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B. Szegedy (2007) [12] showed that the number of homomor-
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of a complex edge-coloring model. Using some results in ge-
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In particular, we determine explicitly for which simple graphs 
the number of homomorphisms into them is equal to the par-
tition function of a real edge-coloring model. This answers a 
question posed by Szegedy.
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1. Introduction

Partition functions of vertex and edge-coloring models are graph invariants introduced 
by de la Harpe and Jones [5]. In fact, in [5] they are called spin and vertex models 
respectively. (Partition functions of vertex-coloring models are exactly the number of 
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homomorphisms into weighted graphs, as we will see in Section 2.) Both models give a rich 
class of graph invariants. But they do not coincide. For example the number of matchings 
in a graph is the partition function of a real edge-coloring model but not the partition 
function of any real vertex-coloring model. This can be deduced from the characterization 
of partition functions of real vertex-coloring models by Freedman, Lovász and Schrijver 
[3]. (It is neither the partition function of any complex vertex-coloring model, but we 
will not prove this here.) Conversely, the number of independent sets is not the partition 
function of any real edge-coloring model, as follows from Szegedy’s characterization of 
partition functions of real edge-coloring models [12], but it is equal to the number of 

homomorphisms into (i.e., it is the partition function of a (real) vertex-coloring 
model).

However, Szegedy [12] showed that the partition function of any vertex-coloring model 
can be obtained as the partition function of a complex edge-coloring model. Moreover, 
he gave examples when the edge-coloring model can be taken to be real-valued. This 
made him ask the question which partition functions of real vertex-coloring models are 
partition functions of real edge-coloring models (cf. [12, Question 3.2]). In fact, he phrased 
his question in terms of edge-reflection positivity. We will get back to that in Section 3.

In this paper we completely characterize for which vertex-coloring models there ex-
ists a real edge-coloring model such that their partition functions coincide, answering 
Szegedy’s question.

The organization of this paper is as follows. In the next section we give definitions 
of partition functions of edge and vertex-coloring models and state our main result (cf. 
Theorem 2). In Section 3 we show, as an application of our main result, that the number 
of homomorphisms into a simple graph G, is not equal to the partition function of a 
real edge-coloring model unless G is the disjoint union of isolated vertices and complete 
bipartite graphs with equal sides and we discuss edge-reflection positivity. Section 4 is 
devoted to proving Theorem 2.

2. Partition functions of edge and vertex-coloring models

We give the definitions of edge and vertex-coloring models and their partition func-
tions. After that we describe Szegedy’s result on how to obtain a complex edge-coloring 
model from a vertex-coloring model such that their partition functions are the same. 
(The existence also follows from the characterization of partition functions of complex 
edge-coloring models given in [1], but Szegedy gives a direct way to construct the edge-
coloring model from the vertex-coloring model.) And finally we will state our main result 
saying which partition functions of vertex-coloring models are partition functions of real 
edge-coloring models.

Let G be the set of all graphs, allowing multiple edges and loops. Let C denote the 
set of complex numbers and let R denote the set of real numbers. If V is a vector space 
we write V ∗ for its dual space, but by C∗ we mean C \ {0}. For a matrix U we denote 
by U∗ its conjugate transpose and by UT its transpose.



82 G. Regts / Journal of Combinatorial Theory, Series A 129 (2015) 80–92
Let F be a field. An F-valued graph invariant or graph parameter is a map p : G → F

which takes the same values on isomorphic graphs. A graph parameter f : G → C is 
called multiplicative if f(∅) = 1 and if f(G ∪ H) = f(G)f(H) for all G, H ∈ G, where 
G ∪H denotes the disjoint union of G and H.

Throughout this paper we set N = {0, 1, 2 . . .} and for n ∈ N, [n] denotes the set 
{1, . . . , n}. We will now introduce partition functions of vertex and edge-coloring models.

