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)
.

The main idea of the proof is to translate the synchronization 
problem into a problem concerning properties of a random 
matrix; these properties are then established with high 
probability by a careful analysis of the stochastic dependence 
structure among the random entries of the matrix. Addition-
ally, we provide an upper bound for the probability of 
synchronization of circular automata in terms of chromatic 
polynomials of circulant graphs.
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1. Introduction

A complete deterministic finite automaton (DFA) is a tuple A = (Q, L), where Q :=
{q1, q2, . . . , qn} is a finite set of states and L := {a1, a2, . . . , ak} is a finite set of mappings 
ai : Q → Q, where a(q) = q′ is also written as qa = q′, q, q′ ∈ Q, a ∈ L. The number of 
states n is the order of A. Each ai is called a letter and a sequence w = ai1ai2 . . .air ∈ L∗

is a word of length r. The action of L on Q naturally extends to an action of L∗ on Q, 
defined recursively by q(aw) = (qa)w, q ∈ Q, a ∈ L, w ∈ L∗. This action further extends 
to an action of L∗ on subsets of Q by {qi1 , qi2 , . . . , qik}w = {qi1w, qi2w, . . . , qikw}. We 
say that the subset S = {qi1 , qi2 , . . . , qik} ⊆ Q synchronizes if there exists a word w ∈ L∗

such that qi1w = qi2w = . . . = qikw (equivalently, we say that w synchronizes S). If the 
set Q synchronizes then we say that A(Q, L) synchronizes (or that it is a synchronizing 
automaton). A word w ∈ L∗ that synchronizes Q is called a synchronizing (or reset) 
word of A.

The following simple criterion for synchronization is well known and plays a crucial 
role throughout the paper:

Claim 1. A = (Q, L) synchronizes ⇐⇒ every pair of states q, q′ ∈ Q synchronizes.

Proof. It is clear that if Q synchronizes by a reset word w then w synchronizes every 
pair of states of Q. Conversely, a reset word for Q can be formed by concatenating words 
wi that synchronize pairs of states until we end up with a single state. �

The synchronization property may be described in terms of the graph representation 
of A. The set Q of states comprises the vertices of the graph and for each pair of states 
q, q′ and a letter a ∈ L such that qa = q′ there is an arrow (q, q′)a labeled with a ∈ L

and connecting q to q′. Each q ∈ Q and w = ai1ai2 . . .aik ∈ L∗ defines a directed path

γ(q,w) := ((q, qi1)ai1
, (qi1 , qi2)ai2

, . . . , (qik−1 , q
′)aik

)

that begins in q and ends in q′ = qw. A then synchronizes if and only if there is a word 
w, such that the paths {γ(q, w) : q ∈ Q} have a common endpoint q′, that is, the word 
w acts on Q as the constant mapping.

Synchronizing automata have been intensely studied by theoretical computer scientists 
as well as pure mathematicians since the 1960’s; see [18] for a detailed introduction on 
synchronization of automata. A driving force in this research field is the Černỳ conjecture.

Conjecture 2 (The Černỳ conjecture). A synchronizing automaton A of order n has a 
shortest synchronizing word of length at most (n − 1)2.

The bound in the Černỳ conjecture is tight: in [6] Černỳ provided a series of syn-
chronizing circular automata C2, C3, . . ., such that Cn has order n and its shortest 
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Fig. 1. The automaton Cn.

synchronizing word is of size exactly (n − 1)2 (see Fig. 1). Furthermore, the Černỳ se-
ries of circular automata C2, C3, . . . is the only known infinite series of automata whose 
shortest synchronizing words are of length (n − 1)2 [1].

The best known general upper bounds for the size of shortest synchronizing words 
of an automaton with n states are of order O(n3) [14][17][15]. Nevertheless, there are 
many classes of automata for which the Černỳ conjecture has been established (see [18]
for examples).

In the last decade probabilistic approaches to the synchronization problem have been 
developed. Typical questions in this setting are: let A({0, 1, . . . , n − 1}, L) be a uni-
formly chosen DFA with k letters on a certain probability space, is it true that with 
high probability the automaton A({0, 1, . . . , n −1}, L) is synchronizing? Does the Černỳ 
conjecture hold with high probability? Here we give a (non-comprehensive) list of recent 
achievements in this probabilistic setting:

• In [16] the authors study random automata A where the number of letters k grow 
together with n. In particular, they prove that A synchronizes w.h.p. when k(n)
grows fast enough;

• In [3] the author proves that P [A synchronizes] = 1 −O(n−k/2), for arbitrary k ≥ 2, 
and P [A synchronizes] = 1 − Θ(1/n) for k = 2;

• In [11] the author proves that A admits w.h.p. a synchronizing word of length 
O(n log3 n) for arbitrary k ≥ 2;
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• In [4] the authors prove that if A is uniformly chosen among the strongly-connected 
almost-group automata then A synchronizes with probability 1 − Θ((2k−1 −
1)n−2(k−1)) for arbitrary k ≥ 2.

Since the sequence of circular automata Cn depicted in Fig. 1 is the only known infinite 
series of synchronizing automata reaching Černỳ’s bound (n −1)2, one might suspect that 
the class of circular automata is somehow difficult to synchronize. However, as we show 
in the present paper, it turns out that a random circular automaton is synchronizing 
with high probability.

The rest of the paper is organized as follows: in Section 2 we present the main result 
together with its proof and the statement of the two key lemmas for the proof. In Section 3
we study the dependence structure among the entries of the random matrix used in the 
proof of the main result; the result obtained in this section is crucial for the proof of the 
key lemmas. In Section 4 we prove the first lemma while in Section 5 we prove the second 
one. In Section 6 we present some interesting connections between synchronization of 
circular automata and chromatic polynomials of circulant graphs. Finally, in Section 7 we 
present some possible directions towards generalizing and improving the results presented 
in this paper.

2. Main result

Let n be a positive integer. An automaton A(Zn, L), where Zn := {0, 1, . . . , n − 1}
is the set of states, is called a circular automaton if L contains a permutation that 
decomposes in exactly one cycle. Let (i)n := i mod n. Let Mn denote the set of all 
mappings from Zn to itself, and let P denote the uniform probability measure on Mn. 
We will write the elements of Mn as vectors by identifying the mapping b(i) = bi, i =
0, . . . , n − 1 with the vector b = (b0, . . . , bn−1).

In what follows, we denote by An(b) := (Zn, {a, b}) a circular automaton of order 
n ∈ N, with a : Zn → Zn being the circular right shift permutation a(i) = (i + 1)n and 
b := (b0, ..., bn−1) being an element of Mn. We will understand that b is “randomly” 
chosen from Mn according to the uniform probability measure P , making An(b) a 
random circular automaton.

It follows from work of Perrin [12] that a circular automaton A(Q, L) of prime order 
synchronizes if and only if L contains a non-permutation. Pin [13] proved with combi-
natorial methods that a circular automaton A(Q, L) of prime order which has a letter 
of rank n−1

2 ≤ k ≤ n has a minimal word of size at most (n − k)2. For the probability of 
synchronization of Ap(b) a very precise result is known.

Theorem 3 ([12][13]). Let p be a prime number. Then

P [{b ∈ Mp : Ap(b) synchronizes}] = 1 − p!
p

= 1 − Θ
(√

p
p

)
.

p e
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Thus, a uniformly distributed random circular automaton of prime order p with k ≥ 2
letters synchronizes with high probability (w.h.p.).

Theorem 3 is not explicitly stated in [12], but it is observed in [13] that Perrin’s work 
implies the theorem.

It is known that the Černỳ conjecture holds true for the class of circular automata 
[8]. In a closely related work, Béal, Berlinkov and Perrin [2] gave an O

(
n2) upper bound 

for the shortest words of synchronizing automata with a single cluster.
A natural question arises: do random circular automata of order n (not necessarily 

prime) synchronize with high probability? We give a positive answer to this question in 
the following:

Theorem 4 (Main result). The following holds:

P [{b ∈ Mn : An(b) synchronizes}] = 1 −O

(
1
n

)

as n → ∞. Thus, a randomly chosen An(b) synchronizes w.h.p. as n → ∞.

