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1. Introduction

In 1982, R. Stanley conjectured in his celebrated paper [26] an upper bound for the 
depth of a multigraded module of combinatorial nature, called Stanley depth later on. 
A proof of this conjecture turned out to be a difficult problem: it began soon to be 
called the Stanley conjecture. Since then, several authors began to study intensively 
this problem, starting with the reformulation by Apel of the most important cases of the 
conjecture, i.e. the Stanley conjecture for a monomial ideal I and for the factor ring R/I, 
see [2, Conjecture 2] and [3, Conjecture 1]. Afterwards, most of the research concentrates 
on the particular case of a module of the form I/J for two monomial ideals J � I in the 
polynomial ring R = K[X1, . . . , Xn] over some field K; motivated by works of Herzog and 
Popescu [11,23], the Stanley conjecture became one important open problem in algebra 
and combinatorics.

A natural first step to approach the Stanley conjecture is to try to reduce it to 
squarefree monomial ideals. The arguable most straightforward method for this is via 
polarization. This is a process which replaces an arbitrary monomial ideal I with a cer-
tain squarefree monomial ideal Ip, such that I can be recovered from Ip by dividing 
out a regular sequence. The behavior of many invariants of I under polarization is well 
understood. In particular, as polarization preserves the projective dimension, the change 
in the depth is just the change in the number of variables. In view of the Stanley conjec-
ture, one would hope for a similar behavior of the Stanley depth. This was formulated 
as a conjecture by Herzog in the survey [9] as follows:

Conjecture 1.1. (See Conjecture 62, [9].) Let I ⊂ R be a monomial ideal. Then

sdepthR/I − depthR/I = sdepthRp/Ip − depthRp/Ip

where Rp is the ring where Ip is defined.

However, despite the naturality of the question and a considerable effort, it remained 
open for quite some time. The main result of our paper (Theorem 4.4) is the proof of 
Conjecture 1.1. We show it even more generally for modules of the form I/J for two 
monomial ideals J � I ⊆ R.

This has two important consequences. First, it immediately follows that I/J satisfies 
the Stanley conjecture if and only if its polarization Ip/Jp does so, cf. Corollary 4.5. Thus 
the Stanley conjecture for modules of the form I/J—in particular [2, Conjecture 2] and 
[3, Conjecture 1]—is effectively reduced to the squarefree case.

For the second consequence, as noted by Stanley himself in [26, p. 191], the Stanley 
conjecture was formulated such that “the question raised in [25, p. 149, line 6] or [8, 
Rmk. 5.2] would follow affirmatively”. This question was reformulated by Stanley [27, 
Conjecture 2.7], and asks whether every Cohen–Macaulay simplicial complex is partition-
able. While it is clear that the Stanley conjecture implies the Garsia–Stanley conjecture 
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on Cohen–Macaulay simplicial complexes, in this paper we show that the converse is 
also true, that is, the Garsia–Stanley conjecture on Cohen–Macaulay simplicial com-
plexes implies what is (arguably) the most important case of the Stanley conjecture. 
More precisely, we show that Stanley’s conjecture on Cohen–Macaulay simplicial com-
plexes is equivalent to [3, Conjecture 1] (see Theorem 4.7).

The content of the paper is organized as follows. Section 2 is devoted to explain the 
prerequisites and to fix notations. Section 3 introduces a suitable tool for the measure 
of the Stanley depth of a quotient I/J as above, namely the maps changing the Stanley 
depth. Helpful properties of those maps are recorded in both Lemma 3.4 and Lemma 3.6.

The most remarkable application of Section 3 is that to the polarization of the quotient 
I/J ; this is exactly the content of Section 4, which also includes the main results of the 
paper—the already mentioned Corollaries 4.4, 4.5 and 4.7.

Further applications of the maps changing Stanley depth are described in Section 5, 
closing the paper.

The reader is referred to Bruns and Herzog [5], and Miller and Sturmfels [20] for 
general definitions, notation, and background material.

2. Prerequisites

Let K be a field. We consider the polynomial ring R = K[X1, . . . , Xn] over K, endowed 
with the fine Zn-grading (i.e. the Zn-grading with degXi = ei being the i-th vector of 
the canonical basis).

