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The largest Hamming distance between a Boolean function 
in n variables and the set of all affine Boolean functions in n
variables is known as the covering radius ρn of the [2n, n + 1]
Reed–Muller code. This number determines how well Boolean 
functions can be approximated by linear Boolean functions. 
We prove that

lim
n→∞

2n/2 − ρn/2n/2−1 = 1,

which resolves a conjecture due to Patterson and Wiedemann 
from 1983.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction and results

The Hamming distance of two Boolean functions F, G : Fn
2 → F2 is

d(F,G) = #{y ∈ Fn
2 : F (y) �= G(y)}.

Put
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ρn = max
F

min
G

d(F,G),

where the maximum is over all functions F from Fn
2 to F2 and the minimum is over 

all 2n+1 affine functions G from Fn
2 to F2. Then ρn equals the covering radius of the 

[2n, n +1] Reed–Muller code, whose determination is one of the oldest and most difficult 
open problems in coding theory [6], [14], [17]. We refer to [4] for background on the 
covering radius of codes in general and its combinatorial and geometric significance. The 
determination of ρn also answers the question of how well Boolean functions can be 
approximated by linear functions, which is of significance in cryptography [3]. One can 
also interprete ρn in terms of the Fourier coefficients of Boolean functions (see Section 2).

It is convenient to define

μn = 2n/2 − ρn/2n/2−1.

An averaging argument shows that μn ≥ 1 (see Section 2) and a simple recursive con-
struction involving functions of the form F (y) +uv on Fn+2

2 shows that μn+2 ≤ μn. The 
fact that μ2 = 1 implies that μn = 1 for all even n; the functions attaining the minimum 
are known as bent functions and these have been studied extensively for more than forty 
years [15], [12].

We are interested in the case that n is odd. Since μ1 =
√

2, we have 1 ≤ μn ≤
√

2. It 
is known that equality holds in the upper bound for n = 3 (trivial), for n = 5 [1], and for 
n = 7 [13], [7]. It was suggested in [6] that μn =

√
2 for all odd n, which was disproved 

by Patterson and Wiedemann [14], by showing that

μn ≤
√

729/512 = 1.19 . . . for each n ≥ 15. (1)

More recently it was shown by Kavut and Yücel [8] that

μn ≤
√

49/32 = 1.23 . . . for each n ≥ 9.

Patterson and Wiedemann [14] also conjectured that limn→∞ μn = 1. However no im-
provement of (1) for large n has been found since this conjecture has been posed in 1983. 
We shall prove that this conjecture is true.

Theorem 1. We have limn→∞ μn = 1.

Several researchers (for example in [16], [5], [11]) also investigated

ρ′n = max
F

min
G

d(F,G),

where now the maximum is over all balanced functions F from Fn
2 to F2 (which means 

that F takes the values 0 and 1 equally often) and the minimum is still over all affine 
functions G from Fn

2 to F2. Put
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μ′
n = 2n/2 − ρ′n/2n/2−1.

Slight modifications of our proof of Theorem 1 lead to the following result, which proves 
a conjecture due to Dobbertin [5, Conjecture B] from 1995.

Theorem 2. We have limn→∞ μ′
n = 1.

2. Proof of main result

In what follows, we identify Fn
2 with F2n and consider functions f : F2n → C. Let ψ :

F2n → C be the canonical additive character of F2n , which is given by ψ(y) = (−1)Tr(y), 
where Tr is the absolute trace function on F2n . The Fourier transform of f is the function 
f̂ : F2n → C given by

f̂(a) = 1
2n/2

∑
y∈F2n

f(y)ψ(ay).

It is well known [3] and readily verified that

μn = min
f

max
a∈F2n

|f̂(a)|,

where the minimum is over all functions f : F2n → {−1, 1}. From Parseval’s identity∑
a∈F2n

|f̂(a)|2 =
∑

y∈F2n

|f(y)|2

it follows now that μn ≥ 1.
We shall construct functions f with image {−1, 1} for which |f̂(a)| is small for all 

a ∈ F2n . Let H be a (multiplicative) subgroup of F∗
2n of index v and define the indicator 

function of H on F2n by

1H(y) =
{

1 for y ∈ H

0 otherwise.