Remark 5. Theorem 4 does not follow from the results of Berlinkov or Nicaud. In their 
models, they use a random automaton A(Q, L) of order n where L is a collection of k
mappings from Q to Q i.i.d. uniformly chosen. For a fixed k, the probability of randomly 
chosen k mappings to contain a permutation with exactly one cycle is bounded from 
above by k · n!

nn

n→∞−−−−→ 0.

Given n ∈ N and r ∈ Z, we define the n-cyclic absolute value of r to be
∣∣r∣∣

n
:= min {(r)n, (−r)n)} ∈

{
0, 1, . . . ,

⌊n
2

⌋}
.

When r, s ∈ Z then 
∣∣r− s

∣∣
n

is the n-cyclic distance between r and s. When the numbers 
0, 1, . . . , n − 1 are identified with the vertices of a cycle of length n, the n-cyclic distance 
between two such numbers is the length of the shortest path between them in the cycle. 
We now introduce the main tool for the proof of the main theorem.

Definition. Let An(b) := (Zn, {a, b}) be a circular automaton with b = (b0, b1, . . . , bn−1). 
Then we define Tb to be the matrix

Tb :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣b0 − b1
∣∣
n

∣∣b1 − b2
∣∣
n

. . .
∣∣bk − bk+1

∣∣
n

. . .
∣∣bn−1 − b0

∣∣
n∣∣b0 − b2

∣∣
n

∣∣b1 − b3
∣∣
n

. . .
∣∣bk − b(k+2)n

∣∣
n

. . .
∣∣bn−1 − b1

∣∣
n

...
...

. . .
...

. . .
...∣∣b0 − bi

∣∣
n

∣∣b1 − b1+i

∣∣
n

. . .
∣∣bk − b(k+i)n

∣∣
n

. . .
∣∣bn−1 − bi−1

∣∣
n

...
...

. . .
...

. . .
...∣∣b − b⌊n ⌋∣∣ ∣∣b − b ⌊

n
⌋∣∣ . . .

∣∣b − b ⌊
n
⌋ ∣∣ . . .

∣∣b − b⌊n ⌋ ∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
0
2 n 1 1+ 2 n k (k+ 2 )n n n−1

2 −1 n
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which can be shortly written as

Tb(i, j) =
∣∣bj − b(j+i)n

∣∣
n

for 1 ≤ i ≤
⌊n

2

⌋
and 0 ≤ j ≤ n− 1.

As before, bi = b(i), i.e., the image of state i under b. To be clear, note that the 
first row of Tb is formed of the cyclic distances of the images of states r, s such that ∣∣r− s

∣∣
n

= 1; in general, the i-th row of Tb is formed of the cyclic distances of the images 
of pairs of states r, s of cyclic distance i. Notice that the columns are counted from 0 to 
n − 1.

For b ∈ Mn and i = 1, . . . , 
⌊
n
2
⌋
, let Ri(b) denote the number of different entries in 

row i of Tb :

Ri(b) := #
{∣∣b0 − b(0+i)n

∣∣
n
,
∣∣b1 − b(1+i)n

∣∣
n
, . . . ,

∣∣bn−1 − bi−1
∣∣
n

}
. (1)

Set

Erow(α) :=

⌊
n
2
⌋⋂

i=1

{
b ∈ Mn : Ri(b) ≥ α

⌊n
2

⌋}
, (2)

i.e., Erow(α) contains those b for which every row of Tb has at least α
⌊
n
2
⌋

different 
elements. Its complement is

Ec
row(α) :=

⌊
n
2
⌋⋃

i=1

{
b ∈ Mn : Ri(b) < α

⌊n
2

⌋}
. (3)

We also define

Ezero(β) :=
{
b ∈ Mn : D(b) ≥ β

⌊n
2

⌋}
, (4)

and its complement

Ec
zero(β) :=

{
b ∈ Mn : D(b) < β

⌊n
2

⌋}
, (5)

where

Di(b) :=
{

1, if there exist k, l ∈ Zn such that
∣∣k − l

∣∣
n

= i and
∣∣bk − bl

∣∣
n

= 0,
0, otherwise,

and

D(b) :=

⌊
n
2
⌋∑
Di(b).
i=1
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That is, Ezero(β) is the set of those b for which the matrix Tb has at least β
⌊
n
2
⌋

rows 
containing the entry zero.

The proof of Theorem 4 relies on the following two lemmas.

Lemma 6. Let ε > 0 and let α = 1 − e−1 − ε. Then

P [Ec
row(α)] = O

(
1
n

)
as n → ∞.

Lemma 7. Let ε ∈ (0, 1) and let β = 1
2 − ε. Then

P [Ec
zero(β)] = O

(
1
n

)
,

as n → ∞.

Proof of Theorem 4. The main idea of the proof is to transform the question of synchro-
nization of An(b) into a question concerning properties of the matrix Tb. The functions 
Tb(i, j) are random variables over Mn, and to obtain our desired probability estimates 
we will need to understand the joint stochastic dependence structure of these random 
variables.

Let b ∈ Mn and consider the associated Matrix Tb. The first observation is that a 
zero in row i of Tb means that two states r, s with cyclic distance i synchronize under 
b (i.e., b(r) = b(s)), which implies that any pair r′, s′ with cyclic distance i can be 
synchronized with a word of the form alb because {r′, s′}al = {r, s} for some l. The 
second observation is that if the i-th row of Tb contains a number j = |bk−b(k+i)n |n and 
the j-th row contains a zero, then every pair of states (r, s) with cyclic distance i can 
be synchronized with a word of the form al1bal2b. Indeed, we can proceed as follows: 
{r, s} a

l1→ {k, (k + i)n} b→ {bk, b(k+i)n}, where this last pair has n-cyclic distance j; then 
{bk, b(k+i)n} synchronizes with a word of the form al2b, for some l2 because the j-th row 
contains a zero. With these two observations, we establish sufficient conditions on Tb for 
the synchronization of An(b). The sets Erow(α) and Ezero(β) which we defined in (2) and 
(4) play a crucial role.

Let b ∈ Mn. If b is contained in both Erow(α) and Ezero(β) for some α, β > 0 such 
that α+β > 1, then An(b) synchronizes. This follows from the two previous observations 
together with the union bound. Indeed, let (r, s) be any pair of different states and let 
i = |r − s|n. If row i contains a zero, we can synchronize {r, s} with a word of the form 
alb; otherwise, row i contains an entry j �= 0 such that row j contains a zero (because 
α + β > 1), which implies that {r, s} can be synchronized with a word of the form 
al1bal2b. Therefore, every pair of different states synchronizes and An(b) synchronizes 
by Claim 1. Therefore, for any α, β > 0 satisfying α + β > 1, we have the following 
bound:
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P [{b ∈ Mn : An(b) synchronizes}] ≥ P [Erow(α) ∩ Ezero(β)]

= 1 − P [Ec
row(α) ∪ Ec

zero(β)]

≥ 1 − P [Ec
row(α)] − P [Ec

zero(β)] .

(6)

Now, by the last inequality and by Lemmas 6 and 7 we obtain the bound stated in the 
main theorem. We can choose, for example, ε′ = 0.05, α� = 1 − e−1 − ε′ ≈ 0.582 and 
β� = 0.5 − ε′ = 0.45, so that α� > 0, β� > 0 and α� + β� > 1. Then we have

P [{b ∈ Mn : An(b) synchronizes}] ≥ 1 − P [Ec
row(α�)]︸ ︷︷ ︸

=O
( 1
n

)
−P [Ec

zero(β�)]︸ ︷︷ ︸
=O

( 1
n

)
= 1 −O

(
1
n

)

as n → ∞. �
3. Independence among the random variables Tb(i, j)

For every pair (i, j), 1 ≤ i ≤
⌊
n
2
⌋

and 0 ≤ j ≤ n −1, the function Tb(i, j) : Mn �→ Zn

is a random variable on the space Mn, equipped with the uniform probability measure 
P (and with the power set of Mn as the natural sigma-field). It is crucial for our proof to 
give a criterion on pairs of indices (i1, j1), . . . , (ik, jk) which guarantees that the random 
variables Tb(i1, j1), . . . , Tb(ik, jk) are independent. First, notice that not every subset 
of random variables Tb(i, j) is independent. For example,

Tb(1, 0) =
∣∣b0 − b1

∣∣
n
, Tb(1, 1) =

∣∣b1 − b2
∣∣
n
, Tb(2, 0) =

∣∣b0 − b2
∣∣
n

are clearly dependent: if the first two random variables Tb(1, 0) and Tb(1, 1) are zero, 
then b0 = b1 = b2, which implies that 

∣∣b0 − b2
∣∣
n

= 0 and so Tb(2, 0) necessarily is 
also zero. This dependence comes from the fact that there is a “cycle” of the form 
b0 → b1 → b2 → b0 generated by the indices of these three random variables. Generally, 
it will turn out that a set of random variables Tb(i, j) is independent if and only if the 
corresponding indices are “acyclic”. We formalize this in the following

Definition. Let

S = {(i1, j1), (i2, j2), . . . , (ik, jk)}

be a multi-set, where il, jl ∈ Zn. The associated (multi-)graph G(S) is the (multi-)graph 
with vertex set Zn and edge (multi-)set

{
{j1, (j1 + i1)n}, {j2, (j2 + i2)n}, . . . , {jk, (jk + ik)n}

}
.

