期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:135
The behavior of Stanley depth under polarization
Article
Ichim, B.1  Katthaen, L.2  Moyano-Fernandez, J. J.3,4 
[1] Romanian Acad, Simion Stoilow Inst Math, Bucharest 014700, Romania
[2] Univ Osnabruck, Fachbereich Math Informat, D-49069 Osnabruck, Germany
[3] Univ Jaume 1, Dept Matemat, Castellon De La Plana 12071, Spain
[4] Univ Jaume 1, IMAC Inst Univ Matemat & Aplicac Castello, Castellon De La Plana 12071, Spain
关键词: Monomial ideal;    Stanley depth;    Stanley decomposition;    Poset map;    Polarization;   
DOI  :  10.1016/j.jcta.2015.05.005
来源: Elsevier
PDF
【 摘 要 】

Let K be a field, R = K[X-1, ... , X-n] be the polynomial ring and J subset of I be two monomial ideals in R. In this paper we show that sdepth I/J - depth I/J = sdepth I-p/J(p) - depth I-p/J(p), where sdepth I/J denotes the Stanley depth and I-p denotes Polarization the polarization. This solves a conjecture by Herzog [9] and reduces the famous Stanley conjecture (for modules of the form I/J) to the squarefree case. As a consequence, the Stanley conjecture for algebras of the form Rh I and the well-known combinatorial conjecture that every Cohen-Macaulay simplicial complex is partitionable are equivalent. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2015_05_005.pdf 385KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次