Let a ∈ (C∗)n and let B ∈ C
n×n be a symmetric matrix. We call the pair (a, B) an 

n-color vertex-coloring model. If moreover, a is positive and B is real, then we call (a, B)
a real n-color vertex-coloring model. When talking about a vertex-coloring model, we will 
sometimes omit the number of colors. The partition function of an n-color vertex-coloring 
model (a, B) is the graph invariant pa,B : G → C defined by

pa,B(H) :=
∑

φ:V (H)→[n]

∏
v∈V (H)

aφ(v) ·
∏

uv∈E(H)

Bφ(u),φ(v), (1)

for H ∈ G. Clearly, pa,B is multiplicative.
We can view pa,B in terms of weighted homomorphisms. Let G(a, B) be the complete 

graph on n vertices (including loops) with vertex weights given by a and edge weights 
given by B. Then pa,B(H) can be viewed as counting the number of weighted homo-
morphisms of H into G(a, B). In this context pa,B is often denoted by hom(·, G(a, B)). 
We will usually use hom(·, G) if G is an unweighted graph to emphasize that we count 
ordinary graph homomorphisms. The vertex-coloring model can also be seen as a sta-
tistical mechanics model where vertices serve as particles, edges as interactions between 
particles, and colors as states or energy levels.

Let for a field F,

R(F) := F[x1, . . . , xk] (2)

denote the polynomial ring in k variables. We will only consider F = R and F = C. Note 
that there is a one-to-one correspondence between linear functions h : R(F) → F and 
maps h : Nk → F; α ∈ N

k corresponds to the monomial xα := xα1
1 · · ·xαk

k ∈ R(F) and 
the monomials form a basis for R(F). We call any h ∈ R(C)∗ a k-color edge-coloring 
model. Any h ∈ R(R)∗ is called a real k-color edge-coloring model. When talking about 
an edge-coloring model, we will sometimes omit the number of colors. The partition 
function of a k-color edge-coloring model h is the graph invariant ph : G → C defined by

ph(G) =
∑

φ:E(G)→[k]

∏
v∈V (G)

h

( ∏
e∈δ(v)

xφ(e)

)
, (3)

for G ∈ G. Here δ(v) is the multiset of edges incident with v. Note that, by convention, 
a loop is counted twice. Denote the isolated vertex by K1. Then ph(K1) = 0 according 
to (3) (as E(K1) = ∅). It is however more natural to define ph(K1) = h(1) and extend 
this multiplicatively for disjoint unions of K1’s. Then ph is multiplicative.
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The edge-coloring model can be considered as a statistical mechanics model, where 
edges serve as particles, vertices as interactions between particles, and colors as states 
or energy levels. Moreover, partition functions of edge-coloring models generalize the 
number of proper line graph colorings.

We will now describe a result of Szegedy [12] (see also [13]) showing that partition 
functions of vertex-coloring models are partition functions of edge-coloring models.

Let (a, B) be an n-color vertex-coloring model. As B is symmetric we can write 
B = UTU for some k × n (complex) matrix U , where k = rk(B), the rank of B (cf. 
[4, Lemma 5.2.4]), unless B is equal to the all zero matrix. Let u1, . . . , un ∈ C

k be the 
columns of U . Define the edge-coloring model h by h :=

∑n
i=1 aievui

, where for u ∈ C
k, 

evu ∈ R(C)∗ is the linear map defined by p �→ p(u) for p ∈ R(C).

Lemma 1. (See Szegedy [12].) Let (a, B) and h be as above. Then pa,B(G) = ph(G) for 
every graph G.

Although the proof is not difficult we will give it for completeness.

