期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:164
Asymptotically optimal Boolean functions
Article
Schmidt, Kai-Uwe1 
[1] Paderborn Univ, Dept Math, Warburger Str 100, D-33098 Paderborn, Germany
关键词: Boolean function;    Covering radius;    Nonlinearity;    Reed-Muller code;   
DOI  :  10.1016/j.jcta.2018.12.005
来源: Elsevier
PDF
【 摘 要 】

The largest Hamming distance between a Boolean function in n variables and the set of all affine Boolean functions in n variables is known as the covering radius rho(n), of the [2(n), n + 1] Reed-Muller code. This number determines how well Boolean functions can be approximated by linear Boolean functions. We prove that lim(n ->infinity )2(n/2) - rho(n)/2(n/2-1 )= 1, which resolves a conjecture due to Patterson and Wiedemann from 1983. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2018_12_005.pdf 292KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次