Let M be a finitely generated graded R-module, and m ∈ M homogeneous. Let 
Z ⊂ {X1, . . . , Xn} be a subset of the set of indeterminates of R. The K[Z]-submodule 
mK[Z] of M is called a Stanley space of M if mK[Z] is free (as K[Z]-submodule). 
A Stanley decomposition of M is a finite family

D = (K[Zi],mi)i∈Ω

in which Zi ⊂ {X1, . . . , Xn} and miK[Zi] is a Stanley space of M for each i ∈ Ω with

M =
⊕
i∈Ω

miK[Zi]

as a graded or multigraded K-vector space. This direct sum carries the structure of 
R-module and has therefore a well-defined depth. The Stanley depth sdepth M of M is 
defined to be the maximal depth of a Stanley decomposition of M . The Stanley conjecture 
states the following inequality:

Conjecture 2.1 (Stanley). sdepth M ≥ depth M .

For a recent account on the subject, the reader is referred to Herzog’s survey [9].
We endow Zn (or Nn) with the componentwise (partial) order: Given a, b ∈ Zn, we say 

that a ≤ b if and only if ai ≤ bi for i = 1, . . . , n. Note that this partial order turns Zn into 
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a distributive lattice with meet a ∧ b and join a ∨ b being the componentwise minimum 
and maximum, respectively. For a, b ∈ Zn the interval between a and b is defined to be

[a, b] := {c ∈ Zn | a ≤ c ≤ b}.

For n ∈ N we will use the notation [n] := {1, . . . , n}.
Monotonic poset maps will play a prominent role in Section 3. Consider two posets 

P ⊂ Zn, P ′ ⊂ Zn′ . We call a map φ : P → P ′ monotonic if it preserves the order. 
Moreover, φ is said to preserve joins resp. meets if it satisfies φ(a ∨ b) = φ(a) ∨φ(b) resp. 
φ(a ∧ b) = φ(a) ∧ φ(b) for all a, b ∈ P .

For a = (a1, . . . , an) ∈ Nn we denote by Xa the monomial Xa1
1 · · ·Xan

n . Let J �

I ⊂ R be two monomial ideals. The quotient I/J is a graded or multigraded R-module. 
Following Herzog, Vladoiu and Zheng [13], we fix a vector g ∈ Nn satisfying a ≤ g for 
all Xa in minimal sets of generators for I and J . The characteristic poset P g

I/J of I/J
with respect to g is defined to be the (finite) subposet

P g
I/J := {a ∈ Nn : Xa ∈ I \ J, a ≤ g}

of Zn. A partition of a finite poset P is a disjoint union

P : P =
r⋃

i=1
[ai, bi]

of intervals. A key result in [13] describes a way to compute sdepth I/J from a Stanley 
decomposition of I/J coming from a partition of the poset P g

I/J . More precisely, by 
setting Zb := {Xj : bj = gj} for each b ∈ P g

I/J , and the function ρ = ρg : P g
I/J → Z≥0, 

ρ(c) = #(Zc), Theorem 2.1 in [13] says:

Theorem 2.2 (Herzog, Vladoiu, Zheng).

(a) Let P : P g
I/J =

⋃r
i=1[ai, bi] be a partition of P g

I/J , then

D(P) : I/J =
r⊕

i=1

(⊕
c

XcK[Zbi ]
)

is a Stanley decomposition of I/J , where the inner direct sum is taken over all 
c ∈ [ai, bi] for which cj = aij for all j with Xj ∈ Zbi . Moreover, we have

sdepth D(P) = min{ρ(bi) : i = 1, . . . , r}.

(b) Let D be a Stanley decomposition of I/J . Then there exists a partition P of P g
I/J

such that sdepth D(P) ≥ sdepth D. In particular, sdepth I/J can be computed as 
the maximum of the numbers sdepth D(P), where P runs over the (finitely many) 
partitions of P g .
I/J
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The main topic of this paper is the behavior of Stanley depth under polarization. 
We recall the definition following Herzog and Hibi [10]. Let I ⊂ R be a monomial ideal 
with generators u1, . . . , um, where ui =

∏n
j=1 X

aij

j for i = 1, . . . , m. For each j let 
aj = max{aij : i = 1, . . . , m}. Set a = (a1, . . . , an) and choose a g ∈ Nn such that a ≤ g. 
Set Rp to be the polynomial ring

Rp := K[Xjk : 1 ≤ j ≤ n, 1 ≤ k ≤ gj ].