Proof. Let G = (V, E) ∈ G. We may assume that E �= ∅. Then ph(G) is equal to

∑
φ:E→[k]

∏
v∈V

h

( ∏
e∈δ(v)

xφ(e)

)

=
∑

φ:E→[k]

∏
v∈V

(
n∑

i=1
ai

∏
e∈δ(v)

ui

(
φ(e)

))

=
∑

φ:E→[k]

∑
ψ:V→[n]

∏
v∈V

(
aψ(v)

∏
e∈δ(v)

uψ(v)
(
φ(e)

))

=
∑

ψ:V→[n]

∏
v∈V

aψ(v) ·
∑

φ:E→[k]

∏
v∈V

∏
e∈δ(v)

uψ(v)
(
φ(e)

)

=
∑

ψ:V→[n]

∏
v∈V

aψ(v) ·
∑

φ:E→[k]

∏
vw∈E

uψ(v)
(
φ(vw)

)
uψ(w)

(
φ(vw)

)

=
∑

ψ:V→[n]

∏
v∈V

aψ(v) ·
∏

vw∈E

k∑
i=1

uψ(v)(i)uψ(w)(i)

=
∑

ψ:V→[n]

∏
v∈V

aψ(v) ·
∏

vw∈E

Bψ(v),ψ(w). (4)

By definition, the last line of (4) is equal to pa,B(G). This completes the proof. �
Note that the proof of Lemma 1 also shows that if h ∈ R(C)∗ is given by h =∑n
i=1 aievui

for certain a ∈ (C∗)n and u1, . . . , un ∈ C
k, then ph can be realized as the 
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partition function of an n-color vertex-coloring model. Namely take a = (a1, . . . , an) and 
B = UTU where U is the matrix with columns the ui.

Let (a, B) be an n-color vertex-coloring model. We say that i, j ∈ [n] are twins of 
(a, B) if i �= j and the ith row of B is equal to the jth row of B. If (a, B) has no twins 
we call the model twin free. Suppose now i, j ∈ [n] are twins of (a, B). If ai + aj �= 0, 
let B′ be the matrix obtained from B by removing row and column i and let a′ be the 
vector obtained from a by setting a′j := ai + aj and then removing the ith entry from it. 
In case ai + aj = 0, we remove the ith and the jth row and column from B to obtain B′

and we remove the ith and the jth entry from a to obtain a′. Then pa′,B′ = pa,B. So for 
every vertex-coloring model with twins, we can construct a vertex-coloring model with 
fewer colors which is twin free and which has the same partition function.

We need a few more definitions to state our main result. Let k ∈ N. For a k × n

matrix U we denote its columns by u1, . . . , un. Let, for any k, (·, ·) denote the standard 
bilinear form on Ck; i.e., (u, v) = uT v. We call the matrix U nondegenerate if the span of 
u1, . . . , un is nondegenerate with respect to (·,·). In other words, if rk(UTU) = rk(U). By 
Ok(C) we denote the complex orthogonal group; i.e., Ok(C) := {g ∈ C

k×k | (gv, gv) =
(v, v) for all v ∈ C

k}.
We can now state our main result.

Theorem 2. Let (a, B) be a twin-free n-color vertex-coloring model. Let U be a k × n

matrix such that UTU = B, with k = rk(B). Then there exists g ∈ Ok(C) such that 
gU(gU)∗ ∈ R

k×k. For each such g the following are equivalent:

(i) pa,B = ph for some real edge-coloring model h,
(ii) the set {

(
gui

ai

)
| i = 1, . . . , n} is closed under complex conjugation,

(iii)
∑n

i=1 aievgui
is real.

In case B is real, there is an easy way to obtain a k × n matrix U , where k =
rk(B), such that UU∗ ∈ R

k×k and UTU = B, using the spectral decomposition of B. 
So by Theorem 2, we get the following characterization of partition functions of real 
vertex-coloring models that are partition functions of real edge-coloring models. We will 
state it as a corollary.

Corollary 3. Let (a, B) be a twin-free real n-color vertex-coloring model. Then pa,B = ph
for some real edge-coloring model h if and only if for each i ∈ [n] there exists j ∈ [n]
such that

(i) ai = aj,

(ii) for each eigenvector v of B with eigenvalue λ :
{
λ > 0 ⇒ vi = vj ,

λ < 0 ⇒ vi = −vj .
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3. Homomorphisms into simple graphs and edge-reflection positivity

We call a graph twin free is its adjacency matrix does not contain two equal rows. 
In this section we show, as an application of Theorem 2, that for each simple twin free 
graph G that contains a vertex of degree at least 2, the parameter hom(·, G) is not the 
partition function of a real edge-coloring model. We moreover introduce the notion of 
edge-reflection positivity and Szegedy’s characterization of partition functions of real 
edge-coloring models in terms of multiplicativity and edge-reflection positivity. After 
that we shall discuss some consequences of this characterization to the homomorphism 
numbers.