We say that S is acyclic if its associated multi-graph G(S) is acyclic. We also say that 
the edge {j, j + i} is associated to the random variable Tb(i, j).
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The relation between acyclic index sets and independent variables is stated in the 
following

Proposition 8. The variables Tb(i1, j1), Tb(i2, j2), . . . , Tb(ik, jk) are i.i.d. ⇐⇒ the 
(multi-)set S = {(i1, j1), (i2, j2), . . . , (ik, jk)} is acyclic. Furthermore, if the variables 
are independent then

P

[
k⋂

w=1
{b ∈ Mn : Tb(iw, jw) = sw}

]
=
∏k

w=1 msw

nk
, ∀k ≥ 1, (7)

where s1, s2, . . . , sk are arbitrary integers and

ms = #{d ∈ Zn :
∣∣d∣∣

n
= s} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2, if 0 < s < n
2 ;

1, if s = 0;
1, if s = n

2 and n
2 ∈ N;

0, otherwise.

Henceforth in the paper we use the concepts “acyclic” and “independent” interchange-
ably when we refer to a multi-set of independent random variable entries of Tb , resp. to 
random variable entries whose associated multi-graph is acyclic.

Remark 9. Note that different random variables Tb(i, j), Tb(i′, j′) may be associated 
with the same edge; since 1 ≤ i ≤

⌊
n
2
⌋

this only happens when n is even and 
i = i′ = n

2 and j ≡ j′ mod n
2 . Thus, for n odd, a pair of different random variables 

Tb(i, j), Tb(i′, j′) is always acyclic/independent.

Remark 10. For a vector b ∈ Mn, we can write its entries b0, . . . , bn−1 as functions of b. 
In other words, b0 = b0(b), . . . , bn−1 = bn−1(b) are random variables on Mn, equipped 
with the uniform measure P . The random variables b0, . . . , bn−1 are independent and 
identically distributed over this space; this follows immediately from the fact that the 
uniform measure on Mn is a product of n one-dimensional uniform measures.

Proof of Proposition 8. First note that any two random variables Tb(i, j) =
∣∣bj −

b(j+i)n

∣∣
n

and Tb(i′, j′) =
∣∣bj′ − b(j′+i′)n

∣∣
n

are always identically distributed since 
b0, b1, . . . , bn−1 are i.i.d. (see Remark 10). Note also that for all s

P
[{

b ∈ Mn :
∣∣bp − bp+q

∣∣
n

= s
}]

= n ·ms

n2 = ms

n
,

which can seen by an easy counting argument: there are n different possible choices of bp, 
and then there are ms independent different choices of b(p+q)n such that 

∣∣bp − bp+q

∣∣ =

n
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s. Thus equation (7) is just a rephrasing of the fact that the random variables are 
independent. Therefore, what we need to prove is that independence holds if and only if 
the associated (multi-)graph is acyclic.
⇒) (by contraposition) Let S = {(i1, j1), (i2, j2), . . . , (ik, jk)} be a (multi-)set which 
contains a cycle. Thus, its associated multi-graph G(S) has a cycle C of length l ≥ 2. 
Let this cycle be w.l.o.g.

j1 → (j1 + i1)n = j2 → (j2 + i2)n = j3 → . . . → (jl−1 + il−1) = jl → (jl + il)n = j1.

Recall that Tb(i, j) = 0 ⇐⇒ bj = b(j+i)n . Thus if for some b ∈ Mn we have

Tb(i1, j1) = Tb(i2, j2) = . . . = Tb(il−1, jl−1) = 0,

then bj1 = bj2 = . . . = bjl , and so we automatically also have Tb(il, jl) =
∣∣bjl −

b(jl+il)n
∣∣
n

=
∣∣bjl − bj1

∣∣
n

= 0. Thus, the variables Tb(i1, j1), . . . , Tb(i�, j�) are not in-
dependent. We conclude that an independent multi-set must be acyclic.
⇐) (by induction on k) Let k ≥ 2. Assume that the multi-set Sk = {(i1, j1), (i2, j2),
. . . , (ik, jk)} is acyclic. We want to show that Tb(ik, jk) is independent of Tb(i1, j1), . . . ,
Tb(ik−1, jk−1). This will allow us to factor out the k-th factor on the left-hand side of (7), 
leading (by induction) to the formula on the right-hand side of (7), which is equivalent 
to independence.

We distinguish two cases: The first case is when the edge {jk, (jk + ik)n} is a con-
nected component by itself in G(S). This means that the sets S1 := {j1, (j1+i1)n, j2, (j2+
i2)n, . . . , jk, (jk−1 + ik−1)n} and S2 := {jk, (jk + ik)n} are disjoint. By construction, the 
random variables Tb(i1, j1), . . . , Tb(ik−1, jk−1) depend only on bs with s ∈ S1, while 
Tb(ik, jk) depends only on bs with s ∈ S2. Since b0, . . . , bn−1 are independent by Re-
mark 10, this implies that Tb(ik, jk) is independent of Tb(i1, j1), . . . , Tb(ik−1, jk−1), as 
desired.

For the second case, the edge {jk, (jk + ik)n} is not a connected component by itself 
in G(S). Since it is also not part of a cycle by assumption,we can assume that (jk + ik)n
is a leaf vertex in G(S). In principle, Tb(ik, jk) depends on bjk as well as on b(jk+ik)n . 
However, since Tb(ik, jk) is defined as a cyclic distance, the conditional distribution of 
Tb(ik, jk) given bjk is always the same. In formulas, for every sk we have

P [{b ∈ Mn : Tb(ik, jk) = sk}] = P [{b ∈ Mn : Tb(ik, jk) = sk and bjk = r}] (8)

for every r ∈ {0, . . . , n −1}. This fact can be simply established by counting the possible 
configurations of bjk and b(jk+ik)n . By definition, Tb(ik, jk) is independent of all b� with 
� �= jk, (jk + ik)n. Thus for every numbers s1, . . . , sk we have, using the independence of 
b0, . . . , bn−1 and (8), that
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P

[
k⋂

w=1
{b : Tb(iw, jw) = sw}

]

=
n−1∑
r=0

P

[
k⋂

w=1
{b : Tb(iw, jw) = sw and bjk = r}

]

=
n−1∑
r=0

P

⎡
⎢⎢⎢⎢⎣

(
k−1⋂
w=1

{b : Tb(iw, jw) = sw and bjk = r}
)

︸ ︷︷ ︸
depends only on b� with � �= jk, (jk + ik)n when bjk

is fixed

∩ {b : Tb(ik, jk) = sk and bjk = r}︸ ︷︷ ︸
depends only on b(jk+ik)n when bjk

is fixed

⎤
⎥⎥⎥⎥⎦

=
n−1∑
r=0

(
P

[(
k−1⋂
w=1

{b : Tb(iw, jw) = sw and bjk = r}
)]

× P [{b : Tb(ik, jk) = sk and bjk = r}]
)

=
n−1∑
r=0

(
P

[(
k−1⋂
w=1

{b : Tb(iw, jw) = sw and bjk = r}
)]

P [{b : Tb(ik, jk) = sk}]
)

= P

[(
k−1⋂
w=1

{b : Tb(iw, jw) = sw}
)]

P [{b : Tb(ik, jk) = sk}] .