Let h : H → {−1, 1} be a function to be specified later. Let T be a complete system 
of coset representatives of H in F∗

2n and let g : T → {0, −1, 1} be a function satisfying 
g(z) = 0 if and only if z ∈ H and such that g is balanced, which means that the images 
−1 and 1 occur equally often. We define f : F2n → {−1, 1} by f(0) = 1 and

f(y) = 1H(y)h(y) +
∑
z∈T

1H(y/z) g(z) for y ∈ F∗
2n .

Note that f is constant on the cosets of H, except for H itself. Such functions were also 
used by Patterson and Wiedemann [14] in their proof of (1) and have been also studied 
in several other papers, for example in [2].
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Recall that ordv(a) for integers v and a with v > 0 and gcd(a, v) = 1 is the smallest 
positive integer t such that v | at − 1. Note that for every multiple n of ordv(2), there 
exists a subgroup of F∗

2n of index v.

Proposition 3. Let e be a positive integer and let v = 7e. Then there exists an odd multiple 
n of ordv(2) and a function h : H → {−1, 1} such that the function f : F2n → {−1, 1}, 
defined above, satisfies

max
a∈F2n

|f̂(a)| ≤ 1 + 12
√

log(2v)
v

.

Since ord7(2) = 3 and 2 is a square modulo 7e, Euler’s theorem can be used to show 
that ord7e(2) equals φ(7d)/2 = 3 · 7d−1 for some positive integer d (where φ is the Euler 
totient function). Indeed, using ord72(2) = 21, a routine induction involving the binomial 
theorem shows that ord7e(2) equals φ(7e)/2.

Therefore ord7e(2) is odd for all positive integers e. Now let e tend to infinity in 
Proposition 3 and use μn = 1 for all even n and the inequality 1 ≤ μn+2 ≤ μn for all n
to deduce Theorem 1 from Proposition 3.

Remark. Proposition 3 remains true if 7 is replaced by an arbitrary prime q satisfying 
q ≡ 3 (mod 4) and ordqe(2) = φ(qe)/2 for each e ∈ {1, 2} (as for q = 7, this ensures 
that this identity holds for all positive integers e). The first primes of this form are 
7, 23, 47, 71, 79, but it is not known whether there are infinitely many such primes. We 
choose q = 7 to keep our proof simple.

To prove Proposition 3, we define functions f1, f2 : F2n → {0, −1, 1} by

f1(y) = 1H(y)h(y),

f2(y) =
∑
z∈T

1H(y/z) g(z),

so that f(y) = f1(y) + f2(y) for all y ∈ F∗
2n and f̂(a) = 2−n/2 + f̂1(a) + f̂2(a) for all 

a ∈ F2n . We shall see that bounding |f̂1(a)| is not difficult using known results from 
probabilistic combinatorics. Bounding |f̂2(a)| requires a little more work.

For a multiplicative character χ of F2n , the Gauss sum G(χ) is defined to be

G(χ) =
∑

y∈F∗
2n

ψ(y)χ(y).

It is well known that |G(χ)| = 2n/2 if χ is nontrivial (which means that χ(y) �= 1 for 
some y ∈ F∗

2n) [10, Theorem 5.11].
We begin with the following elementary lemma.



54 K.-U. Schmidt / Journal of Combinatorial Theory, Series A 164 (2019) 50–59
Lemma 4. Let ε > 0 and suppose that, for all nontrivial multiplicative characters χ of 
F2n of order dividing v, we have

∣∣∣∣G(χ)
2n/2

− 1
∣∣∣∣ ≤ ε.

Then we have

max
a∈F2n

|f̂2(a)| ≤ 1 + ε v.

