JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:135 |
The behavior of Stanley depth under polarization | |
Article | |
Ichim, B.1  Katthaen, L.2  Moyano-Fernandez, J. J.3,4  | |
[1] Romanian Acad, Simion Stoilow Inst Math, Bucharest 014700, Romania | |
[2] Univ Osnabruck, Fachbereich Math Informat, D-49069 Osnabruck, Germany | |
[3] Univ Jaume 1, Dept Matemat, Castellon De La Plana 12071, Spain | |
[4] Univ Jaume 1, IMAC Inst Univ Matemat & Aplicac Castello, Castellon De La Plana 12071, Spain | |
关键词: Monomial ideal; Stanley depth; Stanley decomposition; Poset map; Polarization; | |
DOI : 10.1016/j.jcta.2015.05.005 | |
来源: Elsevier | |
【 摘 要 】
Let K be a field, R = K[X-1, ... , X-n] be the polynomial ring and J subset of I be two monomial ideals in R. In this paper we show that sdepth I/J - depth I/J = sdepth I-p/J(p) - depth I-p/J(p), where sdepth I/J denotes the Stanley depth and I-p denotes Polarization the polarization. This solves a conjecture by Herzog [9] and reduces the famous Stanley conjecture (for modules of the form I/J) to the squarefree case. As a consequence, the Stanley conjecture for algebras of the form Rh I and the well-known combinatorial conjecture that every Cohen-Macaulay simplicial complex is partitionable are equivalent. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcta_2015_05_005.pdf | 385KB | download |