
PDF
【 摘 要 】

B. Szegedy (2007) [12] showed that the number of homomorphisms into a weighted graph is equal to the partition function of a complex edge-coloring model. Using some results in geometric invariant theory, we characterize for which weighted graphs the edge-coloring model can be taken to be real-valued that is, we characterize for which weighted graphs the number of homomorphisms into them is edge-reflection positive. In particular, we determine explicitly for which simple graphs the number of homomorphisms into them is equal to the partition function of a real edge-coloring model. This answers a question posed by Szegedy. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2014_09_006.pdf 353KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次