This is exactly the independence property that we wanted to establish. �
4. Proof of Lemma 6

The overview of the proof is as follows. Recall that we understand the entries of the 
matrix Tb as random variables. We will prove that every row of Tb contains a “large” 
number of independent random variables. Then we give a lower bound for the expected 
value of the number of different elements in each row. Then we apply McDiarmid’s 
inequality to each row and finally we use the union bound together with the exponential 
decay delivered by McDiarmid’s inequality to guarantee that w.h.p. every row of Tb has 
at least ∼ (1 − e−1) 

⌊
n
2
⌋

different elements. We denote by Cn(i) the circulant graph on 
n vertices, i.e., the graph with vertex set Zn where two vertices r, s are adjacent if and 
only if 

∣∣r − s
∣∣
n

= i.
We need the following property.
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Claim 11. For every i, the i-th row of Tb contains a set of at least n − gcd(n, i) random 
variables which are i.i.d.

Proof. The variables in row i are given by the multi-set

Ei(b) := {
∣∣b0 − bi

∣∣
n
, . . . ,

∣∣bk − b(k+i)n
∣∣
n
, . . . ,

∣∣bn−1 − bi−1
∣∣
n
}. (9)

Let i �= n
2 . By Remark 9, the corresponding multi-set Ei(b) does not have repeated 

elements and the associated multi-graph G(Ei(b)) is isomorphic to the circulant graph 
Cn(i). It is well known and easy to show that Cn(i) is a disjoint union of gcd(n, i) cycles 
of length n

gcd(n,i) [5]. We can then obtain an acyclic set of variables by removing one edge 
from each of the cycles of G(Si). The resulting set of variables is i.i.d. by Proposition 8. 
In the case i = n

2 , the first n2 variables in row n2

En
2
(b) = {

∣∣b0 − bn
2

∣∣
n
, . . . ,

∣∣bk − b(k+n
2 )n
∣∣
n
, . . . ,

∣∣bn
2 −1 − bn−1

∣∣
n
}

have an associated multi-graph that is isomorphic to the circulant graph Cn(n2 ), which 
is a disjoint union of n2 = gcd(n, n2 ) edges. This last graph is acyclic, thus the variables 
are i.i.d. by Proposition 8. �

We prove the following lower bound

Claim 12. We have E [Ri] ≥
⌊
n
2
⌋
(1 − e−1) − 1, where for all b ∈ Mn

Ri(b) = #{
∣∣b0 − b(0+i)n

∣∣
n
, . . . ,

∣∣bk − b(k+i)n
∣∣
n
, . . . ,

∣∣bn−1 − bi−1
∣∣
n
}

(see (1)) is the cardinality of different elements in row i of Tb .

Proof. First, for every d ∈ {0, . . . , 
⌊
n
2
⌋
}, we define the random variables

δ
(i)
j (b, d) := 1 − 1{

∣∣bj − b(j+i)n
∣∣
n

= d} =
{

0, if
∣∣bj − b(j+i)n

∣∣
n

= d;
1, otherwise,

and

r
(i)
d (b) :=

∏
j∈Zn

δ
(i)
j (b, d) =

{
0 if ∃ p, q ∈ Zn such that

∣∣p, q∣∣
n

= i and
∣∣bp, bq∣∣n = d;

1, otherwise.

Note that r(i)
d (b) is zero if the number d is included in the i-th row of Tb , and that it is 

one otherwise. Recalling that the entries of Tb can only have values in {0, 1, . . . , 
⌊
n
2
⌋
}, 

we write the number of distinct elements in row i as
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Ri(b) =
(⌊n

2

⌋
+ 1
)
−

⌊
n
2
⌋∑

d=0

r
(i)
d (b). (10)

By Claim 11, there is a subset I of Zn of cardinality n −gcd(n, i) such that the variables 
{δ(i)

w : w ∈ I} are i.i.d., and thus

E
[
r
(i)
d

]
= E

⎡
⎣ ∏
j∈Zn

δ
(i)
j (b, d)

⎤
⎦ ≤ E

[∏
w∈I

δ(i)
w (b, d)

]
= E

[
δ
(i)
0 (b, d)

]n−gcd(n,i)
.

Furthermore, by Proposition 8, we have E 
[
δ
(i)
0 (b, d)

]
= 1 − md

n , and thus

E
[
r
(i)
d

]
≤
(
1 − md

n

)n−gcd(n,i)
≤
(
1 − md

n

)n
2 =

{(
1 − 2

n

)n
2 , if d �= 0, n

2 ;(
1 − 1

n

)n
2 , otherwise ,

for d ∈ {0, 1, . . . , 
⌊
n
2
⌋
}. Using the inequality 1 − x ≤ e−x, which is valid for any real 

number x, we obtain

E

⎡
⎣�n

2 	∑
d=0

r
(i)
d

⎤
⎦ ≤

⌊n
2

⌋(
1 − 2

n

)n
2

︸ ︷︷ ︸
≤e−1

+2
(

1 − 1
n

)n
2

︸ ︷︷ ︸
≤e−

1
2

≤
⌊n

2

⌋
e−1 + 2.

Plugging this inequality into (10) yields

E [Ri] =
(⌊n

2

⌋
+ 1
)
− E

⎡
⎣�n

2 	∑
d=0

r
(i)
d

⎤
⎦ ≥

⌊n
2

⌋
(1 − e−1) − 1.

This proves Claim 12. �
We introduce McDiarmid’s inequality to prove Claim 14.

Definition. Let L : (Zn)n → R be a function. We say that L has Lipschitz coefficient
r ∈ R+ if

|L(−→v ) − L(−→w )| ≤ r

for every −→v , −→w ∈ (Zn)n such that −→v (j) = −→w (j) for all j except for at most one index.

Proposition 13 (McDiarmid’s Inequality [10]). Let X̄ := (X1, X2, . . . , Xn) ∈ (Zn)n be a 
random vector, where the variables X1, X2, . . . , Xn are independent, and let L : (Zn)n →
R be a function with bounded Lipschitz coefficient r. Then
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(lower tail) P
[
L(X̄) ≤ E

[
L(X̄)

]
− r

√
λn
]
≤ e−2λ,

for all λ ≥ 0.

Remark. This is just a special case of the general form of McDiarmid’s inequality. The 
general inequality also bounds the upper tail, and allows different Lipschitz coefficients 
in the respective components.

In the following claim we use Proposition 13 to estimate the probability that row i of 
Tb has less than ∼ (1 − e−1) 

⌊
n
2
⌋

different elements.

Claim 14. Let ε > 0. Then

P
[
b ∈ Mn : Ri(b) <

⌊n
2

⌋
(1 − e−1 − ε)

]
≤ e−Θ(n),

for i = 1, 2, . . . , 
⌊
n
2
⌋
.

Proof. Let b = (b0, b1, . . . , bn−1). Let Ei(b) be defined as in (9). The function Ri(b) :=
#Ei(b) has Lipschitz coefficient 2: changing one bj affects at most two entries, namely ∣∣bj − b(j+i)n

∣∣
n

and 
∣∣b(j−i)n − bj

∣∣
n
. Using McDiarmid’s inequality, we deduce that

P
[
b ∈ Mn : Ri(b) ≤ E [Ri] − 2

√
λn
]
≤ e−2λ, ∀λ ≥ 0.

Using the lower bound E [Ri] ≥
⌊
n
2
⌋
(1 − e−1) − 1 of Claim 12 we obtain

P
[
b ∈ Mn : Ri(b) <

(⌊n
2

⌋
(1 − e−1) − 1

)
− 2

√
λn
]

≤ P
[
b ∈ Mn : Ri(b) ≤ E [Ri] − 2

√
λn
]

≤ e−2λ, ∀λ ≥ 0.

Let ε > 0 and let

λε(n) := 1
4n

(
ε
⌊n

2

⌋
− 1
)2

= Θ(n); (11)

we observe that λε(n) is independent of i. Let n > 2
ε , then plugging λ = λε(n) into the 

previous inequality yields

P
[
b ∈ Mn : Ri(b) <

⌊n
2

⌋
(1 − e−1 − ε)

]
≤ e−2λε(n) = e−Θ(n). � (12)

Recall that Erow(α) contains those b ∈ Mn for which every row of Tb has at least 
α
⌊
n
⌋

different elements, so that
2
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Ec
row(α) =

⌊
n
2
⌋⋃

i=0

{
b ∈ Mn : Ri(b) < α

⌊n
2

⌋}
.

