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We study the forward self-similar solutions to a parabolic system modeling

chemotaxis

ut ¼ r � ðru� urvÞ; tvt ¼ Dvþ u

in the whole space R2; where t is a positive constant. Using the Liouville-type
result and the method of moving planes, it is proved that self-similar solutions ðu; vÞ
must be radially symmetric about the origin. Then the structure of the set of self-

similar solutions is investigated. As a consequence, it is shown that there exists a

threshold in
R
R2
u for the existence of self-similar solutions. In particular, for 05t

41=2; there exists a self-similar solution ðu; vÞ if and only if
R
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1. INTRODUCTION

We are concerned with the parabolic system of the form

@u
@t

¼ r � ðru� urvÞ; x 2 RN ; t > 0;

t
@v
@t

¼ Dvþ u; x 2 RN ; t > 0;

8><
>: ð1:1Þ

where t > 0 is a constant. This is a simplified system of the one given by
Keller and Segel [21] describing chemotactic feature of cellular slime molds
sensitive to the gradient of a chemical substance secreted by themselves. The
functions uðx; tÞ50 and vðx; tÞ50 denote the cell density of cellular slime
molds and the concentration of the chemical substance at place x and time t;
respectively.
Backward self-similar solutions are studied in [13] for t ¼ 0: The present

paper is devoted to the forward self-similar solutions. Namely, this system is
invariant under the similarity transformation

ulðx; tÞ ¼ l2uðlx; l2tÞ and vlðx; tÞ ¼ vðlx; l2tÞ

for l > 0; that is, if ðu; vÞ is a solution of (1.1) globally in time, then so is
ðul; vlÞ: A solution ðu; vÞ is said to be self-similar, when the solution is
invariant under this transformation, that is, uðx; tÞ ¼ ulðx; tÞ and vðx; tÞ ¼
vlðx; tÞ for all l > 0: Letting l ¼ 1=

ffiffi
t

p
; we see that ðu; vÞ has the form

uðx; tÞ ¼
1

t
f

x ffiffi
t

p
 !

and vðx; tÞ ¼ c
x ffiffi
t

p
 !

ð1:2Þ

for x 2 RN and t > 0: It follows thatZ
RN
uðx; tÞ dx ¼ tðN�2Þ=2

Z
RN

fðyÞ dy ð1:3Þ

for f 2 L1ðRN Þ: Therefore, self-similar solution ðu; vÞ preserves the mass
jjuð�; tÞjjL1ðR2Þ if and only if N ¼ 2: On the other hand, the mass conservation
of uð�; tÞ follows formally in the original system (1.1) in any space
dimensions. Regarding this fact, we study the case N ¼ 2 in this paper.
By a direct computation it is shown that ðu; vÞ in (1.2) satisfies (1.1) if and

only if ðf;cÞ satisfies

r � ðrf� frcÞ þ 1
2
x � rfþ f ¼ 0; x 2 R2;

Dcþ
t
2
x � rcþ f ¼ 0; x 2 R2:

8<
: ð1:4Þ
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We are concerned with the classical solutions ðf;cÞ 2 C2ðR2Þ 
 C2ðR2Þ of
(1.4) satisfying

f;c50 in R2 and fðxÞ;cðxÞ ! 0 as jxj ! 1: ð1:5Þ

Define the solution set S of (1.4) as

S ¼ fðf;cÞ 2 C2ðR2Þ 
 C2ðR2Þ : ðf;cÞ is a solution of ð1:4Þ with ð1:5Þg:

ð1:6Þ

Put fðxÞ ¼ ce�jxj2=4ecðxÞ; where c is a positive constant. Then f satisfies the
first equation of (1.4), and so if we find a positive solution c of

Dcþ
t
2
x � rcþ ce�jxj2=4ec ¼ 0 in R2

satisfying cðxÞ ! 0 as jxj ! 1; we can obtain the solutions ðf;cÞ 2 S:
Therefore, the existence of solutions ðf;cÞ 2 S follows from [26, Proposi-
tion 2; 27, Theorem 1.1]. (We also obtain S=| by Lemma 4.2 below. See
also Proposition A.1 in Appendix A.) We investigate the structure of the
solution set S:

Theorem 1. Any ðf;cÞ 2 S is radially symmetric about the origin, and

satisfies f;c 2 L1ðR2Þ:

Theorem 2. The solution set S is expressed as a one-parameter family:

S ¼ fðfðsÞ;cðsÞÞ : s 2 Rg:

If lðsÞ ¼ jjfðsÞjjL1ðR2Þ; then ðfðsÞ;cðsÞÞ and lðsÞ satisfy the following properties:

(i) s/ðfðsÞ;cðsÞÞ 2 C2ðR2Þ 
 C2ðR2Þ and s/lðsÞ 2 R are continuous;

(ii) ðfðsÞ;cðsÞÞ ! ð0; 0Þ in C2ðR2Þ 
 C2ðR2Þ and lðsÞ ! 0 as s! �1;

(iii) jjcðsÞjjL1ðR2Þ ! 1; lðsÞ ! 8p; and fðsÞ dx* 8pd0ðdxÞ in the

sense of measure as s! 1; where d0ðdxÞ denotes Dirac’s delta function with

the support in origin;

(iv) 05lðsÞ58p for s 2 R; if 05t41=2; and 05lðsÞ4maxf4p3=3;
4p3t2=3g for s 2 R; if t > 1=2:

As a consequence of Theorem 2 we obtain the following:

Corollary. There exists a constant ln satisfying ln ¼ 8p; if 05t41=2;
and 8p4ln4maxf4p3=3; 4p3t2=3g; if t > 1=2; such that

(i) for every l 2 ð0; lnÞ; there exists a solution ðf;cÞ 2 S satisfying

jjfjjL1ðR2Þ ¼ l;

(ii) for l > ln; there exists no solution ðf;cÞ 2 S satisfying jjfjjL1ðR2Þ ¼ l:
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Remark. Biler [1] has shown that system (1.4) with t ¼ 1 has a radial
solution ðf;cÞ satisfying jjfjjL1ðR2Þ ¼ l for every l 2 ð0; 8pÞ; and has no radial
solutions ðf;cÞ satisfying jjfjjL1ðR2Þ=2p57:82 . . . .