3.1. Homomorphisms into simple graphs

Theorem 4. Let G be a simple twin free graph. Then hom(·, G) is the partition function 
of a real edge-coloring model if and only if G is the disjoint union of edges and at most 
one isolated vertex.

Proof. Denote the edge by K2. It is easy to see by Corollary 3 that hom(·, K2) is the 
partition function of a real edge-coloring model. This was already shown by Szegedy [12]. 
This easily extends to the disjoint union of edges and vertices.

To prove the opposite direction, let A be the adjacency matrix of G. Just as in the 
derivation of Corollary 3, using the spectral decomposition of A, we can write A = UTU , 
where U has a special structure:

each row of U is either imaginary zero or real. (5)

This follows from the fact that each row of U is equal to the product of v with a square 
root of λ, where λ is an eigenvalue of A and v a real eigenvector corresponding to that 
eigenvalue.

Let u1, . . . , un be the columns of U and let h =
∑n

i=1 evui
. As G is twin free, the 

ui are distinct, so Theorem 2 implies that hom(·, G) is the partition function of a real 
edge-coloring model if and only if h is real-valued. Now suppose that h is real-valued. 
Let for d ∈ N, Bd be the multigraph consisting of two vertices connected by d edges. 
For convenience we introduce the following notation: for a map φ : [d] → [n] let xφ :=
x
|φ−1(1)|
1 · · ·x|φ−1(n)|

n . Then, since h is real-valued,

ph(Bd) =
∑

φ:[d]→[n]

(
n∑

i=1
xφ(ui)

)(
n∑

j=1
xφ(uj)

)

=
∑ (

n∑
xφ(ui)

)(
n∑

xφ(uj)
)
. (6)
φ:[d]→[n] i=1 j=1
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For even d, the right-hand side of (6) can be lower bounded as follows:

ph(Bd) =
n∑

i,j=1

∑
φ:[d]→[n]

xφ(ui)xφ(uj) =
n∑

i,j=1
〈ui, uj〉d ≥

n∑
i=1

‖ui‖2d, (7)

since, by (5), 〈ui, uj〉 is a real number for each i, j ∈ [n]. (Here 〈·,·〉 denotes the standard 
Hermitian inner product on Ck.)

Now assume that G has a vertex of degree at least 2. Then

there exists a vertex i ∈ [n] such that ‖ui‖ > 1. (8)

To see this, suppose to the contrary that all ‖ui‖ are at most 1. As h is real-valued, we 
know by Theorem 2, that {u1, . . . , un} is closed under complex conjugation. Fix an edge 
ij of G and choose j∗ such that uj = uj∗ . By Cauchy–Schwarz,

1 = Ai,j = (ui, uj) = 〈ui, uj∗〉 ≤ ‖ui‖‖uj∗‖, (9)

which implies that ‖ui‖ = ‖uj∗‖ = 1. Hence uj∗ = ui. So for each edge ij of G we have 
ui = uj . Let i be a vertex of degree at least 2, and let j, k be distinct neighbors of i. It 
follows that uj = ui = uk, but this contradicts the fact that the ui are distinct (as G is 
twin free). This shows (8).

Now (7) implies that ph(B2l) tends to infinity as l → ∞. But this contradicts the 
fact that ph(B2l) = hom(B2l, G) ≤ n2 for all l. So we conclude that if G has a vertex 
of degree at least 2, then hom(·, G) is not equal to the partition function of any real 
edge-coloring model. �

In view of removing twins, as described just above Theorem 2, the following is a direct 
corollary to Theorem 4.

Corollary 5. Let G be a simple graph. Then hom(·, G) is the partition function of a real 
edge-coloring model if and only if each connected component of G is either a single vertex 
or a complete bipartite graph with equal sides.