Let ε > 0 be arbitrary and let α∗ = 1 − e−1 − ε. Then

P [Ec
row(α�)] = P

⎡
⎣
⌊
n
2
⌋⋃

i=1

{
b ∈ Mn : Ri(b) < α�

⌊n
2

⌋}⎤⎦

≤

⌊
n
2
⌋∑

i=1
P
[
b ∈ Mn : Ri(b) < α�

⌊n
2

⌋]
≤ ne−Θ(n), (13)

where we use Claim 14 for the second inequality. The proof of Lemma 6 then follows by 
noticing that

ne−Θ(n) = O

(
1
n

)
.

5. Proof of Lemma 7

The overview of the proof is as follows. We will define two random variables Z0(b)
and Z1(b) such that

•D(b) ≥ Z0(b) −Z1(b), ∀b : Zn → Zn;

• E [Z0 −Z1] ∼
n

2 .

Then we will show that Z0 and Z1 concentrate around their respective means, and use 
this fact to give an upper bound on the probability that D is small. For this purpose, 
we note the following property.

Claim 15. Let Z0, Z1 and D be random variables which take non-negative values, such 
that D ≥ Z0 −Z1. Let ν > 0 and let δ ≤ E [Z0 −Z1] − 2ν. Then

P [D < δ] ≤ P [Z0 < E [Z0] − ν] + P [Z1 > E [Z1] + ν] .

Proof. This follows easily from the assumption that Z0 − Z1 ≤ D and the union 
bound. �

To prove concentration of Z0 and Z1 around their respective means, we use Cheby-
shev’s inequality. Notice that D : Zn

n → Zn does not have a bounded Lipschitz coefficient, 
so we cannot use McDiarmid’s inequality to guarantee its concentration.
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5.1. Lower bound for D(b)

Recall that D(b) counts the number of rows of Tb that contain at least one zero. Let

zi = zi(b) := #(Zeros in row i of Tb)

and

Z0(b) := #(Zeros in Tb) =
∑

(i,j)∈[1,
⌊
n
2
⌋
]×[0,n−1]

1 {Tb(i, j) = 0} .

Then

D(b) = Z0(b) −

⌊
n
2
⌋∑

i=1
max(zi − 1, 0). (14)

It is easy to verify that the number of non-ordered pairs of entries in the i-th row with 
zero value is

∑
0≤j<j′≤n−1

1 {Tb(i, j) = 0}1 {Tb(i, j′) = 0} = zi(zi − 1)
2 ≥ max(zi − 1, 0), ∀i,

therefore

Z1(b) :=

⌊
n
2
⌋∑

i=1

∑
0≤j<j′≤n−1

1 {Tb(i, j) = 0}1 {Tb(i, j′) = 0} ≥

⌊
n
2
⌋∑

i=1
max(zi − 1, 0).

From this and (14), we conclude that

Claim 16. D(b) ≥ Z0(b) −Z1(b), ∀ b : Zn → Zn.

5.2. Estimates for E [Z0], E [Z1], E [Z0 −Z1], V [Z0], V [Z1]

In this subsection we prove that

• E [Z0 −Z1] ∼ n
2 ,

• E [Z0] = Θ(n),
• E [Z1] = Θ(n),
• V [Z0] = O(n), and
• V [Z1] = O(n).

For the rest of this subsection, we use the notation

yi,j = yi,j(b) := 1 {Tb(i, j) = 0} ,
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for 1 ≤ i ≤
⌊
n
2
⌋

and 0 ≤ j ≤ n − 1.

Definition. The variables yi1,j1 , yi2,j2 . . . , yik,jk are called acyclic if the multi-set⋃k
w=1{(iw, jw)} is acyclic. Let

G ({yi1,j1 , yi2,j2 . . . , yik,jk}) = G

(
k⋃

w=1
{(iw, jw)}

)

be the associated multi-graph of the multi-set {yi1,j1 , yi2,j2 . . . , yik,jk} and let e(yi,j) :=
{j, (j + i)n} be the associated edge to yi,j . The length of e(yi,j) is 

∣∣j − (j + i)n
∣∣
n

= i.

Remark 17. If the variables yi1,j1 , yi2,j2 . . . , yik,jk are acyclic then they are i.i.d.; this is 
an immediate consequence of Proposition 8.

We begin with the easy part: the bounds for the expected values.

Claim 18. Let n ∈ N. We have E [Z0] = Θ(n), E [Z1] = Θ(n), and E [Z0 −Z1] ≥
1
2
⌊
n
2
⌋
− 1.

Proof. Using the linearity of the expectation, we get that

E [Z0] =
∑

(i,j)∈[1,
⌊
n
2
⌋
]×[0,n−1]

E [yi,j ] =
⌊n

2

⌋
n

1
n

=
⌊n

2

⌋
= Θ(n), (15)

where for the second equality we use that

E [yi,j ] = P [{b : Tb(i, j) = 0}] = P
[
{b : bj = b(j+i)}

]
= 1

n
. (16)

Now we calculate an upper bound for E [Z1], depending on the parity of n.

Case 1: n odd. Every product yi,jyi,j′ in the sum

Z1 =

⌊
n
2
⌋∑

i=1

∑
0≤j<j′≤n−1

yi,jyi,j′

is formed of independent random variables yi,j, yi,j′ by Remarks 9, 17. Thus

E [Z1] =

⌊
n
2
⌋∑

i=1

∑
0≤j<j′≤n−1

E [yi,jyi,j′ ] =

⌊
n
2
⌋∑

i=1

∑
0≤j<j′≤n−1

E [yi,j ]E [yi,j′ ]

(16)=
⌊n⌋(n) 1

2
2 2 n
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= 1
2

⌊n
2

⌋(
1 − 1

n

)
︸ ︷︷ ︸

≤ 1
2
⌊
n
2
⌋

= Θ(n).

Case 2: n even. Using Remark 9, we write Z1 as

Z1 =
∑

1≤i<n
2

0≤j<j′≤n−1

yi,jyi,j′ +
∑

0≤r<r′≤n−1
r �≡r′ (mod n/2)

yn/2,ryn/2,r′ +
n
2 −1∑
s=0

yn/2,s.

Every product yi,jyi,j′ in the first sum is formed of independent variables yi,j , yi,j′ by 
Remark 9 and the same is valid for the products yn

2 ,ryn
2 ,r′ in the second sum, therefore

E [Z1] =
n
2 −1∑
i=1

∑
0≤j<j′≤n−1

E [yi,j ]E [yi,j′ ] +
∑

0≤r<r′≤n−1
r �≡r′ (mod n/2)

E
[
yn/2,r

]
E
[
yn/2,r′

]

+
n
2 −1∑
s=0

E
[
yn/2,s

]

=
n
2 −1∑
i=1

∑
0≤j<j′≤n−1

1
n2 +

∑
0≤r<r′≤n−1

r �≡r′ (mod n/2)

1
n2 +

n
2 −1∑
s=0

1
n

=
(n

2 − 1
)
·
(
n

2

)
· 1
n2 +

((
n

2

)
− n

2

)
· 1
n2 + n

2 · 1
n

= 1
2 · n2 ·

(
1 − 1

n
+
(

2
n
− 2

n2

))
︸ ︷︷ ︸

≤ 1
2 ·n2 +1

= Θ(n).

We deduce from the previous cases that E [Z1] = Θ(n) and E [Z1] ≤ 1
2
⌊
n
2
⌋

+ 1 for all n. 
Using this last inequality and (15), we conclude that

E [Z0] − E [Z1] =
⌊n

2

⌋
− E [Z1] ≥

1
2

⌊n
2

⌋
− 1.

This concludes the proof of Claim 18. �
Now we estimate the variance of Z0 and Z1.

Claim 19. Let n ∈ N, then V [Z0] = O(n) and V [Z1] = O(n).

Proof. Here we also divide the calculations according to the parity of n.
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Case 1: n odd. We expand the variance of Z0 to get that

V [Z0] =
∑

1≤i≤
⌊
n
2
⌋

0≤j≤n−1

V [yi,j ] +
∑

1≤i,i′≤
⌊
n
2
⌋

0≤j,j′≤n−1
(i,j) �=(i′,j′)

Cov [yi,j , yi′,j′ ] ,

where the covariances are calculated among pairs of independent variables yi,j, yi′,j′ due 
to Remark 9. Thus

V [Z0] =
∑

1≤i≤
⌊
n
2
⌋

0≤j≤n−1

V [yi,j ] .