Theorem 1 is a consequence of the following:

Theorem 3. Assume that ðf;cÞ is a nonnegative solution of (1.4)
satisfying f;c 2 L1ðR2Þ: Then f and c are positive, and there exists a

constant s > 0 such that

fðxÞ ¼ se�jxj2=4ecðxÞ: ð1:7Þ

Assume furthermore that cðxÞ ! 0 as jxj ! 1: Then f and c are radially

symmetric about the origin, and satisfy @f=@r50 and @c=@r50 for r ¼
jxj > 0; and

fðxÞ ¼ Oðe�jxj2=4Þ and cðxÞ ¼ Oðe�minft;1gjxj
2=4Þ as jxj ! 1:

The proof of Theorem 3 consists of two steps. First, we show that (1.7)
holds by employing the Liouville-type result essentially due to Meyers and
Serrin [24]. Then we show the radial symmetry of solutions by the method of
moving planes. This device was first developed by Serrin [36] in PDE theory,
and later extended and generalized by Gidas et al. [8, 9]. We will obtain a
symmetry result for Eq. (1.8) below with a change of variables as in [31].
By Theorem 3 it follows that under the condition f;c 2 L1ðR2Þ; system

(1.4) is reduced to the equation

Dcþ
t
2
x � rcþ se�jxj2=4ec ¼ 0 in R2 ð1:8Þ

for some positive constant s: Moreover, ðf;cÞ 2 S if and only if c satisfies
(1.8) with

cðxÞ ! 0 as jxj ! 1; ð1:9Þ

and f is given by (1.7). Let l ¼ jjfjjL1ðR2Þ: From (1.7) we see that

l ¼ s
Z
R2
e�jyj2=4ecðyÞ dy:

Then (1.8) is rewritten as the elliptic equation with the nonlocal term,

Dcþ
t
2
x � rcþ le�jxj2=4ec=

Z
R2
e�jyj2=4ecðyÞ dy ¼ 0 in R2: ð1:10Þ
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The proof of Theorem 2 is based on the ODE arguments to Eqs.
(1.8) and (1.10). Furthermore, we employ the results by Brezis and
Merle [2] concerning the asymptotic behavior of sequences of solutions
of

�Duk ¼ VkðxÞeuk in O; ð1:11Þ

where O � R2 is a bounded domain and Vk is a nonnegative continuous
function. We also need Theorem 4 in order to prove Theorem 2. Here we
recall Theorem 3 in [2].

Theorem A (Brezis and Merle [2]). Suppose that

04VkðxÞ4C0; x 2 O; ð1:12Þ

for some positive constant C0: Let fukg be a sequence of solutions of (1.11)
satisfying

lim sup
k!1

Z
O
euk dx51: ð1:13Þ

Then there exists a subsequence (still denoted by fukgÞ satisfying one of the

following alternatives:

(i) fukg is bounded in L1locðOÞ;

(ii) uk ! �1 uniformly on compact subset of O;

(iii) there exists a finite blowup set B ¼ fa1; . . . ; a‘g � O such that, for

any 14i4‘; there exist fxkg � O; xk ! ai; vkðxkÞ ! 1; and vk ! �1
uniformly on compact subsets of O=B: Moreover, Vkeuk dx*

P‘
i¼1 aidai ðdxÞ in

the sense of measure with ai54p; where daiðdxÞ is Dirac’s delta function with

the support in x ¼ ai:

It was conjectured in [2] that each ai can be written as ai ¼ 8pmi
for some positive integer mi: This was established by Li and Shafrir
[23]. Chen has shown in [3] that any positive integer mi can occur in the
case Vk � 1 and O is a unit disk. On the other hand, under more restric-
tive assumptions that Vk 2 C1ðOÞ we obtain the following theorem. It is
related to Theorem 0.3 of Li [22] and is proven in the appendix of the
present paper.

Theorem 4. Suppose that Vk 2 C1ðOÞ satisfies (1.12) and

jjrVk jjL1ðOÞ4C1 ð1:14Þ
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for some positive constants C0 and C1: Let fukg be a sequence of solutions of

(1.11) satisfying (1.13) and

max
@O

uk �min
@O

uk4C2 ð1:15Þ

for some positive constant C2: Assume that alternative (iii) in Theorem A

holds. Then ai ¼ 8p for each i 2 f1; 2; . . . ; ‘g:

Recently, attentions have been paid to blowup problems for the system

@u
@t

¼ r � ðru� urvÞ; x 2;O; t > 0;

t
@v
@t

¼ Dv� gvþ u; x 2 O; t > 0;

@u
@n

¼
@v
@n

¼ 0; x 2 @O; t > 0;

uðx; 0Þ ¼ u0; vðx; 0Þ ¼ v0; x 2 O;

8>>>>>>>><
>>>>>>>>:

where O � R2 is a bounded domain with smooth boundary @O; t and g are
positive constants, and n is the outer normal unit vector. As concerns
dynamic aspects of solutions, Nanjundiah [32] has given a conjecture that
blowup solution uðx; tÞ will form a d-function singularity as t% Tmax5þ1;
where Tmax denotes the maximal time for the existence of the solution. Such
a phenomenon is referred to as chemotactic collapse. Herrero and Vel!aazquez
[14–16] constructed a family of radially symmetric solutions on O
¼ fx 2 R2 : jxj51g; satisfying

uðx; tÞ dx* 8pd0ðdxÞ þ f ðxÞ dx

as t% Tmax5þ1 in Mð %OOÞ; where f 2 Cð %OO=f0gÞ \ L1ðOÞ is a nonnegative
function. If t ¼ 0; the blowup mechanism has been clarified much more by
Senba and Suzuki [34].
Childress and Percus [5] and Childress [4] have studied the stationary

problem and have conjectured that there exists a threshold in jju0jjL1ðOÞ for
the blow up of the solution ðu; vÞ: Their arguments were heuristic, while
recent studies are supporting their validity rigorously, see [12, 18, 28]. In
particular, it is proven that jju0jjL1ðOÞ54p implies Tmax ¼ þ1 by Nagai et al.

[30], Biler [1], and Gajewski and Zacharias [7], independently. Furthermore,
the optimality of the condition jju0jjL1ðOÞ54p for Tmax ¼ þ1 is shown by
Nagai [29] and Senba and Suzuki [35]. For related results, we refer to
Horstmann and Wang [17].
On the other hand, concerning the Cauchy problem for the semilinear

parabolic equation in RN ; it is asserted that self-similar solutions take an
important role in the asymptotic behavior of the solutions, see, e.g.



NAITO, SUZUKI, AND YOSHIDA392
[6, 19, 20]. From corollary, we are led to the following conjectures for
problem (1.1) with N ¼ 2 subject to the initial condition uðx; 0Þ ¼ u0 and
vðx; 0Þ ¼ v0 in R2:
For 05t41=2; if jju0jjL1ðR2Þ58p then the solution of the Cauchy problem

to (1.1) exists globally in time, and if jju0jjL1ðR2Þ > 8p then the solution can
blow up in a finite time.

We organize this paper as follows. In Section 2 we show that (1.7) holds
by employing the Liouville-type result. In Section 3 we show the radial
symmetry of solutions by the method of moving planes, and then give the
proof of Theorem 3. In Section 4 we give the ODE arguments to investigate
the properties of radial solutions of (1.8). We study the behavior of
sequences fðfk ;ckÞg � S satisfying jjck jjL1ðR2Þ ! 1 in Section 5. In Section
6 we investigate the upper bounds of jjfjjL1ðR2Þ: Finally, in Section 7 we prove
Theorem 2 by using the results in Sections 4– 6. In Appendixes, A and B, we
are concerned with the existence of solutions to problem (1.8) and (1.9), and
give the proof of Theorem 4.

