期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:184
Self-similar solutions to a parabolic system modeling chemotaxis
Article
Naito, Y ; Suzuki, T ; Yoshida, K
关键词: self-similar solution;    parabolic system;    chemotaxis;    radial symmetry;    blow-up analysis;   
DOI  :  10.1006/jdeq.2001.4146
来源: Elsevier
PDF
【 摘 要 】

We study the forward self-similar Solutions to a parabolic system modeling chemotaxis u(t) = del (.) (delu - udelv), tauv(t) = delv + u in the whole space R-2, where tau is a positive constant. Using the Liouville-type result and the method of moving planes, it is proved that self-similar solutions (u, v) must be radially symmetric about the origin. Then the structure of the set of self-similar solutions is investigated. As a consequence, it is shown that there exists a threshold in f(R2)u for the existence of self-similar solutions. In particular, for 0 < tau less than or equal to 1/2, there exists a self-similar solution (u, v) if and only if integral(R2) u < 8pi. (C) 2002 Elsevier Science (USA).

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1006_jdeq_2001_4146.pdf 291KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次