We notice that y2
i,j = yi,j because yi,j ∈ {0, 1}, therefore

V [yi,j ] = E
[
y2
i,j

]
− E [yi,j ]2 = 1

n
− 1

n2 , ∀n ∈ N, (17)

where we use (16) in the last equality. Then, for all n odd, we get that

V [Z0] =
⌊n

2

⌋
n

(
1
n
− 1

n2

)
=
⌊n

2

⌋(
1 − 1

n

)
= O(n). (18)

Now we calculate

V [Z1] =
∑

1≤i≤
⌊
n
2
⌋

0≤j<j′≤n−1

V [yi,jyi,j′ ] +
∑

1≤i,r≤
⌊
n
2
⌋

0≤j,j′,s,s′≤n−1
j<j′; s<s′

(i,j,j′) �=(r,s,s′)

Cov [yi,jyi,j′ , yr,syr,s′ ] ; (19)

We first note that

V [yi,jyi,j′ ] = E
[
y2
i,jy

2
i,j′
]
− E [yi,jyi,j′ ]2 = 1

n2 − 1
n4 , for n odd and ∀i and j �= j′;

(20)
this follows since the variables yi,j and yi,j′ are different and therefore independent (see 
Remark 9). Thus

∑
1≤i≤

⌊
n
2
⌋

0≤j<j′≤n−1

V [yi,jyi,j′ ] =
⌊n

2

⌋(n
2

)
1
n2

(
1 − 1

n2

)
= O(n). (21)

For the sum of the covariances, we proceed as follows: if the variables yi,j, yi,j′ , yr,s, yr,s′
are acyclic then they are independent (see Proposition 8), therefore

Cov [yi,jyi,j′ , yr,syr,s′ ] = 0.
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G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11 G12

Fig. 2. Possible non-acyclic multi-graphs for n odd.

On the other hand, if the variables yi,j , yi,j′ , yr,s, yr,s′ are not acyclic, let

Y := {{yi,j , yi,j′ , yr,s, yr,s′} : (i, j, j′) �= (r, s, s′), j < j′, s < s′} ,

and let

Y = {yi,j , yi,j′ , yr,s, yr,s′} ∈ Y.

Then G(Y ) is a multi-graph with four edges e(yi,j), e(yi,j′), e(yr,s), e(yr,s′) such that 
e(yi,j) �= e(yi,j′) and e(yr,s) �= e(yr,s′) (see Remark 9). In particular, there cannot be 3 
equal edges. If G(Y ) has at least one cycle, it is isomorphic to one of the multi-graphs 
in Fig. 2.

We will now estimate the contribution of each of these possible non-acyclic multi-
graphs.

Claim 20. Let n ∈ N, then

#{Y ∈ Y : G(Y ) ∼= Gc} =
{
O(n4), if c = 1, 2, 3, 5, 6, 7, 12;
O(n3), if c = 4, 8, 9, 10, 11.

Proof. The cases c = 1, 2, 5, 6, 7 can be bounded by the trivial bound O(n4), and the 
same for the cases c = 4, 8 with the bound O(n3). The remaining cases c = 3, 9, 10, 11, 12
require better estimates than their respective trivial bounds.

First, notice that for all cases, the four edges of the multi-graph G({yi,j, yi,j′ , yr,s, yr,s′})
are divided into two pairs: e(yi,j), e(yi,j′) of length i and e(yr,s), e(yr,s′) of length r. The 
case G3 is bounded by 

(
n
3
)
∗ 2n = O(n4) because three vertices can be chosen freely to 

form a triangle whose edges have at most two different lengths i, r, then we choose a 
vertex v for the free edge and finally we choose v′ such that 

∣∣v− v′
∣∣
n

= i or 
∣∣v− v′

∣∣
n

= r

depending on the lengths of the edges in the triangle, therefore v′ has only two choices.
The case G12 is also bounded by O(n4). To show this, we distinguish between two 

subcases. In the first subcase, the multi-edge is formed of the associated edges of the 
same pair, w.l.o.g. e(yi,j) = e(yi,j′) (this can only happen in the case n even). Then 
the free edges are formed of the edges e(yr,s), e(yr,s′), which have length r; we choose 
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two vertices for the multi-edge and two more vertices v1, v2 (one for each of the free 
edges), but then the two missing vertices v′1, v′2 have at most two options each, because ∣∣v − v1

∣∣
n

=
∣∣v2 − v′2

∣∣
n

= r. Thus this subcase is bounded by O(n4). The second subcase 
is when e(yi,j) �= e(yi,j′) and e(yr,s) �= e(yr,s′). Then w.l.o.g. the multi-edge is formed 
of the e(yi,j) = e(yr,s) then i = r, thus all edges have the same length; we choose two 
vertices v, v′ for the multi-edge and two more vertices v1, v2 (one for each of the free 
edges). The missing vertices v′1, v′2 have at most two choices each because 

∣∣v1 − v′1
∣∣
n

=∣∣v2 − v′2
∣∣
n

=
∣∣v − v′

∣∣
n
, which gives again a O(n4) bound.

For G9, if we are in the case n odd, then the multi-edge is formed of edges of different 
groups, w.l.o.g. e(yi,j) = e(yr,s) and i = r. Therefore the edge attached to the multi-
edge is uniquely defined because its length is determined, and the isolated edge is almost 
uniquely defined once one of the end points is chosen, because the other end has at most 
two choices. Overall, this gives the O(n3) bound. In the case n even, it can happen that 
w.l.o.g. e(yi,j) = e(yi,j′) but this can only happen when i = n/2. Then the multi-edge is 
uniquely defined by choosing one end, the isolated edge is defined by choosing two end 
points, and the last edge has at most four options since its length is already determined 
by the length of the isolated edge. This gives again a O(n3) bound.

For G10, in the case n odd we can assume as before e(yi,j) = e(yr,s). Then i = r, 
and the multi-edge is determined by choosing two vertices and the remaining two edges 
are uniquely defined by the central vertex. This yields the bound O(n3). In the other 
case, w.l.o.g. e(yi,j) = e(yi,j′), and i = n/2. The multi-edge can be defined by choosing 
only one vertex, and the isolated path can be defined by choosing two vertices for one 
edge, while the remaining edge will have at most two options. This yields again a O(n3)
bound.

For G11, if e(yi,j) = e(yr,s), then all edges have the same length i = r, we can choose 
two vertices for the first multi-edge and one vertices for the second multi-edge, while 
the remaining vertex has at most two options. This yields a O(n3) bound. In the case 
when e(yi,j) = e(yi,j′) then e(yr,s) = e(yr,s′) and i = r = n/2. In this case we can choose 
two vertices (one for each multi-edge), and the remaining two vertices are automatically 
determined. This yields a O(n2) = O(n3) bound. Thus we have established Claim 20. �

We continue with the proof of Claim 19 in the case when n is odd. We observe that

E [yi,jyi,j′yr,syr,s′ ] = P [yi,jyi,j′yr,syr,s′ = 1]

= P [{b : Tb(i, j) = Tb(i, j′) = Tb(r, s) = Tb(r, s′) = 0}] ,

and thus for Y = {yi,j , yi,j′ , yr,s, yr,s′} ∈ Y, we have that

E [yi,jyi,j′yr,syr,s′ ] =
{

1
n3 , if G(Y ) ∼= G1,2,3,5,6,7,9,10,12;
1
n2 , if G(Y ) ∼= G4,8,11.

(22)

The last equation, combined with Claim 20, implies that
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∑
1≤i,r≤

⌊
n
2
⌋

0≤j,j′,s,s′≤n−1
j<j′; s<s′

(i,j,j′) �=(r,s,s′)

Cov [yi,jyi,j′ , yr,syr,s′ ] ≤
∑

1≤i,r≤
⌊
n
2
⌋

0≤j,j′,s,s′≤n−1
j<j′; s<s′

(i,j,j′) �=(r,s,s′)

E [yi,jyi,j′yr,syr,s′ ]

≤ 7 ·O(n4) 1
n3 + 3 ·O(n3) 1

n2 + 2 ·O(n3) 1
n3

= O(n).