Then the polarization of I is the squarefree monomial ideal Ip ⊂ Rp generated by 
v1, . . . , vm, where

vi =
n∏

j=1

aij∏
k=1

Xjk for i = 1, . . . ,m.

3. Poset maps

Let I, J be monomial ideals of R such that J � I. We are interested in measuring 
the Stanley depth of the deformations of the quotient I/J . The following kind of maps 
reveals to be a useful tool for that aim:

Definition 3.1. Let � ∈ Z and n, n′ ∈ N. A monotonic map φ : Nn → Nn′ is said to change 
the Stanley depth by � with respect to g ∈ Nn and g′ ∈ Nn′ , if it satisfies the following 
two conditions:

(1) φ(g) ≤ g′

(2) For each interval [a′, b′] ⊂ [0, g′], the (restricted) preimage

φ−1([a′, b′]) ∩ [0, g]

can be written as a finite disjoint union 
⋃

i[ai, bi] of intervals, such that

#{j ∈ [n] : bij = gj} ≥ #{j ∈ [n′] : b′j = g′j} + � for all i.

Notation 3.2. Let R = K[X1, . . . , Xn], R′ = K[X1, . . . , Xn′ ]. A map φ : Nn → Nn′ gives 
rise to a natural K-linear map Φ : R → R′, which is defined on monomials as

Φ(Xa) := Xφ(a)

and extended to R linearly. Note that this is not a ring homomorphism.

Next proposition justifies the name for a monotonic map changing the Stanley depth
of the previous definition:
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Proposition 3.3. Let n, n′ ∈ N, R = K[X1, . . . , Xn], R′ = K[X1, . . . , Xn′ ] be two poly-
nomial rings and let J ′ � I ′ ⊂ R′ be monomial ideals. Consider a monotonic map 
φ : Nn → Nn′ and set I := Φ−1(I ′), J := Φ−1(J ′). Choose g ∈ Nn and g′ ∈ Nn′ , such 
that every minimal generator of I and J divides Xg, and every minimal generator of I ′
and J ′ divides Xg′ . Let � ∈ Z and assume that φ changes the Stanley depth by � with 
respect to g and g′. Then

(i) I and J are monomial ideals, and
(ii) sdepth I/J ≥ sdepth I ′/J ′ + �.

Proof. It is clear that I and J are monomial ideals (since monomial ideals correspond to 
subsets of Nn that are upwardly closed, and taking the preimage under a monotonic map 
preserves this property). For the second claim, we compute the Stanley depth of I ′/J ′

via an interval partition of P g′

I′/J ′ (cf. Theorem 2.2). Note that the assumption φ(g) ≤ g′

together with the equalities Φ−1(I ′) = I and Φ−1(J ′) = J imply that φ−1(P g′

I′/J ′) ∩
[0, g] = P g

I/J . Hence, taking the preimages of the intervals in the partition of P g′

I′/J ′

yields an interval partition of P g
I/J of the required Stanley depth by virtue of (2) in 

Definition 3.1. �
The following results are useful for constructing maps φ which satisfy the conditions 

of the previous proposition:

Lemma 3.4. Let n1, n′
1, n2, n′

2 ∈ N. For i = 1, 2, let φi : Nni → Nn′
i be monotonic maps 

that change the Stanley depth by �i with respect to gi ∈ Nni and g′i ∈ Nn′
i . Then the 

product map

(φ1, φ2) : Nn1+n2 → Nn′
1+n′

2

changes the Stanley depth by �1 + �2 with respect to (g1, g2) and (g′1, g′2).

Proof. Let us denote the product map by φ := (φ1, φ2). It is enough to consider one 
interval [(p1, p2), (q1, q2)] ⊂ Nn′

1+n′
2 . By assumption, the preimage

φ−1
i ([pi, qi])

⋂
[0, gi] =

⋃
j

[pji , q
j
i ] ⊂ Nni

is a disjoint finite union of intervals. Then

φ−1([(p1, p2), (q1, q2)]) ∩ [0, (g1, g2)] =

= φ−1(([p1, q1] × Nn′
2) ∩ (Nn′

1 × [p2, q2])) ∩ [0, (g1, g2)]

= (φ−1
1 ([p1, q1]) × Nn2) ∩ (Nn1 × φ−1

2 ([p2, q2])) ∩
∩ ([0, g1] × Nn2) ∩ (Nn1 × [0, g2])
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=
(
(φ−1