2. REDUCTION TO THE SINGLE EQUATION

In this section we show that system (1.4) is reduced to Eq. (1.8) if f;
c 2 L1ðR2Þ: More precisely, we have the following:

Proposition 2.1. Let ðf;cÞ be a nonnegative solution of (1.4) with f;
c 2 L1ðR2Þ: Then relation (1.7) holds with some constant s > 0:

To prove this proposition we use the Liouville-type result for second-
order elliptic inequalities essentially due to Meyers and Serrin [24].

Lemma 2.1. Let u satisfy

Duþrb � ru50 in R2: ð2:1Þ

Assume that x � rbðxÞ40 for large jxj: If supx2R2 uðxÞ51; then u must be a

constant function.

Proof. Take a function m as mðrÞ ¼ 1=logð1þ rÞ: Then m satisfies the
Meyers–Serrin condition

Z 1

1

kðtÞ
t
dt ¼ 1; where kðtÞ ¼ exp �

Z t

1

mðsÞ
s
ds

� 

:
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Define v as

vðrÞ ¼
Z r

1

kðtÞ
t
dt; r51:

Then vðrÞ is positive and increasing for r 2 ð1;1Þ; and satisfies vðrÞ ! 1 as
r! 1: Furthermore, v ¼ vðjxjÞ solves

Dvþrb � rv ¼
kðjxjÞ

jxj2
ð�mðjxjÞ þ x � rbðxÞÞ:

By the assumption, there exists a large R > 0 such that

Dvþrb � rv50 for jxj5R: ð2:2Þ

Now assume to the contrary that u is not a constant function. Without
loss of generality, we may assume that u is not a constant function in jxj4R:
Define

U ðrÞ ¼ supfuðxÞ : jxj ¼ rg:

Then U ðrÞ is strictly increasing for r5R: To see why, suppose R4r15r2 and
U ðr1Þ5U ðr2Þ: Then u attains its maximum for jxj4r2 at an interior point and
by the strong maximum principle u is constant, which contradicts the
assumption. Therefore, U ðrÞ is strictly increasing, and we have U ðRþ 1Þ >
U ðRÞ: Choose d > 0 so small that

05d5
U ðRþ 1Þ � U ðRÞ
vðRþ 1Þ � vðRÞ

: ð2:3Þ

Put wðxÞ ¼ uðxÞ � dvðjxjÞ: Then it follows from (2.1) and (2.2) that

Dwþrb � rw > 0 for jxj5R: ð2:4Þ

From (2.3) we obtain U ðRþ 1Þ � dvðRþ 1Þ > U ðRÞ � dvðRÞ: This implies

sup
jxj¼Rþ1

wðxÞ > sup
jxj¼R

wðxÞ:

Since wðxÞ ! �1 as jxj ! 1; w has the maximum at a point x0 2 R2;
jx0j > R: Then we have Dwþrb � rw40 at x ¼ x0: This contradicts (2.4).
Hence, u must be a constant function. ]

Lemma 2.2. Let ðf;cÞ be a nonnegative solution of (1.4) with f;
c 2 L1ðR2Þ: Then rc 2 L1ðR2Þ:
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Proof. Define u and v by (1.2). Then ðu; vÞ solves (1.1), and it holds that

jjuðtÞjjL1ðR2Þ ¼
1

t
jjfjjL1ðR2Þ and jjvðtÞjjL1ðR2Þ ¼ jjcjjL1ðR2Þ:

Take t0 > 0: From the second equation of (1.1) we have

vðtÞ ¼ eððt�t0Þ=tÞDvðt0Þ þ
1

t

Z t

t0

eððt�sÞ=tÞDuðsÞ ds � v1ðtÞ þ v2ðtÞ; t > t0; ð2:5Þ

where fetDg is the heat semigroup. We recall the Lp–Lq estimates for the
linear heat equation

jjreðt=tÞDwjjLqðR2Þ4Ct
1=q�1=p�1=2jjwjjLpðR2Þ ð2:6Þ

for t > 0 with 14p4q41; where C ¼ CðtÞ is a positive constant, see e.g.
[10]. In particular we have

jjreðt=tÞDwjjL1ðR2Þ4Ct
�1=2jjwjjL1ðR2Þ for t > 0:

Put t0 ¼ t=2 in (2.5). Then it follows that

jjrv1ðtÞjjL1ðR2Þ4Ct
�1=2jjvðt=2ÞjjL1ðR2Þ4Ct

�1=2jjcjjL1ðR2Þ ð2:7Þ

and

jjrv2ðtÞjjL1ðR2Þ4C
Z t

t=2
ðt � sÞ�1=2jjuðsÞjjL1 ds4CjjfjjL1

Z t

t=2ðt � sÞ
�1=2s�1 ds:

By the change of variable s ¼ ts; we have

jjrv2ðtÞjjL1ðR2Þ4Ct
�1=2jjfjjL1

Z 1

1=2
ð1� sÞ�1=2s�1 ds: ð2:8Þ

From (2.7) and (2.8) we obtain supt>0 t
1=2jjrvðtÞjjL1ðR2Þ51: By the definition

of v it follows that t1=2jjrvðtÞjjL1ðR2Þ ¼ jjrcjjL1ðR2Þ: Thus we have
rc 2 L1ðR2Þ: ]

Proof of Proposition 2.1. Put wðxÞ ¼ �fðxÞejxj
2=4e�cðxÞ40: Then

e�jxj2=4ecrw ¼ �rf� xf=2þ frc: From the first equation of (1.4) we
have

r � ðe�jxj2=4ecrwÞ ¼ 0 or Dwþrb � rw ¼ 0 in R2;
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where rbðxÞ ¼ �x=2þrcðxÞ: From Lemma 2.2 we have

x � rbðxÞ ¼ �
jxj2

2
þ x � rcðxÞ

� 

40

for large jxj: As a consequence of Lemma 2.1, wmust be a constant function.
This completes the proof of Proposition 2.1. ]

3. RADIAL SYMMETRY: PROOF OF THEOREM 3

In this section we investigate the radial symmetry of solutions to (1.8) and
prove Theorem 3. Namely, we show the following:

Proposition 3.1. Let c 2 C2ðR2Þ be a positive solution of (1.8) with (1.9).
Then c must be radially symmetric about the origin.

We prepare several lemmas.

Lemma 3.1. We have

cðxÞ4Ce�minft;1gjxj
2=4 for x 2 R2 ð3:1Þ

with some constant C > 0:

Proof. Define

Lu ¼ �Du�
t
2
x � ru

and put kt ¼ minf1; tg: Let C be a positive constant and let vðxÞ ¼
Ce�kt jxj2=4: Then

Lv ¼ Ckt 1þ
ðt� ktÞ
4

jxj2
� 


e�kt jxj2=45Ckte�kt jxj2=4:

Since Lc ¼ se�jxj2=4ec; if we choose C so large that Ckt > sejjcjjL1ðR2 Þ ; then
Lv > Lc in R2: Since v;c ! 0 as jxj ! 1; by the maximum principle we have
v5c in R2: This implies (3.1). ]

We define wðx; tÞ by

wðx; tÞ ¼ t�ac
x ffiffi
t

p
 !