Using the previous inequality and (21) we get that

V [Z1] =
∑

1≤i≤
⌊
n
2
⌋

0≤j<j′≤n−1

V [yi,jyi,j′ ] +
∑

1≤i,r≤
⌊
n
2
⌋

0≤j,j′,s,s′≤n−1
j<j′; s<s′

(i,j,j′) �=(r,s,s′)

Cov [yi,jyi,j′ , yr,syr,s′ ]

= O(n) + O(n) = O(n). (23)

This completes the proof of Claim 19 in the case when n is odd.

Case 2: n even. We estimate the variances of Z0 and Z1. For n even, we can write Z0
as

Z0 =
∑

1≤i<n
2

0<j≤n−1

yi,j + 2
n
2 −1∑
j=0

yn
2 ,j ,

where all variables involved in the sums are mutually independent (see Remark 9). Thus

V [Z0] =
∑

1≤i<n
2

0≤j≤n−1

V [yi,j ] + 4
n
2 −1∑
j=0

V
[
yn

2 ,j

]
.

Using (16), we deduce that

V [Z0] =
(n

2 − 1
)
n

(
1
n
− 1

n2

)
+ 4n2

(
1
n
− 1

n2

)
= O(n), (24)

for all n even. By Remark 9, we can write Z1 as

Z1 =
∑

1≤i≤n
2

0≤j<j′≤n−1
j �≡j′ (mod n/2)

yi,jyi,j′ +
n
2 −1∑
s=0

yn/2,s.

Therefore
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V [Z1] =
∑

1≤i≤n
2

0≤j<j′≤n−1
j �≡j′ (mod n/2)

V [yi,jyi,j′ ] +
n
2 −1∑
s=1

V
[
yn/2,s

]

+
∑

1≤i,r≤n
2

0≤j,j′,s,s′≤n−1
j<j′;s<s′

j �≡ n
2
j′; s �≡ n

2
s′

(i,j,j′) �=(r,s,s′)

Cov [yi,jyi,j′ , yr,syr,s′ ]

+ 2
∑

1≤u≤n
2

0≤v<v′≤n−1
v �≡n

2
v′

0≤w≤n
2 −1

Cov
[
yu,vyu,v′ , yn

2 ,w

]
+

∑
0≤w,w′≤n

2 −1
w �=w′

Cov
[
yn

2 ,w, yn
2 ,w′
]

︸ ︷︷ ︸
= 0 (by Remark 9)

. (25)

We divide the analysis into three parts: the first two sums, the third sum, and the fourth 
sum. Using Remark 9, we write the first two sums in (25) as

∑
1≤i≤n

2
0≤j<j′≤n−1

j �≡j′ (mod n/2)

V [yi,j ]V [yi,j′ ] +
n
2 −1∑
s=1

V
[
yn/2,s

] (16)
≤ n · n2

(
1
n
− 1

n2

)2

+ n

(
1
n
− 1

n2

)

= O(n).
(26)

The third sum in (25) can be bounded above in the same way as in the odd case: the 
associated graphs of variables yi,j , yi,j′ , yr,s, yr,s′ with non-zero covariance in the third 
sum, are isomorphic to one of the graphs in Fig. 2. Thus we can use Claim 20 and (22)
to obtain ∑

1≤i,r≤n
2

0≤j,j′,s,s′≤n−1
j<j′;s<s′

j �≡ n
2
j′; s �≡ n

2
s′

(i,j,j′) �=(r,s,s′)

Cov [yi,jyi,j′ , yr,syr,s′ ] = O(n). (27)

In the fourth sum in (25), the variables with non-zero covariance have an associated 
multi-graph which is isomorphic to one of the following multi-graphs.

G13 G14 G15

Let X := {{yu,v, yu,v′ , yn
2 ,w} : 1 ≤ u ≤ n

2 ; 0 ≤ v < v′ ≤ n − 1; v �≡n
2
v′; 0 ≤ w ≤ n

2 − 1}. 
In the same way as Claim 20, we can prove that
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# {X ∈ X : G(X) ∼= Gc} = O(n3), c = 13, 14, 15.

As in (22), we can prove that E 
[
yu,vyu,v′yn

2 ,w

]
= 1

n2 for all X = {yu,v, yu,v′ , yn
2 ,w} ∈ X . 

Thus

∑
1≤u≤n

2
0≤v<v′≤n−1
0≤w≤n

2 −1

Cov
[
yu,vyu,v′ , yn

2 ,w

]
≤ 3 ·O(n3) 1

n2 = O(n). (28)

Plugging (26), (27), (28) into (25) finally yields

V [Z1] = O(n) + O(n) + 2 ·O(n) = O(n), (29)

for all n even. Equations (18), (23), (24) and (29) together yield Claim 19 in the case 
when n is even. Thus we have fully established Claim 19. �
5.3. Ezero(1

2 − ε) has high probability

Using Chebyshev’s inequality, we obtain that

P [|Z0 − E [Z0] | ≥ λ0] ≤
V [Z0]
λ2

0
; P [|Z1 − E [Z1] | ≥ λ1] ≤

V [Z1]
λ2

1
,

for every λ0, λ1 > 0. In particular, this implies that

P [Z0 < E [Z0] − λ0] ≤
V [Z0]
λ2

0
; P [Z1 > E [Z1] + λ1] ≤

V [Z1]
λ2

1
.

Let ε ∈ (0, 1) be the constant from the statement of Lemma 7, and set ν = εn/8. 
Choosing λ0 = λ1 = ν and using Claims 18 and 19 we get that

P [Z0 < E [Z0] − ν] ≤ V [Z0]
ν2 = O(n)

n2 = O

(
1
n

)
;

P [Z1 > E [Z1] + ν] ≤ V [Z1]
ν2 = O(n)

n2 = O

(
1
n

)
.

By Claim 18 we have

δ := (1
2 − ε)

⌊n
2

⌋
≤ E [Z0 −Z1] − 2ν

for n sufficiently large. Thus, using Claim 15 we can conclude that
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P

[
Ec
zero(

1
2 − ε)

]
= P

[{
b ∈ Mn : D(b) < (1

2 − ε)
⌊n

2

⌋}]
≤ P

[
Z0 < E [Z0] − ν

]
︸ ︷︷ ︸

= O
(

1
n

)
+P
[
Z1 > E [Z1] + ν

]
︸ ︷︷ ︸

= O
(

1
n

)

= O

(
1
n

)
.

This concludes the proof of Lemma 7.

6. Connections with chromatic polynomials of circulant graphs

As we have already seen in the proof of Claim 11, the multi-graph associated with 
the variables in row i �= n

2 of Tb is the circulant graph Cn(i), and the same holds for 
the variables in row n/2 if we consider the associated graph and not the associated 
multi-graph. Furthermore, we can express the probability of synchronization of circular 
automata in terms of chromatic polynomials of circulant graphs: this is a consequence 
of the close connection of the moments of D(b) to chromatic polynomials of circulant 
graphs. We formalize this in the following results.

Definition. The circulant graph Cn(i1, i2, . . . , ik) is a graph with vertex set Zn where two 
vertices r, s are adjacent if 

∣∣r − s
∣∣
n
∈ {i1, i2, . . . , ik}.

Definition. Let G be a graph with vertex set {0, 1, . . . , n − 1}. The chromatic polynomial
P (G; x) : N → N of G is defined by

P (G;x) := #{b ∈ {0, . . . , x− 1}n : b is a proper coloring of G}.

Remark 21. Let G be of order n. Then P (G; x) =
∑n

j=1 λjx
j , where λj ∈ Z (see, for 

instance, [9]).

Claim 22. Let D(b) and b = (b0, b1, . . . , bn−1) ∈ Mn be as in Lemma 7. Then

E [D] =
⌊n

2

⌋
−

⌊
n
2
⌋∑

i=1

Pi(n)
nn

and

V [D] =
n∑

i=1

(
Pi(n)
nn

− P 2
i (n)
n2n

)
+ 2

∑
1≤i<j≤

⌊
n
2
⌋
(
Pi,j(n)
nn

− Pi(n)Pj(n)
n2n

)
,

where Pi is the chromatic polynomial of the circulant graph Cn(i) and Pi,j is the chro-
matic polynomial of the circulant graph Cn(i, j).
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Remark 23. • It is easy to derive that Pi(x) =
(
(x− 1)li + (−1)li(x− 1)

) n
li where li =

n
gcd(n,i) , because Cn(i) is a collection of gcd(n, i) many disjoint cycles of length n

gcd(n,i)
[5]. With this explicit expression, an easy corollary of Claim 22 is the estimate E [D] ∼
(1 − e−1) 

⌊
n
2
⌋
.