Remark 1. Let G = ([n], E) be a simple graph in which some component is not a single 
vertex or a complete bipartite graph with two equal sides, so that hom(·, G) is not the 
partition function of a real edge-coloring model. Then the proof of Theorem 4 shows that 
adding vertex weights ai > 0 (i = 1, . . . , n) to G this does not change, as hom(B2l, G)
remains bounded.

3.2. Edge-reflection positivity

To describe the concept of edge-reflection positivity we need some definitions. Let ©
denote the pair (∅, {1}), which we will call the circle. Although technically it is not a 
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graph, the circle can be thought of as the graph with one edge and no vertices. Let G′ be 
the set consisting of disjoint unions of elements of G and finitely many circles. Note that 
if h is a k-color edge-coloring model, then ph(©) = k. For any l ∈ N, an l-fragment is an 
element of G′, which has l of its vertices labeled 1 up to l, each having degree one. These 
labeled vertices are called the open ends of the fragment. An edge connected to an open 
end is called a half edge. Let Fl be the collection of all l-fragments. We can identify F0
with G′. Define a gluing operation ∗ : Fl ×Fl → G′ as follows: for F, H ∈ Fl connect the 
neighbors of identically labeled open ends with an edge and then delete the open ends; 
the resulting graph is denoted by F ∗ H. Note that by gluing two half edges, of which 
both their endpoints are open ends, one creates a circle.

For any graph invariant p, let Mp,l be the Fl ×Fl matrix2 defined by

Mp,l(F,H) = p(F ∗H), (10)

for F, H ∈ Fl. This matrix is called the l-th edge connection matrix of p. A graph invariant 
p for which Mp,l is positive semidefinite for each l ∈ N is called edge-reflection positive. 
We can now state Szegedy’s characterization of partition functions of real edge-coloring 
models.

Theorem 6. (See Szegedy [12].) Let p : G′ → R be a graph invariant. Then there exists 
a real edge-coloring model h such that ph = p if and only if p is multiplicative and 
edge-reflection positive.

In view of Theorem 6, one could consider Theorem 2 as a characterization of those 
partition functions of vertex-coloring models that are edge-reflection positive. In partic-
ular, by Theorem 4, Theorem 6 implies that for each simple twin free graph G which 
has a vertex of degree at least 2, there exists k, t ∈ N, k-fragments F1, . . . , Ft and λ ∈ R

t

such that 
∑t

i,j=1 λiλj hom(Fi ∗Fj , G) < 0. It would be interesting to explicitly find such 
inequalities.

It is interesting to relate the consequence of this to homomorphism densities. The ho-
momorphism density t(H, G) of a graph H in a graph G is equal to 1

|V (G)||V (H)| hom(H, G). 
(This is the probability that a random map from V (H) to V (G) is a homomorphism. 
Equivalently, giving each vertex of G weight 1/|V (G)|, t(H, G) is equal to the num-
ber of homomorphisms into the weighted graph G.) Let for p ∈ [0, 1], G(n, p) be 
the Erdős–Rényi random graph (i.e. each edge ij, i, j ∈ [n] is selected independently 
with probability p). By Remark 1, with probability tending to one (as n goes to 
infinity), t(·, G(n, p)) is not edge-reflection positive. But if we let n go to infinity, 
t(H, G(n, p)) → p|E(H)| (for all simple graphs H with probability one). This limiting 
parameter is however edge-reflection positive, as it can be represented by the partition 
function of the 1-color edge-coloring model hp defined by hp(xn) := √

pn for n ∈ N.

2 This is an infinite matrix whose rows and columns are indexed by Fk.
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We note that this example can be generalized quite a bit with the use of W -random 
graphs introduced by Lovász and Szegedy [10] (see also [9]).

4. Proof of Theorem 2

In this section we give a proof of Theorem 2; it is based on some fundamental results 
in geometric invariant theory. We first give a few lemma’s after which we can give our 
proof of the main theorem.