1 ([p1, q1]) ∩ [0, g1]) × Nn2
)
∩

(
Nn1 × (φ−1

2 ([p2, q2]) ∩ [0, g2])
)

=
(

(
⋃
j

[pj1, q
j
1]) × Nn2

)
∩

(
Nn1 × (

⋃
j

[pj2, q
j
2])

)

=
⋃
j,k

[(pj1, pk2), (qj1, qk2 )],

which implies the statement. �
Remark 3.5. The most important special case of this lemma is when one of the maps is 
the identity. In this case, if φ is a map changing the Stanley depth by �, then we can 
pad it with identities to get a new map φ̂ = (id, . . . , id, φ) that still changes the Stanley 
depth by �. In the following, φ̂ will always denote the padded version of φ and Φ̂ the 
padded version of Φ.

Lemma 3.6. Every monotonic map φ : N → Nn′ changes the Stanley depth by 1 −n′ with 
respect to g ∈ N and g′ := φ(g).

Proof. Let Q′ = [a′, b′] ⊂ [0, g′] ⊂ Nn′ be an interval and let Q := φ−1(Q′) ∩ [0, g] be its 
(restricted) preimage. Let a ∈ N (resp. b ∈ N) be the minimal (resp. maximal) element 
in Q. Then Q ⊂ [a, b] and we claim that we have equality. For c ∈ [a, b], it follows from 
φ(a) ≤ φ(c) ≤ φ(b) that φ(c) ∈ [a′, b′], because φ(a), φ(b) ∈ [a′, b′]. Thus c ∈ Q. So the 
preimage of an interval is again an interval. It remains to verify the condition (2) of 
Definition 3.1, namely

#{j ∈ [1] : bj = gj} ≥ #{j ∈ [n′] : b′j = g′j} + 1 − n′ for all i.

If b′ < g′, then the right-hand side is nonpositive, so the condition is trivially satisfied. 
On the other hand, if b′ = g′, then b = g and thus the condition is also satisfied. �

We close this section with a precise description of the behavior of poset maps preserv-
ing joins and meets with respect to the property of changing Stanley depth. This result 
will be not needed in the sequel.

Theorem 3.7. Let n, n′ ∈ N and let φ : Nn → Nn′ be a map that preserves joins and 
meets. Then φ changes the Stanley depth by n −n′ with respect to g ∈ Nn and g′ := φ(g).

Proof. We assume that φ(0) = 0, as we otherwise replace φ by φ −φ(0) without changing 
the validity of the claim. First we show that φ is monotonic. Consider a, b ∈ Nn with 
a ≤ b. Then

φ(a) ≤ φ(a) ∨ φ(b) = φ(a ∨ b) = φ(b),

hence φ(a) ≤ φ(b).
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In view of Lemma 3.4 and Lemma 3.6, it is sufficient to show that φ is a product of 
monotonic maps φi : N → Nn′

i with 1 ≤ i ≤ n and 
∑

i n
′
i = n′.

For this, let ei denote the i-th unit vector of Nn. The support of a vector v ∈ Nn is 
the set of indices i, such that the i-th component of v does not vanish. Every vector 
v ∈ Nn can be written as a sum v = λe1 +(0, v′) with v′ ∈ Nn−1. As φ is monotonic, the 
support of φ(λe1) can only increase with λ. Hence, without loss of generality, we may 
assume that the maximal support of φ(λe1) for λ sufficiently large is the set of the first 
n′

1 coordinates; that is

φ(λe1) ∈ Nn′
1 × (0, . . . , 0).

Since φ preserves meets, for all λ ∈ N and v′ ∈ Nn−1 we have

0 = φ(0) = φ(λe1 ∧ (0, v′)) = φ(λe1) ∧ φ((0, v′)).

It follows that for each vector (0, v′) with vanishing first coordinate, the support of its 
image is contained in the last n′ − n′

1 coordinates. That is

φ((0, v′)) ∈ (0, . . . , 0) × Nn′−n′
1 .

Then, it holds that

φ(v) = φ(λe1 + (0, v′)) = φ(λe1 ∨ (0, v′)) = φ(λe1) ∨ φ((0, v′))

= φ(λe1) + φ((0, v′)),

because the sum equals the join in this case. Set φ1 : N → Nn′
1 , φ1(λ) = πn′

1
φ(λe1)

where πn′
1

is the projection on the first n′
1 coordinates. Set φn−1 : Nn−1 → Nn′−n′

1 , 
φn−1(v′) = πn′−n′

1
φ((0, v′)) where πn′−n′

1
is the projection on the last n′−n′

1 coordinates. 
Then φ splits into a direct product

φ = (φ1, φn−1) : N× Nn−1 → Nn′
1 × Nn′−n′

1 .