• We could not find an explicit expression for Pi,j . The calculation of the chromatic 
number of circulant graphs with an arbitrary number of parameters is an NP-Hard 
problem [7]. This implies that the calculation of chromatic polynomials of circulant 
graphs is also NP-Hard since
χ(G) = argminw∈NP (G; w) > 0 – we believe that our unfruitful attempts to estimate 
V [D] are connected to this. To circumvent these issues, the variables Z0 and Z1 in 
Section 5 were introduced.

Proof of Claim 22. Let us recall that D(b) =
∑⌊

n
2
⌋

i=1 Di(b), where

Di(b) :=
{

1, if there exist k, l ∈ Zn such that
∣∣k − l

∣∣
n

= i and
∣∣bk − bl

∣∣
n

= 0.
0, otherwise.

Then Di(b) = 1 − xi(b), where

xi(b) :=
n∏

j=0

(
1 − 1{

∣∣bj − b(j+i)n
∣∣
n

= 0}
)
.

We observe that xi(b) = 1 if and only if every two numbers r, s ∈ Zn at cyclic distance 
i have different images under b and xi(b) = 0 otherwise. If we consider b as a random 
coloring of Cn(i), then xi(b) = 1 if and only if Cn(i) is properly colored by b. Thus

E [xi] = P [{b : xi(b) = 1}] = Pi(n)
nn

.

In a similar way

E [xixj ] = P [{b : xi(b)xj(b) = 1}] = Pi,j(n)
nn

.

Therefore

E [D] =

⌊
n
2
⌋∑

i=1
E [Di] =

⌊
n
2
⌋∑

i=1
(1 − E [xi]) =

⌊n
2

⌋
−

⌊
n
2
⌋∑

i=1

Pi(n)
nn

,

as well as

V [Di] = E
[
D2

i

]
− E [Di]2 =

(
1 − Pi(n)

n

)
−
(

1 − Pi(n)
n

)2

= Pi(n)
n

− P 2
i (n)
2n
n n n n
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and

Cov [Di, Dj ] = E [DiDj ] − E [Di]E [Dj ] = E [(1 − xi)(1 − xj)] − E [1 − xi]E [1 − xj ]

= E [xixj ] − E [xi]E [xj ]

= Pi,j(n)
nn

− Pi(n)Pj(n)
n2n .

Plugging the two previous equations into

V [D] =

⌊
n
2
⌋∑

i=1
V [Di] + 2

∑
1≤i<j≤

⌊
n
2
⌋Cov [Di, Dj ]

yields Claim 22. �
We get the following relation between chromatic polynomials of circulant graphs and 

synchronization of circular automata. The number 1
2 − e−1 in the statement of Theo-

rem 24 has the approximate value 0.13.

Theorem 24. Let An(b) be a circulant graph as introduced in Section 2. Let ε ∈ (0, 12 −
e−1), then there exist nε ∈ N such that for all n ≥ nε it holds that

P [{b ∈ Mn : An(b) synchronizes}] ≥ 1−
⌊n

2

⌋
exp
{
− 1

2n

(
ε
⌊n

2

⌋
− 1
)2
}
− V [D](

ε
⌊
n
2
⌋
− 1
)2 ,

where V [D] is as given in Claim 22.

Proof. By (11), (13) we know that

P [Ec
row(α�)] ≤

⌊n
2

⌋
exp
{
− 1

2n

(
ε
⌊n

2

⌋
− 1
)2
}
, (30)

for all ε > 0 and n large enough, where α� = 1 − e−1 − ε. Using the expression for Pi in 
Remark 23 together with the inequality 1 − x ≤ e−x, x ∈ R, we bound Pi(n)/nn from 
above

Pi(n)
nn

=
(
n− 1
n

)n(
1 + (−1)�i

(n− 1)�i−1

) n
�i

≤ e−1
(

1 + 1
(n− 1)�i−1

) n
�i

≤ e−1e
n
�i

· 1
(n−1)�i−1

= exp
{
−1 + n

�i · (n− 1)�i−1

}
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and thus

Pi(n)
nn

≤

⎧⎨
⎩

exp
{
−1 + 1

2 ·
(

n
n−1

)}
, if i = n

2 i.e. �i = 2;

exp
{
−1 + n

3(n−1)2

}
, if i �= n

2 i.e. �i ≥ 3.
(31)

Using Equation (31) and the equation E [D] =
⌊
n
2
⌋
−
∑⌊

n
2
⌋

i=1
Pi(n)
nn from Claim 22 we get 

that

E [D] ≥
⌊n

2

⌋(
1 − exp

{
n

3(n− 1)2 − 1
})

− 1 = η�.

By Chebyshev’s inequality and elementary manipulations, we get that

P [{b ∈ Mn : D(b) < η� − λ}] ≤ V [D]
λ2 ,

for all λ > 0. Let ε > 0. Setting λ = λ′
ε(n) = η� −

⌊
n
2
⌋
(1 − e−1 − ε) + 1 and noting that 

λ > 0 for n large enough, we get that

P
[(

E β̃
zero

)c]
=P

[{
b ∈ Mn : D(b) <

⌊n
2

⌋ (
1 − e−1 − ε

)
− 1
}]

≤ V [D]
(λ′

ε(n))2

≤ V [D](⌊
n
2
⌋
ε− 1

)2
for n sufficiently large, where β̃ = 1 − e−1 − ε − 1⌊

n
2
⌋ . Using the previous inequalities, we 

conclude that

P [{b ∈ Mn : An(b) synchronizes}]
(6)
≥ 1 − P [Ec

row(α�)] − P
[
Ec
zero(β̃)

]
(32)

≥ 1 −
⌊n

2

⌋
exp
{
− 1

2n

(
ε
⌊n

2

⌋
− 1
)2
}
− V [D](

ε
⌊
n
2
⌋
− 1
)2 (33)

for n large enough where the relations α�, β̃ > 0 and α� + β̃ > 1 are valid when ε ∈
(0, 12 − e−1) and n is large enough. �

Actually, we formulate the following conjecture:

Conjecture 25. V [D] = O(n).

To prove this conjecture it is sufficient to prove that there is g : N → R such 
that |Pi,j(n)

n − Pi(n)Pj(n)
2n | ≤ g(n) = O(1/n) for all i, j. From (31) we see that 
n n
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0 ≤ Pi(n)/nn ≤ f(n) = O(1) for all i, therefore the first part of the sum of V [D]
given in Claim 22 is | 

∑n
i=1

(
Pi(n)
nn − P 2

i (n)
n2n

)
| ≤ nf(n) = O(n). The second part of the 

sum 
∑

1≤i<j≤
⌊
n
2
⌋ (Pi,j(n)

nn − Pi(n)Pj(n)
n2n

)
has a quadratic number of elements of the form 

Pi,j(n)
nn − Pi(n)Pj(n)

n2n , and it can be bounded by O(n2)g(n) = O(n) if the assumption 

|Pi,j(n)
nn − Pi(n)Pj(n)

n2n | ≤ g(n) = O(1/n) for all i, j is true, making V [D] = O(n) +O(n) =
O(n). In particular, a positive answer to this chromatic-polynomial question would give 
an alternative proof of Theorem 4.

7. Future work

Let An(a, b) be an automaton where a : Zn → Zn is fixed and b ∈ Mn. These are 
natural lines of research to extend/improve the results in this paper:
• We want to explore in more detail the strengths and limitations in the ideas presented 
in this paper. For example, we think that these ideas can extend Theorem 4 to the 
case where a : Zn → Zn is in the form of a finite number of pairwise disjoint cycles of 
almost-equal length. We also think that (probabilistic) upper bounds for the length of 
the synchronizing minimal words can be given with our techniques, in the spirit of the 
results of [11].
• Theorem 3 has a decay rate in Θ 

(√
p

ep

)
. We believe that this can be extended in a 

weaker form to the case of circular automata of composite order:

Conjecture 26.

P [{b ∈ Mn : An(b) synchronizes}] = 1 −O(αn),

for some 0 < α < 1, as n → ∞.
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