; where a ¼
sejjcjjL1ðR2 Þ

t
: ð3:2Þ
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Lemma 3.2. (i) For every T > 0 we have sup05t5T wðx; tÞ ! 0 as

jxj ! 1:
(ii) For every m > 0 we have supjxj>m wðx; tÞ ! 0 as t! 0:

Proof. From Lemma 3.1 we have jyj2acðyÞ ! 0 as jyj ! 1; that is, for
all E > 0 there exists R > 0 such that

jyj2acðyÞ5E for jyj5R: ð3:3Þ

From (3.2) we have

jxj2awðx; tÞ ¼
jxjffiffi
t

p
 !2a

c
x ffiffi
t

p
 !

: ð3:4Þ

(i) Fix T > 0: From (3.3) and (3.4) it follows that

sup
05t5T

jxj2awðx; tÞ5E for jxj5R
ffiffiffiffi
T

p
:

Since E > 0 is arbitrary, we obtain sup05t5T wðx; tÞ ! 0 as jxj ! 1:

(ii) From (3.3) and (3.4) it follows that

m2a sup
jxj>m

wðx; tÞ4 sup
jxj>m

jxj2awðx; tÞ5E for 05t5ðm=RÞ2:

Then we have supjxj>m wðx; tÞ ! 0 as t! 0: ]

For m 2 R we define Tm and Sm by

Tm ¼ fx ¼ ðx1; x2Þ 2 R2 j x1 ¼ mg and Sm ¼ fx 2 R2 j x15mg;

respectively. For x 2 R2 and m 2 R let xm be the reflection of x with respect to
Tm; that is, xm ¼ ð2m� x1; x2Þ: It is easy to see that if m > 0;

jxmj > jxj for x 2 Sm and fxm : x 2 Smg ¼ fx : x1 > mg � fx : jxj5mg:

By Lemma 3.2 we have the following:

Lemma 3.3. (i) For every T > 0 we have sup05t5T wðx
m; tÞ ! 0 as

jxj ! 1; x 2 Sm:
(ii) For every m > 0 we have supx2Sm

wðxm; tÞ ¼ 0 as t! 0:

Lemma 3.4. Let m > 0: Define zðx; tÞ ¼ wðx; tÞ � wðxm; tÞ: Then

tzt5Dzþ cmðx; tÞz in Sm 
 ð0;1Þ and z ¼ 0 on Tm 
 ð0;1Þ; ð3:5Þ
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where

cmðx; tÞ ¼
1

t
�atþ se�jxj2=ð4tÞ

Z 1

0

escðx=
ffiffi
t

p
Þþð1�sÞcðxm=

ffiffi
t

p
Þ ds

� 

: ð3:6Þ

We have cmðx; tÞ40 in R2 
 ð0;1Þ:

Proof. By virtue of (3.2) we have

twt ¼ Dw�
at
t
wþ st�a�1e�jxj2=4tet

aw:

Let wmðx; tÞ ¼ wðxm; tÞ: Then wm satisfies

twm
t ¼ Dwm �

at
t
wm þ st�a�1e�jxm j2=4tet

awm
:

Since jxmj5jxj; we obtain

twm
t4Dwm �

at
t
wm þ st�a�1e�jxj2=4tet

awm
:

Then we obtain tzt5Dzþ cmz; where cm is the function in (3.6). Since a
satisfies at ¼ sejjcjjL1ðR2 Þ ; we have tcmðx; tÞ4� atþ sejjcjjL1ðR2 Þ ¼ 0 for
ðx; tÞ 2 R2 
 ð0;1Þ: ]

Lemma 3.5. Let m > 0: We have wðx; tÞ5wðxm; tÞ for ðx; tÞ 2 Sm 
 ð0;1Þ:

Proof. Let zðx; tÞ ¼ wðx; tÞ � wðxm; tÞ: We show that zðx; tÞ50 for ðx; tÞ 2
Sm 
 ð0;1Þ: Assume to the contrary that there exists a ðx0; t0Þ 2 Sm 
 ð0;1Þ
such that zðx0; t0Þ50: Take d > 0 so small that zðx0; t0Þ5� d: By (ii) of
Lemma 3.3 we can take T0 2 ð0; t0Þ so that wðxm; T0Þ5d for x 2 Sm: Then it
follows from wðx; tÞ > 0 that

zðx; T0Þ5� d for x 2 Sm: ð3:7Þ

Fix T > t0: By (i) of Lemma 3.3 we can take R > jx0j so large that wðxm; tÞ5d
for jxj5R; x 2 Sm; t 2 ½T0; T �: Then we obtain

zðx; tÞ5� d for x 2 Sm; jxj5R; t 2 ½T0; T �: ð3:8Þ

Define Q ¼ fx 2 Sm : jxj5Rg: Let G be a parabolic boundary of Q
 ðT0; T Þ;
that is,

G ¼ ðQ
 fT0gÞ [ ð@Q
 ðT0; T ÞÞ:
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From (3.5), (3.7), and (3.8) we have

tzt5Dzþ cðx; tÞz in Q
 ðT0; T Þ and z5� d on G:

Put Z ¼ zþ d: Because cmðx; tÞ40; it follows from the above inequality that

tZt5DZ þ cmðx; tÞZ in Q
 ðT0; T Þ and Z50 on G:

By the maximum principle [33] we have Z50 on %QQ 
 ½T0; T �; which implies
that

zðx; tÞ5� d on %QQ 
 ½T0; T �: ð3:9Þ

On the other hand, ðx0; t0Þ 2 Q
 ðT0; T Þ and zðx0; t0Þ5� d: This contradicts
(3.9). Hence, zðx; tÞ50 for ðx; tÞ 2 Sm 
 ð0;1Þ: ]

Proof of Proposition 3.1. From Lemma 3.5 we have wðx; tÞ5wðxm; tÞ for
m > 0 and ðx; tÞ 2 Sm 
 ð0;1Þ: From the continuity of w we have wðx; tÞ5w
ðx0; tÞ for ðx; tÞ 2 S0 
 ð0;1Þ: We can repeat the previous arguments for the
negative x1-direction to conclude that wðx; tÞ4wðx0; tÞ for ðx; tÞ 2 S0 

ð0;1Þ: Hence wðx; tÞ is symmetric with respect to the plane x1 ¼ 0; which
implies that c is symmetric with respect to the plane x1 ¼ 0: Since Eq. (1.8)
is invariant under the rotation, it follows that c is symmetric in every
direction. Therefore, c is radially symmetric with respect to the origin. ]