Since φ1 is a restriction of φ, it follows that φ1 is monotonic.
Iterating this construction yields the desired decomposition of φ. �

4. Application to polarizations

Let J � I be two monomial ideals in R. Then we can choose e ∈ Zn greater than or 
equal to (in the sense of the order ≤) the join of all generators of I and J , and define 
the polarization Ip/Jp of I/J according to Section 2.

Polarization can also be done step by step. Let u1, . . . , um be the set of minimal 
generators of I. Following [9] we define the 1-step polarization of I (with respect to Xi) 
to be the ideal I1 ⊂ R[Y ] generated by v1, . . . , vm, where
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vj :=
{

Y
Xi

uj if X2
i | uj

uj otherwise.

If it is clear from context, we may omit the indeterminate with respect to which we apply 
the 1-step polarization, this should not cause confusion.

Proposition 4.1. Let J � I ⊂ R be monomial ideals. Then

1. depthR[Y ] I1/J1 = depthR I/J + 1;
2. HI1/J1(t) = 1

1−tHI/J(t).

Here HI/J(t) denotes the Hilbert series with respect to the Z-grading. This proposition 
is rather easy and its first part is known in the case I = R, cf. [9, p. 45]. Nevertheless, 
we present a complete proof for the reader’s convenience.

Proof. We consider the 1-step polarization with respect to Xn. For both claims it suffices 
to show that Xn − Y is a regular element. By contradiction, assuming Xn − Y is a 
zero-divisor on I1/J1, then there exists an ideal p ∈ Ass(I1/J1) with Xn − Y ∈ p. Since 
both J1 and p are monomial ideals, there exists a monomial 0 �= h ∈ I1/J1 such that 
p = AnnR′h. Then h(Xn−Y ) ∈ J1, and again hY ∈ J1, hXn ∈ J1, since J1 is monomial. 
Let f1, f2 generators of J1 such that f1|hXn and f2|hY . If Y |f2 then Xn|f2 and so Xn|h. 
Therefore X2

n|f1, then Y |f1. This implies that Y divides h, a contradiction. �
One difficulty in proving our main result is that the ideals I1 and J1 do not arise 

as preimages of a map, but they are rather (generated by) the image of a map. The 
following lemma is helpful for constructing Stanley decompositions in this setting.

Lemma 4.2. Let n, n′ ∈ N, R = K[X1, . . . , Xn], R′ = K[X1, . . . , Xn′ ] be two polynomial 
rings and let J � I ⊂ R be monomial ideals. Let φ : Nn → Nn′ be a map that is injective, 
monotonic, and preserves joins. Let further J ′ � I ′ ⊂ R′ be the ideals generated by 
Φ(I) (resp. Φ(J)). Let Ω be a finite set and let I/J =

⊕
i∈Ω XaiK[Zi] be a Stanley 

decomposition of I/J . Let Z ′
i, i ∈ Ω be a collection of subsets of {X1, . . . , Xn′}. Assume 

that

Φ(Xai)K[Z ′
i] ∩ Φ(R) = Φ(XaiK[Zi]) (4.1)

for each i ∈ Ω. Then for all i, j ∈ Ω with i �= j it holds that

Φ(Xai)K[Z ′
i] ∩ Φ(Xaj )K[Z ′

j ] = {0}

and Φ(Xai)K[Z ′
i] ⊂ I ′/J ′.

Proof. First, we show that Φ(Xai)K[Z ′
i] ∩ Φ(Xaj )K[Z ′

j ] = {0} for any i �= j. On the 
contrary, suppose that there are indices i �= j such that a monomial appears in both 
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Fig. 1. The image of φ from the proof of Theorem 4.3.

parts. This monomial is then a common multiple of Φ(Xai) and Φ(Xaj ). Then also the 
least common multiple of Φ(Xai) and Φ(Xaj ) appears in both parts. As Φ preserves 
the least common multiple of two monomials, it follows that the least common multiple 
of Φ(Xai) and Φ(Xaj ) is Φ(Xai∨aj ) (where Xai∨aj is the least common multiple of 
Xai and Xaj ). But now, the condition (4.1) and the fact that φ is injective imply that 
Xai∨aj ∈ XaiK[Zi] ∩XajK[Zj ], a contradiction.

