期刊论文详细信息
| JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:117 |
| A geometric non-existence proof of an extremal additive code | |
| Article | |
| Bierbrauer, Juergen1  Marcugini, Stefano2  Pambianco, Fernanda2  | |
| [1] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA | |
| [2] Univ Perugia, Dipartimento Matemat & Informat, I-06100 Perugia, Italy | |
| 关键词: Additive codes; Projective geometry; Hyperplane; Secundum; Minimum distance; Weight; Strength; Spread; | |
| DOI : 10.1016/j.jcta.2009.04.005 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We use a geometric approach to solve an extremal problem in coding theory. Expressed in geometric language we show the nonexistence of a system of 12 lines in PG(8, 2) with the property that no hyperplane contains more than 5 of the lines. In coding-theoretic terms this is equivalent with the non-existence of an additive quaternary code of length 12, binary dimension 9 and minimum distance 7. (C) 2009 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jcta_2009_04_005.pdf | 179KB |
PDF