We need some definitions and conventions. For a square matrix X, tr(X) denotes 
the trace of X, the sum of the diagonal elements of X. Recall that Ol(C) denotes the 
complex orthogonal group. The real orthogonal group is the subgroup of Ol(C) given by 
all real matrices and is denoted by Ol(R).

Let W ∈ C
l×n be any matrix and consider the function fW : Ol(C) → R defined by

g �→ tr
(
W ∗g∗gW

)
= tr

(
(gW )∗gW

)
. (11)

This function was introduced by Kempf and Ness [7] in the context of connected reductive 
linear algebraic groups acting on finite dimensional vector spaces. Note that fW is left-
invariant under Ol(R) and right-invariant under Stab(W ) := {g ∈ Ol(C) | gW = W}. 
Let e ∈ Ol(C) denote the identity. We are interested in the situation that the infimum 
of fW over Ol(C) is equal to fW (e).

Lemma 7. The function fW has the following properties:

(i) infg∈Ol(C) fW (g) = fW (e) if and only if WW ∗ ∈ R
l×l,

(ii) if WW ∗ ∈ R
l×l, then fW (e) = fW (g) if and only if g ∈ Ol(R) · Stab(W ).

Proof. We start by showing that

fW has a critical point at e if and only if WW ∗ ∈ R
l×l. (12)

By definition, a critical point of fW is a point g such that (DfW )g(X) = 0 for all 
X ∈ Tg(Ol(C)), where Tg(Ol(C)) is the tangent space of Ol(C) at g and where (DfW )g
is the derivative of fW at g. It is well known that the tangent space of Ol(C) at e is the 
space of skew-symmetric matrices; i.e., Te(Ol(C)) = {X ∈ C

l×l | XT + X = 0}. It is 
easy to see that the derivative of fW at e is the R-linear map (DfW )e ∈ HomR(Cl×l, R)
defined by Z �→ tr(W ∗(Z+Z∗)W ). Now let Z be skew-symmetric and write Z = X+ iY , 
with X, Y ∈ R

l×l. Note that Z is skew-symmetric if and only if both X and Y are 
skew-symmetric. Write W = V + iT with V, T ∈ R

l×l. Then (DfW )e(Z) is equal to

tr
((
V T − iTT

)(
X + iY + XT − iY T

)
(V + iT )

)
= 2 tr

((
V T − iTT

)
iY (V + iT )

)
= 2 tr

(
TTY V

)
− 2 tr

(
V TY T

)
= 4 tr

(
TTY V

)
= 4 tr

(
Y V TT

)
, (13)



G. Regts / Journal of Combinatorial Theory, Series A 129 (2015) 80–92 89
where we use that X and Y are skew symmetric, and standard properties of the trace. 
So Dfe(Z) = 0 for all skew symmetric Y if and only if TV T = V TT . That is, if and only 
if WW ∗ ∈ R

l×l. This shows (12).
By a result of Kempf and Ness (cf. [7, Theorem 0.1]) we can now conclude that (i) 

and (ii) hold. However, we will give an independent and elementary proof.
First the proof of (i). Note that (12) immediately implies that fW does not attain a 

minimum at e if WW ∗ /∈ R
l×l. Conversely, suppose WW ∗ ∈ R

l×l. Since WW ∗ is real 
and positive semidefinite there exists a real matrix V such that WW ∗ = V V T . Now note 
that, by the cyclic property of the trace, fW (g) = tr(g∗gWW ∗). So we have fW = fV . 
Let I denote the identity matrix. Take any g = X + iY ∈ Ol(C), where X, Y ∈ R

l×l. 
Using that XTX − Y TY = I, and the fact that fW is real-valued, we find that

fW (g) = tr
((
XTX + Y TY

)
V V T

)
= tr

(
V V T

)
+ 2 tr

(
Y TY V V T

)
≥ tr

(
V V T

)
= fW (e). (14)