Proof. Since g is balanced, we have f̂2(0) = 0, so let a ∈ F∗
2n . Let χ be a multiplicative 

character of F2n of order v. Then the indicator function 1H satisfies

1H(y) = 1
v

v−1∑
j=0

χj(y) for each y ∈ F∗
2n . (2)

Therefore we have

∑
y∈F2n

1H(y)ψ(ay) = 1
v

v−1∑
j=0

∑
y∈F∗

2n

ψ(ay)χj(y)

= 1
v

v−1∑
j=0

χj(a−1)
∑

y∈F∗
2n

ψ(y)χj(y)

= 1
v

v−1∑
j=0

χj(a)G(χj),

which we use to obtain

2n/2f̂2(a) =
∑

y∈F2n

∑
z∈T

1H(y/z)g(z)ψ(ay)

=
∑
z∈T

g(z)
∑

y∈F2n

1H(y)ψ(ayz)

= 1
v

∑
z∈T

g(z)
v−1∑
j=0

χj(az)G(χj)

= 1
v

v−1∑
j=0

G(χj)χj(a)
∑
z∈T

g(z)χj(z).

Now write G(χj) = 2n/2(1 + γj), so that |γj | ≤ ε for all j ∈ {1, . . . , v − 1} by our 
assumption. Since G(χ0) = −1, we obtain f̂2(a) = M(a) + E(a), where
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M(a) = 1
v

v−1∑
j=1

χj(a)
∑
z∈T

g(z)χj(z) − 1
2n/2 v

∑
z∈T

g(z)

= 1
v

∑
z∈T

g(z)
v−1∑
j=1

χj(az)

= 1
v

∑
z∈T

g(z)
v−1∑
j=0

χj(az) − 1
v

∑
z∈T

g(z)

= g(b) for b ∈ T such that ab ∈ H,

using that g is balanced and (2) again, and

|E(a)| =

∣∣∣∣∣1v
v−1∑
j=1

γj χ
j(a)

∑
z∈T

g(z)χj(z)

∣∣∣∣∣ ≤ ε v.

This gives the required result. �
The following explicit evaluation of certain Gauss sums [9, Proposition 4.2] (see 

also [20, Theorem 4.1]) will help us to control the error term in Lemma 4.

Lemma 5 ([9, Proposition 4.2]). Let q > 3 be a prime satisfying q ≡ 3 (mod 4). Let d
be a positive integer, write k = φ(qd)/2, and let p be a prime such that ordqd(p) = k. 
Let τ be a multiplicative character of Fpk of order qd and let h be the class number of 
Q(

√−q). Then

G(τ) = 1
2(a + b

√
−q)p(k−h)/2,

where a and b are integers satisfying a, b �≡ 0 (mod p), a2 + b2q = 4ph, and ap(k−h)/2 ≡
−2 (mod q).

We shall apply Lemma 5 with p = 2 and q = 7. Since the class number of Q(
√
−7)

equals 1 and

2(φ(7d)/2−1)/2 ≡ 2 (mod 7)

for all positive integers d, we find that a = −1 and b2 = 1 in this case. As noted 
after Proposition 3, we have ord7d(2) = φ(7d)/2 for all positive integers d, so that the 
hypothesis in Lemma 5 is satisfied for p = 2 and q = 7.

As a corollary to Lemma 5, we obtain the following lemma.

Lemma 6. Let e and d be integers satisfying 1 ≤ d ≤ e and write m = ord7e(2). Let χ be 
a multiplicative character of F2sm of order 7d. Then
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G(χ)
2sm/2 = −(−1)s

(
−1 ±

√
−7

23/2

)7e−d s

,

where the sign depends on χ.

Proof. Write k = ord7d(2) and let τ be the multiplicative character of F2k such that χ
is the lifted character of τ , by which we mean that χ = τ ◦N, where N is the field norm 
from F2sm to F2k . Lemma 5 and the preceding discussion implies that

G(τ) = 2(k−3)/2(−1 ±
√
−7).

From the Davenport–Hasse theorem [10, Theorem 5.14] we find that

G(χ) = −(−1)sm/k
[
2(k−3)/2(−1 ±

√
−7)

]sm/k

,

and the lemma follows since m/k = φ(7e)/φ(7d) = 7e−d. �
The next lemma gives the desired control for the error term in Lemma 4.