Next, we show that Φ(Xai)K[Z ′
i] ⊂ I ′/J ′. Every Xai is contained in I, hence 

Φ(Xai)K[Z ′
i] is contained in I ′. It remains to show that no monomial in Φ(Xai)K[Z ′

i]
is contained in J ′. Assume on the contrary that such a monomial exists. Then it is a 
common multiple of Φ(Xai) and Φ(Xa) for a minimal generator of Xa of J . Again, it 
follows that the least common multiple of Φ(Xai) and Φ(Xa) is contained in the inter-
section Φ(Xai)K[Z ′

i] ∩ J ′ ∩Φ(R). But then the least common multiple of Xai and Xa is 
contained in XaiK[Zi] ∩ J , a contradiction. �
Theorem 4.3. Let J � I ⊂ R be two monomial ideals, and let J1 � I1 ⊂ R[Y ] be their 
1-step polarizations. Then

sdepth I/J = sdepth I1/J1 − 1.

Proof. Without loss of generality, we assume that X2
n divides one of the generators of 

I or J and we apply polarization with respect to Xn. Consider the map φ : N → N2

defined by

φ(i) :=
{

(i− 1, 1) if i ≥ 2,
(i, 0) if i = 0, 1.

It is easy to see that φ is injective, monotonic and preserves joins (see Fig. 1). Further, 
observe that

φ(a) ≤ φ(b) if and only if a ≤ b for a, b ∈ N. (4.2)

Moreover, all these properties carry over to φ̂ : Nn → Nn+1 and Φ̂ : R → R[Y ] (see also 
Remark 3.5).
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By definition, it holds that I1 is generated by Φ̂(I), hence Φ̂−1(I1) ⊇ I. We claim that 
Φ̂−1(I1) = I. To see this, consider a monomial Xb ∈ Φ̂−1(I1). Then Φ̂(Xb) is a multiple 
of a generator Φ(Xa) of I1, where Xa ∈ I. By the observation (4.2) above, Xb is then a 
multiple of Xa and thus contained in I. Analogously it holds that Φ̂−1(J1) = J .

Let g = (g1, . . . , gn) be the join of the exponents of the monomial generators of I
and J (we assume gn ≥ 2). Then φ̂(g) = g′ = (g1, . . . , gn−1, gn − 1, 1) is the join of the 
exponents of the monomial generators of I1 and J1. It follows from Lemma 3.6 that φ
changes the Stanley depth by −1 with respect to gn and (gn − 1, 1), so with Lemma 3.4
we have that φ̂ changes the Stanley as well by −1 with respect to g and g′. Hence by 
Proposition 3.3 it holds that sdepth I/J ≥ sdepth I1/J1 − 1.

Now we turn to the second inequality. Let us consider a Stanley decomposition I/J =⊕
i X

aiK[Zi] of I/J . Remark that Φ̂(XnX
a)/Φ̂(Xa) ∈ {Xn, Y } for every monomial 

Xa ∈ R, which allows us to define

Z ′
i :=

{
Zi ∪ {Y } if Xn ∈ Zi,

Zi ∪
(
{Xn, Y } \ { Φ̂(XnX

ai )
Φ̂(Xai ) }

)
otherwise.

We claim that

V :=
⊕
i

Φ̂(Xai)K[Z ′
i] (4.3)

is a Stanley decomposition of I1/J1. First, we show that

Φ̂(Xai)K[Z ′
i] ∩ Φ̂(R) = Φ̂(XaiK[Zi])

for each i. The inclusion “⊇” is clear.
For the other inclusion, let M ′ := Φ̂(Xai)N ′ be a monomial in the left-hand side and 

let M := Φ̂−1(M ′) ∈ R be its preimage. In view of (4.2), note that Φ̂(Xai) | M ′ implies 
that Xai | M , hence we may define N := M/Xai . It suffices to show that N ∈ K[Zi], 
because then M ′ = Φ̂(XaiN) is contained in the right-hand side.