Proof of Theorem 3. Let ðf;cÞ be a nonnegative solution of (1.4) with
f; c 2 L1ðR2Þ: Then f is given by (1.7) for some constant s > 0 from
Proposition 2.1. It follows that f > 0 in R2; and fðxÞ ¼ Oðe�jxj2=4Þ as
jxj ! 1: From the second equation of (1.4), c satisfies Eq. (1.8). By the
strong maximum principle, c > 0 in R2:
Assume furthermore that cðxÞ ! 0 as jxj ! 1: Then, by Proposition 3.1,

c must be radially symmetric about the origin. Hence c ¼ cðrÞ; r ¼ jxj;
satisfies the ordinary differential equation

crr þ
1

r
þ

t
2
r

� 

cr þ se�r

2=4ec ¼ 0

or

ðretr
2=4crÞr þ sreðt�1Þr

2=4ec ¼ 0 for r > 0:

From crð0Þ ¼ 0; we have

retr
2=4cr ¼ �s

Z r

0

seðt�1Þs
2=4ec ds50 for r > 0:
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This implies that crðrÞ50 for r > 0: From Lemma 3.1 we obtain cðrÞ ¼
Oðe�minft;1gr

2=4Þ as r! 1: This completes the proof of Theorem 3. ]

4. STRUCTURE OF THE SOLUTIONS SET TO (1.8) WITH (1.9)

From Theorem 3 the solution c of (1.8) with (1.9) must be radially
symmetric about the origin. Then the study of the solutions is reduced to the
problem

crr þ
1

r
þ

t
2
r

� 

cr þ se�r

2=4ec ¼ 0; r > 0;

crð0Þ ¼ 0 and limr!1 cðrÞ ¼ 0;

8><
>: ð4:1Þs

where s > 0: In this section we investigate the structure of the pair ðs;cÞ of a
parameter and a solution. Define the set C as

C ¼ fðs;cÞ : s > 0 and c 2 C2ð0;1Þ \ C1½0;1Þ is a solution of ð4:1Þsg:

ð4:2Þ

For ðs;cÞ 2 C we have c 2 C2½0;1Þ by Lemma 4.1.

Proposition 4.1. The set C is written by one-parameter families

ðsðsÞ;cðr; sÞÞ on s 2 R; that is, C ¼ fðsðsÞ;cðr; sÞÞ : s 2 Rg: The pairs ðsðsÞ;
cðr; sÞÞ satisfy the following properties:

(i) s/ðsðsÞ;cð�; sÞÞ 2 ð0;1Þ 
 C2½0;1Þ is continuous;

(ii) lims!�1 sðsÞ ¼ 0 and lims!�1 cð�; sÞ ¼ 0 in C2½0;1Þ;

(iii) lims!1jjcð�; sÞjjL1½0;1Þ ¼ lims!1 cð0; sÞ ¼ 1:

First we show the following:

Lemma 4.1. Let c 2 C2ð0;1Þ \ C1½0;1Þ be a solution to ð4:1Þs: Then

c 2 C2½0;1Þ and supr50 cðrÞ ¼ cð0Þ: Moreover we have

sup
r50

jcrðrÞj4p1=2secð0Þ and sup
r50

jcrrðrÞj4
3þ 2t
2

secð0Þ: ð4:3Þ

Proof. From ð4:1Þs; we have ðretr
2=4crÞr þ sreðt�1Þr

2=4ec ¼ 0 for r > 0:
From crð0Þ ¼ 0; it follows that

crðrÞ ¼ �
s
r
e�tr2=4

Z r

0

xeðt�1Þx
2=4ecðxÞ dx: ð4:4Þ
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By using L’Hospital’s rule we obtain

lim
r!0

crðrÞ
r

¼ lim
r!0

�
s

r2etr2=4

Z r

0

xeðt�1Þx
2=4ecðxÞ dx ¼ �

secð0Þ

2
;

which implies c 2 C2½0;1Þ: Since crðrÞ50 for r > 0 from (4.4), we have
supr50 cðrÞ ¼ cð0Þ:
From (4.4) we have

jcrðrÞj4
1

r

Z r

0

xe�x2=4 dx
� 


secð0Þ: ð4:5Þ

We see that ð1=rÞ
R r
0 xe

�x2=4 dx4
R1
0 e�x2=4 dx ¼ p1=2: Then the left-hand side

of (4.3) holds.
From the equation in ð4:1Þs we have

jcrrðrÞj4
1

r
þ

t
2
r

� 

jcrðrÞj þ se�r

2=4ecðrÞ4
1

r
þ

t
2
r

� 

jcrðrÞj þ secð0Þ:

We note here that

1

r
þ

t
2
r

� 

1

r

Z r

0

xe�x2=4 dx4
1

r2

Z r

0

x dxþ
t
2

Z 1

0

xe�x2=4 dx ¼
1

2
þ t: ð4:6Þ

It follows from (4.5) and (4.6) that

1

r
þ

t
2
r

� 

jcrðrÞj4

1þ 2t
2

secð0Þ:

Therefore, we obtain the right-hand side of (4.3). This completes the proof
of Lemma 4.1. ]

To prove Proposition 4.1 we consider the initial value problem

wrr þ
1

r
þ

t
2
r

� 

wr þ e�r

2=4ew ¼ 0; r > 0;

wrð0Þ ¼ 0 and wð0Þ ¼ s;

8><
>: ð4:7Þs
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where s 2 R: We denote by wðr; sÞ the solution of problem ð4:7Þs: We easily
see that wðr; sÞ and wrðr; sÞ satisfy, respectively,

wðr; sÞ ¼ s�
Z r

0

1

x
e�tx2=4

Z x

0

Zeðt�1ÞZ
2=4ewðZ;sÞ dZ

� 

dx ð4:8Þ

and

wrðr; sÞ ¼ �
1

r
e�tr2=4

Z r

0

xeðt�1Þx
2=4ewðx;sÞ dx: ð4:9Þ

Define IðtÞ as

IðtÞ ¼
Z 1

0

1

x
e�tx2=4

Z x

0

Zeðt�1ÞZ
2=4 dZ

� 

dx:

From [25, Lemma 1] it follows that IðtÞ ¼ ðlog tÞ=ðt� 1Þ if t=1; IðtÞ ¼ 1 if
t ¼ 1: We easily obtain wrðr; sÞ50 for r > 0 and wðr; sÞ5s� esIðtÞ for r50
(see [25, Lemma 2]). Then limr!1 wðr; sÞ exists and is a finite value. Put
tðsÞ ¼ limr!1 wðr; sÞ:

Lemma 4.2. For s 2 R; let cðr; sÞ ¼ wðr; sÞ � tðsÞ: Then cðr; sÞ is a solution

to ð4:1Þs with s ¼ etðsÞ: Conversely, let cðrÞ be a solution of ð4:1Þs: Then, for

some s 2 R; cðrÞ ¼ cðr; sÞ and s ¼ etðsÞ:

Proof. It is clear that cðr; sÞ is a solution to ð4:1Þs with s ¼ etðsÞ:
Conversely, let cðrÞ be a solution of ð4:1Þs; and let wðrÞ ¼ cðrÞ þ log s: Then
wðrÞ satisfies ð4:7Þs with s ¼ cð0Þ þ log s: By the uniqueness we obtain wðrÞ
¼ wðr; sÞ with s ¼ cð0Þ þ log s: We have limr!1 wðr; sÞ ¼ limr!1 wðrÞ ¼
log s: Then tðsÞ ¼ log s; that is, s ¼ etðsÞ: Hence we obtain cðrÞ ¼ wðrÞ �
log s ¼ wðr; sÞ � tðsÞ; which implies cðrÞ ¼ cðr; sÞ: ]

From [25, Lemma 5(ii)] it follows that, for s1; s2 2 R;

sup
r50

jwðr; s1Þ � wðr; s2Þj4C1js1 � s2j; ð4:10Þ

where C1 ¼ expðemIðtÞÞ and m ¼ maxfs1; s2g: Moreover, we have the
following:

Lemma 4.3. Let s1; s2 2 R; and let m ¼ maxfs1; s2g: Then we have

(i) supr50 jwrðr; s1Þ � wrðr; s2Þj4C2js1 � s2j; where C2 ¼ p1=2emC1;

(ii) supr50 jwrrðr; s1Þ � wrrðr; s2Þj4C3js1 � s2j;

where C3 ¼ ð3þ 2tÞemC1=2:
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Proof. From (4.9) we have

jwrðr; s1Þ � wrðr; s2Þj4
1

r
e�tr2=4

Z r

0

xeðt�1Þx
2=4jewðx;s1Þ � ewðx;s2Þj dx:

Note that jewðt;s1Þ � ewðt;s2Þj4emjwðt; s1Þ � wðt; s2Þj with m ¼ maxfs1; s2g: Then
from (4.10) we have jewðt;s1Þ � ewðt;s2Þj4C1emjs1 � s2j: Then it follows that

jwrðr; s1Þ � wrðr; s2Þj4C1emjs1 � s2j
1

r

Z r

0

xe�x2=4 dx
� 


: ð4:11Þ

From ð1=rÞ
R r
0
xe�x2=4 dx4

R1
0
e�x2=4 dx ¼ p1=2; we obtain (i).

From ð4:7Þs we see that wrrðr; sÞ ¼ �ð1=r þ tr=2Þwrðr; sÞ � e�r
2=4ewðr;sÞ:

Then we have

jwrrðr; s1Þ � wrrðr; s2Þj4
1

r
þ

t
2
r

� 

jwrðr; s1Þ � wðr; s2Þj þ emjwðr; s1Þ � wðr; s2Þj:

Then from (4.11) and (4.6) we obtain

1

r
þ

t
2
r

� 

jwrðr; s1Þ � wrðr; s2Þj4

1þ 2t
2

C1emjs1 � s2j:

Therefore we obtain (ii). ]

Lemma 4.4. Let s1; s2 2 R; and let m ¼ max fs1; s2g: Then we have

(i) jtðs1Þ � tðs2Þj4C1js1 � s2j; where C1 ¼ expðemIðtÞÞ;

(ii) lims!�1ðs� tðsÞÞ ¼ 0;

(iii) sups2R tðsÞ4� log IðtÞ:

Proof. Letting r! 1 in (4.10), we have (i). Since wðr; sÞ5s for r > 0; it
follows from (4.8) that

05s� wðr; sÞ4es
Z r

0

1

x
e�tx2=4

Z x

0

Zeðt�1ÞZ
2=4 dZ

� 

dx:

Letting r ! 1 we have 05s� tðsÞ4esIðtÞ for s 2 R: This implies that (ii)
holds.

Since wðr; sÞ is decreasing in r > 0; it follows from (4.9) that

wrðr; sÞ4�
1

r
ewðr;sÞe�tr2=4

Z r

0

xeðt�1Þx
2=4 dx:
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Then we obtain

d
dr
ð�e�wðr;sÞÞ4�

1

r
e�tr2=4

Z r

0

xeðt�1Þx
2=4 dx:

Integrating the above on ½0;1Þ we have e�tðsÞ � e�s5IðtÞ or e�tðsÞ5IðtÞ:
This implies that (iii) holds. ]

Proof of Proposition 4.1. By Lemma 4.2 we have C ¼ fðsðsÞ;cð�; sÞÞ :
s 2 Rg; where sðsÞ ¼ etðsÞ and cðr; sÞ ¼ wðr; sÞ � tðsÞ: We see that wð�; sÞ 2
C2½0;1Þ and tðsÞ 2 R are continuous for s 2 R by Lemmas 4.3 and 4.4(i),
respectively. Thus (i) holds.
By Lemma 4.4(ii) we have sðsÞ ¼ etðsÞ ! 0 and cð0; sÞ ¼ s� tðsÞ ! 0 as

s! �1: Then, by Lemma 4.1 we conclude that cð�; sÞ ! 0 in C2½0;1Þ as
s! �1: Thus (ii) holds.
From Lemma 4.1 we have jjcð�; sÞjjL1½0;1Þ ¼ cð0; sÞ: From Lemma 4.4(iii)

we have lims!1 cð0; sÞ ¼ lims!1ðs� tðsÞÞ5lims!1ðsþ log IðtÞÞ ¼ 1: Thus
(iii) holds. This completes the proof of Proposition 4.1. ]

5. BLOWUP ANALYSIS TO SELF-SIMILAR SOLUTIONS

This section is concerned with case (iii) of Theorem 2. We study the
asymptotic behavior of sequences fðfk ;ckÞg � S satisfying jjck jjL1ðR2Þ ! 1
as k ! 1: We show the following:

Proposition 5.1. Let ðfk ;ckÞ 2 S; and let lk ¼ jjfk jjL1ðR2Þ: Assume that

jjck jjL1ðR2Þ ! 1 as k ! 1 ð5:1Þ

and that flkg is bounded. Then there exists a subsequence, which we call again

ðck ;fkÞ and lk ; satisfying lk ! 8p as k ! 1 and

fkðxÞdx* 8pd0ðdxÞ as k ! 1 ð5:2Þ

in the sense of measure, where d0ðdxÞ is Dirac’s delta function with the support

in origin.

In order to prove Proposition 5.1 we make use of Theorems A and 4 in
Section 1. We also need the following result by Brezis and Merle [2].
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Theorem B (Brezis and Merle [2]). Assume fukg is a sequence of

solutions of (1.11) such that

jjVk jjL1ðOÞ4C; jjuþk jjL1ðOÞ4C; and
Z
O
Vkeuk dx54p;

for some constant C > 0; where uþ ¼ max fu; 0g: Then fuþk g is bounded in

L1locðOÞ:

Now we prepare several lemmas.

Lemma 5.1. Assume that f 2 CðR2Þ \ L1ðR2Þ: Let w 2 C2ðR2Þ \ L1ðR2Þ
be a solution of

�Dw�
t
2
x � rw ¼ f for x 2 R2: ð5:3Þ

Then we have jjwjjL1ðR2Þ þ jjrwjjL1ðR2Þ4Cjjf jjL1ðR2Þ for some positive constant C:

Proof. Define W and F ; respectively, as

W ðx; tÞ ¼ w
x ffiffi
t

p
 !

and F ðx; tÞ ¼
1

t
f

x ffiffi
t

p
 !

