期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:178
Circular automata synchronize with high probability
Article
Aistleitner, Christoph1  D'Angeli, Daniele2  Gutierrez, Abraham3  Rodaro, Emanuele4  Rosenmann, Amnon3 
[1] Graz Univ Technol, Inst Anal & Number Theory, Graz, Austria
[2] Univ Niccolo Cusano, Via Don Gnocchi Roma, Rome, Italy
[3] Graz Univ Technol, Inst Discrete Math, Graz, Austria
[4] Politecn Milan, Dept Math, Milan, Italy
关键词: Automata;    Synchronization;    Random matrices;    Circulant graphs;    Chromatic polynomials;   
DOI  :  10.1016/j.jcta.2020.105356
来源: Elsevier
PDF
【 摘 要 】

In this paper we prove that a uniformly distributed random circular automaton A(n) of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P[A(n) synchronizes] = 1 - O (1/n). The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2020_105356.pdf 516KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次