By definition, the map Φ̂ may change only the exponents of Xn and Y . Therefore the 
equality Φ̂(XaiN) = Φ̂(Xai)N ′ implies that N ′ and N may differ only by multiplication 
and/or division by (powers of) Xn and Y . Hence every other variable appearing in N
also appears in N ′ ∈ K[Z ′

i], so it is contained in Z ′
i and (thus) in Zi. Furthermore, N ∈ R

implies that Y � N . So we only need to prove the following: If Xn | N , then Xn ∈ Zi.
So assume that Xn | N . Then XnX

ai | NXai and thus Φ̂(XnX
ai) | Φ̂(NXai) = M ′. 

This further implies that

Φ̂(XnX
ai)

Φ̂(Xai)

∣∣∣∣ M ′

Φ̂(Xai)
= N ′.

As N ′ ∈ K[Z ′
i], it now follows from the definition of Z ′

i that Xn ∈ Zi.
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It is easy to see that Φ̂ satisfies the assumptions of Lemma 4.2, so we conclude that 
the sum in (4.3) is direct and that V ⊂ I1/J1. It remains to show that V = I1/J1. For 
this, we compute the graded Hilbert series of V :

HV (t) =
∑

i t
|ai|(1 − t)n+1−|Z′

i|

(1 − t)n+1

=
∑

i t
|ai|(1 − t)n−|Zi|

(1 − t)n+1

= 1
1 − t

HI/J(t) = HI1/J1(t).

Here, |ai| denotes the sum of the components of ai. In the first and third equality we 
used the decompositions of V resp. I/J given above. For the last equality we used 
Proposition 4.1. As we have already shown that V ⊂ I1/J1, the claim follows.

We conclude that the sum in (4.3) is a Stanley decomposition of I1/J1. As |Z ′
i| =

|Zi| + 1 for each i, it follows that sdepth I1/J1 ≥ sdepth I/J + 1. �
Iteration of Theorem 4.3 and Proposition 4.1 has one immediate consequence:

Corollary 4.4. Let J � I ⊂ R be monomial ideals, and let Ip, Jp ⊂ Rp be their polariza-
tions. Then

sdepth I/J − depth I/J = sdepth Ip/Jp − depth Ip/Jp.

In particular, [9, Conjecture 62] is true.

Note that the preceding corollary effectively reduces Stanley’s conjecture to the 
squarefree case:

Corollary 4.5. Let J � I ⊂ R be monomial ideals, and let Ip, Jp ⊂ Rp be their polariza-
tions. Then I/J satisfies the Stanley Conjecture if and only if Ip/Jp satisfies it too.

Remark 4.6.

1. We would like to point out that the “only if”-part of Corollary 4.5 already appeared 
in [1, Theorem 3.5] in the quite particular case J = (0) and R/I Cohen–Macaulay. 
We obtain in contrast a full reduction of Stanley’s conjecture to the squarefree case.

2. An invariant related to the Stanley depth is the Hilbert depth, which was introduced 
by Uliczka [28] in the standard Z-graded case and by Bruns, Krattenthaler and 
Uliczka [6] in the multigraded case. Theorem 4.3 and Theorem 4.4 hold mutatis 
mutandis for the Hilbert depth: since the multigraded Hilbert depth coincides with 
the Stanley depth in our situation (cf. [6, Proposition 2.8]), we have

hdepthR[Y ] I1/J1 = hdepthR I/J + 1.
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In the Z-graded case, the equality

hdepth1
R[Y ] I1/J1 = hdepth1

R I/J + 1

is easily deduced from [28, Theorem 3.2].

It was previously known (see [12]) that the Stanley conjecture for algebras of the 
type R/I (where I ⊂ R is a monomial ideal) implies the conjecture (also due to Stanley 
[27, Conjecture 2.7]) that every Cohen–Macaulay simplicial complex is partitionable. We 
show that they are in fact equivalent:

Corollary 4.7. Let I ⊂ R be a monomial ideal. Stanley’s conjecture for algebras of the type 
R/I is equivalent to Stanley’s conjecture that every Cohen–Macaulay simplicial complex 
is partitionable.

Proof. It is known that Stanley’s conjecture holds for all algebras of the type R/I if and 
only if it holds for all Cohen–Macaulay such algebras, cf. [14, Corollary 3.2]. As it was 
pointed out in [9], this together with Corollary 4.5 completes the proof. �
Corollary 4.8. Stanley’s conjecture holds for quotients R/I of Gorenstein monomial ideals 
I ⊂ R with at most 8 generators.