:

Then W and F satisfy

jjW ð�; tÞjjL1ðR2Þ ¼ tjjwjjL1ðR2Þ and jjF ð�; tÞjjL1ðR2Þ ¼ jjf jjL1ðR2Þ ð5:4Þ

for t > 0: Furthermore, from (5.3) we have tWt ¼ DW þ F in R2 
 ð0;1Þ:
Since W ! 0 in L1ðR2Þ as t! 0 from (5.4), we obtain

W ðx; tÞ ¼
1

t

Z t

0

eððt�sÞ=tÞDF ð�; sÞ ds:

Then it follows from (5.4) that

tjjwjjL1ðR2Þ ¼ jjW ð�; tÞjjL1ðR2Þ4
1

t

Z t

0

jjF ð�; sÞjjL1ðR2Þ ds4
t
t
jjf jjL1ðR2Þ:

Therefore, we obtain jjwjjL1ðR2Þ4t�1jjf jjL1ðR2Þ:
Next we show jjrwjjL1ðR2Þ4Cjjf jjL1ðR2Þ: By the L

p–Lq estimates (2.6) with
p ¼ q ¼ 1 we have

jjreððt�sÞ=tÞDF ð�; sÞjjL1ðR2Þ4Cðt � sÞ
�1=2jjF ð�; sÞjjL1ðR2Þ ¼ Cðt � sÞ�1=2jjf jjL1ðR2Þ:
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Then we obtain

jjrW ð�; tÞjjL1ðR2Þ4
1

t

Z t

0

jjreððt�sÞ=tÞDF ð�; sÞjjL1ðR2Þ ds4Ct
1=2jjf jjL1ðR2Þ:

By the definition of W it follows that jjrW ð�; tÞjjL1ðR2Þ ¼ t1=2jjrwjjL1ðR2Þ:
Therefore, we conclude that jjrwjjL1ðR2Þ4Cjjf jjL1ðR2Þ: This completes the
proof of Lemma 5.1. ]

Let ðfk ;ckÞ 2 S; and let lk ¼ jjfk jjL1ðR2Þ: Then ðlk ;ckÞ solves (1.10), that
is,

Dck þ
t
2
x � rck þ lke�jxj2=4eck

Z
R2
e�jyj2=4eck ðyÞdy

�
¼ 0 for x 2 R2: ð5:5Þ

From Theorem 3, we have ck 2 L
1ðR2Þ; ck ¼ ckðrÞ; r ¼ jxj; and @ck=@r

50 for r > 0: Assume that (5.1) holds. Then jjck jjL1ðR2Þ ¼ ckð0Þ ! 1 as
k ! 1:We always use Br to denote a ball of radius r centered at origin, that
is, Br ¼ fx 2 R2 : jxj5rg:

Lemma 5.2. (i) We have jjck jjL1ðR2Þ þ jjrck jjL1ðR2Þ ¼ Oð1Þ as k ! 1:
(ii) For all r > 0 we have supk jjck jjL1ðR2=BrÞ51:

Proof. (i) Put

fkðxÞ ¼ lke�jxj2=4eck ðxÞ
Z
R2
e�jyj2=4eck ðyÞ dy

�
:

Then fk 2 C2ðR
2Þ \ L1ðR2Þ: We have ck 2 L

1ðR2Þ and

�Dck �
t
2
x � rck ¼ fk for x 2 R2:

By Lemma 5.1 we obtain jjck jjL1ðR2Þ þ jjrck jjL1ðR2Þ4Cjjfk jjL1ðR2Þ for some
constant C > 0: Since jjfk jjL1ðR2Þ ¼ lk ¼ Oð1Þ and as k ! 1; the assertion of
(i) holds.

(iii) Assume to the contrary that supk jjck jjL1ðR2=Br0 Þ
¼ 1 for some r0 >

0: Since ckðrÞ is decreasing in r > 0; there exists a subsequence, which we call
again fckg; such that infy2Br0 ckðyÞ ! 1 as k ! 1: Then jjck jjL1ðR2Þ ! 1 as
k ! 1; which contradicts assertion (i). ]

Take R > 0: Let gk be a unique solution of the problem

�Dgk ¼
t
2
x � rck in BR; gk ¼ 0 on @BR:



NAITO, SUZUKI, AND YOSHIDA406
Lemma 5.3. We have jjgk jjL1ðBRÞ ¼ Oð1Þ and jjrgk jjL1ðBRÞ ¼ Oð1Þ
as k ! 1:

Proof. We have gk ¼ gkðrÞ; r ¼ jxj; since ck ¼ ckðrÞ: We see that gkðrÞ
satisfies

�ðrg0kÞ
0 ¼

t
2
r2ck ; 05r5R; g0kð0Þ ¼ gkðRÞ ¼ 0;

where 0 ¼ d=dr: We will show that

jjgk jjL1½0;R� ¼ Oð1Þ; jjg0k jjL1½0;R� ¼ Oð1Þ as k ! 1: ð5:6Þ

By integrating the equation above, we obtain

�rg0kðrÞ ¼
t
2

Z r

0

s2c0
kðsÞ ds:

Then it follows that

jg0kðrÞj4
t
2r

Z r

0

s2jc0
kðsÞj ds4

t
2

Z r

0

sjc0
kðsÞj ds for 04r4R:

Thus we obtain

jjg0k jjL1½0;R�4
t
2

Z R

0

sjc0
kðsÞj ds: ð5:7Þ

We note that
R R
r g

0
kðsÞ ds ¼ gkðRÞ � gkðrÞ ¼ �gkðrÞ: Then

jgkðrÞj4
Z R

0

jg0kðsÞj ds4Rjjg
0
k jjL1½0;R� for 04r4R:

From (5.7) we obtain

jjgk jjL1½0;R�4
tR
2

Z R

0

sjc0
kðsÞj ds: ð5:8Þ

By Lemma 5.2(i) we have

2p
Z R

0

sjc0
kðsÞj ds ¼ jjrck jjL1ðBRÞ4jjrck jjL1ðR2Þ ¼ Oð1Þ as k ! 1:

From (5.7) and (5.8) we obtain (5.6). This completes the proof of
Lemma 5.3. ]
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Now define vk as

vkðxÞ ¼ ckðxÞ � gkðxÞ � log
Z
R2
e�jyj2=4eckðyÞ dy

� 

: ð5:9Þ

It follows from (5.5) that

�Dvk ¼ �Dck �
t
2
x � rck ¼ lke�jxj2=4egk evk for x 2 BR: ð5:10Þ

Then we have

�Dvk ¼ VkðxÞevk in BR; ð5:11Þ

where VkðxÞ ¼ lke�jxj2=4egk : Since flkg is bounded and by Lemma 5.3, we
have 04VkðxÞ4C0 and jjrVk jjL1ðBRÞ4C1 for some constants C0 and C1: Since
vk is radial symmetry and satisfies �Dvk50 in BR; vkðrÞ is nonincreasing in
r 2 ð0;RÞ by the maximum principle.