Lemma 7. Let e be a positive integer, let v = 7e, and write m = ordv(2). Let ε > 0. 
Then there is an infinite set S of odd positive integers such that, for all s ∈ S and all 
nontrivial multiplicative characters χ of F2sm of order dividing v, we have

|argG(χ)| ≤ ε.

Here, arg(ξ) ∈ (−π, π] is the principal angle of a nonzero complex number ξ.

Proof. Let τ be a multiplicative character of F2m of order v. Since the units of the ring 
of algebraic integers in Q(

√
−7) are ±1, we find from Lemma 6 that G(τ)/2m/2 is not 

a root of unity. Therefore Weyl’s uniform distribution theorem [19, Satz 2] implies that 
([G(τ)/2m/2]2i)i∈N, and therefore also ([G(τ)/2m/2]2i+1)i∈N, is uniformly distributed on 
the complex unit circle. Hence there is an infinite set S of odd positive integers such that

|arg(G(τ)s)| ≤ ε

7e−1

for all s ∈ S.
Let s ∈ S and let τ ′ be the lifted character of τ to F2sm , namely τ ′ = τ ◦ N, where N

is the field norm from F2sm to F2m . Then τ ′ has order v = 7e and the Davenport–Hasse 
theorem [10, Theorem 5.14] states G(τ ′) = G(τ)s, so that

|argG(τ ′)| ≤ ε

7e−1 .

Now let χ be a multiplicative character of F2sm of order 7d, where 1 ≤ d ≤ e. Then by 
Lemma 6 we have
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|argG(χ)| ≤ 7e−d |argG(τ ′)|,

which completes the proof. �
We need one more classical result from probabilistic combinatorics due to Spencer [18].

Lemma 8 ([18, Theorem 7]). Let A be a matrix of size M × N satisfying M ≥ N with 
real-valued entries of absolute value at most 1. Then, for all sufficiently large N , there 
exists u ∈ {−1, 1}N such that

‖Au‖ ≤ 11
√
N log(2M/N),

where ‖·‖ is the maximum norm on RM .

We now prove Proposition 3.

Proof of Proposition 3. Write m = ordv(2). Lemma 7 implies that, for all ε > 0, there 
is an infinite set S of odd positive integers such that∣∣∣∣∣ G(χ)

2sm/2 − 1

∣∣∣∣∣ ≤ ε

for all s ∈ S and all nontrivial multiplicative characters χ of F2sm of order dividing v. 
Writing n = sm and taking ε = 1

2
√

log(2v)/v3, Lemma 4 then implies that

max
a∈F2n

∣∣f̂2(a)
∣∣ ≤ 1 + 1

2

√
log(2v)

v

for infinitely many odd positive integers n.
It remains to consider f̂1. Since

f̂1(a) = 1
2n/2

∑
y∈H

h(y)ψ(ay),

we find from Lemma 8 with M = 2n and N = (2n − 1)/v that, for all sufficiently large 
n, there exists h : H → {−1, 1} such that

max
a∈F2n

|f̂1(a)| ≤ 11
√

log(2v)
v

.

Since f̂(a) = 2−n/2 + f̂1(a) + f̂2(a) for all a ∈ F2n , there is an odd integer n that is a 
multiple of m = ordv(2) such that

max |f̂(a)| ≤ 1 + 12
√

log(2v)
,

a∈F2n v
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as required. �
We now comment on the required modifications of our proof to prove Theorem 2. The 

function h identified in the proof of Proposition 3 satisfies
∣∣∣∣∣
∑
y∈H

h(y)

∣∣∣∣∣ ≤ 11
√

2n log(2v)
v

.

Therefore we have to change at most 6
√

2n log(2v)/v values of the function h to get
∑
y∈H

h(y) = −1.

This increases |f̂1(a)| by at most 12
√

log(2v)/v. The resulting function f is balanced 
and satisfies

max
a∈F2n

|f̂(a)| ≤ 1 + 24
√

log(2v)
v

.

Using 1 ≤ μ′
n+2 ≤ μ′

n, this shows that limi→∞ μ′
2i+1 = 1. We combine this with 

limi→∞ μ′
2i = 1, which was already shown in [5], but also follows from our argument 

using further slight modifications, to obtain a proof of Theorem 2.
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