Proof. Polarization preserves the Gorenstein property and the number of generators, so 
by Corollary 4.5 we may assume that I is squarefree. Moreover, by [15, Prop. 5.1] we may 
assume that every variable of R appears in a generator of I. So I is a Stanley–Reisner 
ideal of a homology sphere. But these homology spheres have been classified in [18]. 
In particular, they are all polytopal and thus shellable. Since the Stanley conjecture is 
known to hold in this case by [11] or [9, p. 15], the claim follows. �
5. Further applications to Stanley decompositions

Let I, J ⊂ R be monomial ideals with J � I. First of all, the techniques introduced 
in Section 3 allows us to generalize results of Cimpoeaş [7, Lemma 1.1], and Ishaq and 
Qureshi [16, Lemma 2.1]:

Proposition 5.1. Let k ∈ N. Let I ′ and J ′ be the monomial ideals obtained from I and 
J in the following way: Each generator whose degree in Xn is at least k is multiplied 
by Xn, and all other generators are taken unchanged. Then

sdepth I/J = sdepth I ′/J ′.
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Proof. Consider the maps φ, ψ : N → N defined by

φ(i) :=
{
i if i < k,

i + 1 if i ≥ k; ψ(i) :=
{
i if i ≤ k,

i− 1 if i > k.

Note that both maps change the Stanley depth by 0 with respect to g ∈ N and g+1 ∈ N

or vice versa, for each g ≥ k. Moreover, by defining the maps Φ̂, Ψ̂ as in Remark 3.5, 
we have Φ̂−1(I ′) = I, Ψ̂−1(I) = I ′, and similarly for J . So the claim follows from 
Proposition 3.3. �

The following result generalizes [24, Lemma 2.3].

Proposition 5.2. Let I, J ⊂ R be monomial ideals with J � I. Let I ′ and J ′ be the 
monomial ideals in K[X1, . . . , Xn, Xn+1] obtained from I and J in the following way: In 
each minimal generator of I and J , every occurrence of the variable Xn is replaced with 
the product XnXn+1. Then

sdepth I ′/J ′ = sdepth I/J + 1.

Proof. Consider the map φ : N2 → N, φ(a, b) := min(a, b). Let g be the maximal degree 
of Xn in a minimal generator of J or I. Then

φ−1([a, b]) ∩ [(0, 0), (g, g)] = [(a, a), (b, g)] •∪[(b + 1, a), (g, b)]

for 0 ≤ a ≤ b ≤ g, hence φ changes the Stanley depth by 1 with respect to (g, g) and g (the 
above union is disjoint). By defining the map Φ̂ as in Remark 3.5, we have Φ̂−1(I) = I ′

and similarly for the ideal J . Therefore, Proposition 3.3 yields the inequality “≥”. The 
reverse inequality “≤” is a consequence of [15, Proposition 5.2]. Alternatively, the reverse 
inequality follows from Lemma 3.6, applied to the diagonal map N → N2, a �→ (a, a). �
Remark 5.3.

1. Let us remark that the two propositions in this section are enough to reduce the 
computation of a monomial complete intersection to the case of the maximal ideal. 
We follow the line of reasoning of Shen [24, Theorem 2.4]. A monomial complete 
intersection ideal I is generated by monomials with pairwise disjoint support. So by 
Proposition 5.1, its Stanley depth does not change if we replace I with its radical. 
Then Proposition 5.2 allows us to replace I by an ideal generated by variables. (Quite 
surprisingly, the computation of the Stanley depth of an ideal generated by variables 
turned out to be rather difficult. It was carried out by Biró, Howard, Keller, Trotter 
and Young in [4].) Further, following the results obtained on the same line, one may 
use Theorem 4.3 to reduce the inequality given by Okazaki in [21] to the squarefree 
case proven by Keller and Young [19].
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2. Note that if I is a Stanley–Reisner ideal, then the process described in Proposition 5.2
corresponds to the one-point suspension [17], so topologically it is a suspension. This 
gives a geometric explanation why the depth increases exactly by 1.

3. After the preparation of this article, we learned that Proposition 5.1 is in fact a 
consequence of a result of Yanagawa [29, Theorem 3.2]. In fact, I ′/J ′ from Proposi-
tion 5.1 is exactly (I/J)�〈n,k〉 in the notation of [29] (see also [22]). Further, it was 
pointed out to us by an anonymous referee that Proposition 5.2 can also be proven 
by combining Proposition 5.1 with Theorem 4.3.
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