This proves (i).
Next, suppose that fW (g) = fW (e) for some g ∈ Ol(C). Again, since WW ∗ is real and 

positive semidefinite there exists a real matrix V such that WW ∗ = V V T . Moreover, 
the span of the columns of V is equal to the span of the columns of W . This implies 
that Stab(V ) = Stab(W ). Now write g = X + iY , with X, Y ∈ R

l×l. As, by (14), 
fW (g) = fW (e) if and only if Y V = 0, it follows that gV = XV + iY V = XV is a real 
matrix. Let v1, . . . , vn be the columns of V . Then, since by definition of the orthogonal
group, (gvi, gvj) = (vi, vj) for all i, j, and since the gvi are real, there exists g1 ∈ Ol(R)
such that g1gV = V . This implies that g ∈ Ol(R) · Stab(V ). This finishes the proof 
of (ii). �

For any l and a ∈ C
l we denote by a the complex conjugate of a.

Lemma 8. Let u1, . . . , un ∈ C
k be distinct vectors, let a ∈ (C∗)n and let h :=

∑n
i=1 aievui

. 
Then h is a real edge-coloring model if and only if the set {

(
ui

ai

)
| i = 1, . . . , n} is closed 

under complex conjugation.

Proof. Suppose first that the set {
(
ui

ai

)
| i = 1, . . . , n} is closed under complex conjuga-

tion. Then for p ∈ R(R), h(p) =
∑n

i=1 aip(ui) =
∑n

i=1 aip(ui) = h(p). Hence, h(p) ∈ R. 
So h is real-valued.

Now the ‘only if’ part. By possibly adding some vectors to {u1, . . . , un} and extending 
the vector a with zero’s, we may assume that {u1, . . . , un} is closed under complex 
conjugation. We must show that ui = uj implies ai = aj . We may assume that u1 = u2. 
Using Lagrange interpolating polynomials we find p ∈ R(C) such that p(uj) = 1 if 
j = 1, 2 and 0 else. Let p′ := 1/2(p + p). Then p′ ∈ R(R) and consequently, h(p′) =∑n

i=1 aip(ui) = a1 + a2 ∈ R. Similarly, there exists q ∈ R(C) such that q(u1) = i, 
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q(u2) = −i and q(uj) = 0 if j > 2. Setting q′ := 1/2(q + q) and applying h to it, we 
find that i(a1 − a2) ∈ R. So we conclude that a1 = a2. Continuing this way proves the 
lemma. �

We next develop some framework and ideas from [1] (see also [2]). For any l ∈ N, 
define

S := C
[
yα

∣∣ α ∈ N
l
]
, (15)

the polynomial ring in the infinitely many variables yα. These variables are in bijective 
correspondence with the monomials of R(C) via yα ↔ xα1

1 · · ·xαl

l . Let Nl
d = {α ∈ N

l |
|α| ≤ d} and let Sd ⊂ S be the ring of polynomials in the (finitely many) variables yα
with α ∈ N

l
d. Furthermore, let Gd be the set of all graphs of maximum degree at most d. 

Let CG be the vector space consisting of (finite) formal C-linear combinations of graphs 
and let π : CG → S be the linear map defined by

G �→
∑

φ:EG→[l]

∏
v∈V G

yφ(δ(v)), (16)

for any G ∈ G, where we consider the multiset φ(δ(v)) as an element of Nl. Note that 
π(G)(y) = py(G) for all G ∈ G and y ∈ R(C)∗.

The orthogonal group acts on S via the bijection between the variables of S and the 
monomials of R(C). Then, as was shown by Szegedy [12] (see also [1]), for any d,

π(CGd) = S
Ol(C)
d , (17)

where SOl(C)
d denotes the subspace of Sd of polynomials that are Ol(C)-invariant. Note 

that the action of Ol(C) on R(C) induces an action on R(C)∗, i.e. Ol(C) acts on edge-
coloring models. Then (17) in particular implies that pgy = py for all g ∈ Ol(C) and all 
y ∈ R(C)∗.

Let, for any d,

Yd :=
{
y ∈ C

N
l
d

∣∣ π(G)(y) = ph(G) for all G ∈ Gd

}
. (18)

Then Yd is a fiber of the quotient map CN
l
d → C

N
l
d//Ol(C). In particular, Yd contains a 

unique closed orbit Cd (cf. [6, Section 8.3] or [8, Satz 3, p. 101]).
Let prd : CN

l → C
N

l
d be the projection sending y to yd := y|

C
Nl
d
. We also write prd

for the restriction of prd to CNd′ , for any d′ ≥ d. Note that prd(Yd′) ⊆ Yd for d′ ≥ d, as 
Gd ⊆ Gd′ .

We can consider any k-color edge-coloring model y as an l-color edge-coloring model 
without changing its partition function on G, by setting y(α) = 0 if αi > 0 for some 
i > k. The following lemma is based on results from [2].
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Lemma 9. Let h :=
∑n

i=1 aievui
∈ R(C)∗, with a ∈ (C∗)n and distinct u1, . . . , un ∈ C

k. 
Suppose the bilinear form restricted to the span of the ui is nondegenerate. If y is a real 
l-color edge-coloring model such that ph(G) = py(G) for all G ∈ G, then there exists 
g ∈ Ol(C) such that gh = y.

Proof. We may assume that l ≥ k. In case l > k, we need to append the gui’s with l− k

zero’s. Note that the bilinear form restricted to the span of the ui remains nondegenerate.
Then, by [2, Theorem 5], for each d ≥ 3n, hd ∈ Cd. Now since y is real-valued, a result 

of Kempf and Ness [7, Theorem 0.2] (see also [11, Proposition 7.9]) implies that yd ∈ Cd, 
for every d. We now claim that this implies that there exists g ∈ Ol(C) such that gh = y. 
Indeed, define, for any d, the stabilizer of yd by

Stab(yd) :=
{
g ∈ Ol(C)

∣∣ gyd = yd
}
. (19)

Then Stab(yd) =
⋂

d′≤d Stab(yd′). Since Ol(C) is Noetherian there exists d1 ≥ 3n
such that Stab(yd1) =

⋂
d∈N

Stab(yd). Now since we have a canonical bijection from 
Ol(C)/Stab(yd) to Cd, this implies that for any d ≥ d1, if g ∈ Ol(C) is such that 
gyd = hd, then also gy = h. This proves the lemma. �
Proof of Theorem 2. Recall that U is a rk(B) × n matrix such that UTU = B, with 
columns u1, . . . , un. It is well known that since the matrix U is nondegenerate, the 
Ok(C)-orbit of U is closed (cf. [2, Theorem 5]). This implies that fU attains its minimum 
at some g ∈ Ok(C). So Lemma 7(i) implies that gU(gU)∗ ∈ R

k×k.
Let h′ =

∑n
i=1 aievgui

and let h =
∑n

i=1 aievui
. Observe that since (gU)T gU = B, 

Lemma 1 implies that ph = ph′ . This shows that (iii) implies (i). (This also follows from 
(17), using that h′ = gh.) Moreover, for the rest of the proof we may assume that g is 
equal to the identity.

Since (a, B) is twin free, the ui are distinct. Hence Lemma 8 immediately implies the 
equivalence of (ii) and (iii).

To prove that (i) implies (iii). Let y be a real l-color edge-coloring model such that 
pa,B = py. Since U is nondegenerate, Lemma 9 implies the existence of a g ∈ Ol(C)
such that y = gh. Now note that y =

∑n
i=1 aievgui

. As y is real, Lemma 8 implies that 
the set {gui} is closed under complex conjugation, implying that gU(gU)∗ ∈ R

l×l. So 
by Lemma 7(i) the infimum of fgU is attained at e. Equivalently, the infimum of fU is 
attained at g. Since UU∗ ∈ R

k×k, this implies, by Lemma 7(ii), that g ∈ Ol(R) ·Stab(U). 
Hence g = g1 · s for some g1 ∈ Ol(R) and s ∈ Stab(U). Now note that since sh = h we 
have that h = g−1

1 y and hence h is real. �
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