Lemma 5.4. There exists a subsequence, which we call again fvkg; such

that vkð0Þ ! 1 and vkðxÞ ! �1 uniformly on compact subset of BR=f0g as

k ! 1: Moreover, Z
BR

Vkevk dx! 8p as k ! 1 ð5:12Þ

and Z
R2
e�jyj2=4eck ðyÞ dy ! 1 as k ! 1: ð5:13Þ

Proof. We see that

Z
BR

evk ðyÞ dy4ejjgk jjL1ðBR Þ

Z
BR

eckðyÞ dy
Z
R2
e�jyj2=4þck ðyÞ dy4C

�

for some constant C > 0: Hence, by applying Theorem A, there exists a
subsequence (still denoted by fvkg) satisfying one of the alternatives (i)–(iii)
in Theorem A.
Assume that the first alternative (i) holds. Since fvkg and fgkg are

bounded in L1locðBRÞ and ckð0Þ ! 1 as k ! 1; it follows from (5.9) that

log

Z
R2
e�jyj2=4eck ðyÞ dy

� 

¼ ckð0Þ � gkð0Þ � vkð0Þ ! 1 as k ! 1:
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Let y0 2 BR=f0g: Then from (5.9) we have ckðy0Þ ! 1 as k ! 1: This
contradicts Lemma 5.2(ii).
Assume that the second alternative (ii) holds. Since vkðrÞ is nonincreasing

in r; we have vk ! �1 uniformly on BR: ThenZ
BR

evk dx! 0 as k ! 1: ð5:14Þ

Put

wk ¼ ck � gk and WkðxÞ ¼ VkðxÞ
Z
R2
e�jyj2=4eck ðyÞ dy

�
:

Then we have �Dwk ¼ Wkewk in BR: Because ck50; we have

WkðxÞ4VkðxÞ
Z
R2
e�jyj2=4 dy4C

�

for some constant C > 0: We find that jjwk jjL1ðBRÞ4jjck jjL1ðBRÞ þ jjgk jjL1ðBRÞ ¼
Oð1Þ as k ! 1 by Lemmas 5.2 and 5.3. It follows from (5.14) thatZ
BR

WkðyÞewkðyÞ dy ¼
Z
BR

VkðyÞevk ðyÞ dy4C0

Z
BR

evk ðyÞ dy ! 0 as k ! 1:

Hence, by applying Theorem B we obtain jjwþ
k jjL1ðBrÞ ¼ Oð1Þ as k ! 1: This

contradicts wkð0Þ ¼ ckð0Þ � gkð0Þ ! 1 as k ! 1:
Therefore, the third alternative (iii) must hold. By Lemma 5.2(ii) we have

the blowup set B ¼ f0g: Then vkð0Þ ! 1 and vkðxÞ ! �1 uniformly on
compact subset of BR=f0g: Moreover,Z

BR

Vkevk dx! a as k ! 1 ð5:15Þ

for some a54p: Since vk is radial symmetry, we have max@BR vk �min@BR vk
¼ 0: By applying Theorem 4, we obtain a ¼ 8p in (5.15).
Let x0 2 BR=f0g: From vkðx0Þ ! �1 as k ! 1 we have

log

Z
R2
e�jyj2=4eck ðyÞ dy

� 

¼ ckðx0Þ � gkðx0Þ � vkðx0Þ ! 1 as k ! 1;

which implies that (5.13) holds. ]

Proof of Proposition 5.1. Let fvkg be a subsequence obtained in Lemma
5.4. First we verify that, for all r > 0;Z

R2=Br

Vkevk dy ! 0 as k ! 1: ð5:16Þ
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From Lemma 5.2(ii) there exists a constant M ¼ MðrÞ > 0 such that jckðxÞj
4M for jxj5r: Since

Z
R2=Br

VkðyÞevk ðyÞ dy ¼
lk
R
R2=Br

e�jyj2=4eck ðyÞ dyR
R2
e�jyj2=4eckðyÞ dy

4
lkeM

R
R2=Br

e�jyj2=4 dyR
R2
e�jyj2=4eck ðyÞ dy

;

it follows from (5.13) that (5.16) holds.
From (5.10), (5.11), and the second equation of (1.4) we have

Vkevk ¼ �Dvk ¼ �Dck �
t
2
x � rck ¼ fk :

From (5.12) and (5.16) we have

lk ¼ jjfk jjL1ðR2Þ ¼
Z
R2
Vkevk dy

¼
Z
BR

Vkevk dy þ
Z
R2=BR

Vkevk dy ! 8p as k ! 1:

Thus lk ! 8p as k ! 1: Since ffkg is bounded in L
1ðR2Þ; we may extract a

subsequence, which we call again ffkg; such that fk converges in the sense
of measures on R2 to some nonnegative bounded measure m; i.e.Z

R2
fkðxÞZ dx!

Z
R2

Z dm

for every Z 2 CðR2Þ with compact support. From (5.16) we haveR
R2=Br

fkðxÞ dx! 0 as k ! 1 for every r > 0: Then fk ! 0 in L1locðR
2=f0gÞ

and hence m is supported on f0g: Thus we obtain dm ¼ ad0ðdxÞ with a ¼ 8p;
which implies that (5.2) holds. This completes the proof of Proposition 5.1. ]

6. L1-NORMS OF SELF-SIMILAR SOLUTIONS

This section is concerned with case (iv) of Theorem 2 and we investigate
the upper bounds of jjfjjL1ðR2Þ for ðf;cÞ 2 S:

Proposition 6.1. Let ðf;cÞ 2 S: Then

jjfjjL1ðR2Þ4maxf
4
3
p3; 4

3
p3t2g:

Moreover, if 05t41=2 then jjfjjL1ðR2Þ58p:

We prove Proposition 6.1, following the idea of Biler [1]. By Theorem 1
the solution ðf;cÞ 2 S must be radially symmetric about the origin. Define
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F and C; respectively, as

FðsÞ ¼
1

2

Z s

0

fð
ffiffi
t

p
Þ dt and CðsÞ ¼

1

2

Z s

0

cð
ffiffi
t

p
Þ dt:

First we show the following:

Lemma 6.1. We have jjfjjL1ðR2Þ ¼ 2p lims!1 FðsÞ: Moreover, ðF;CÞ
solves

F00 þ 1
4
F0 � 2F0C00 ¼ 0;

4sC00 þ tsC0 � tCþ F ¼ 0

(
ð6:1Þ

for s > 0; where 0 ¼ d=ds:

Proof. We see that

Z
R2

fðjyjÞ dy ¼ 2p
Z 1

0

rfðrÞ dr ¼ 2p
1

2

Z 1

0

fð
ffiffi
t

p
Þ dt

� 

;

which implies jjfjjL1ðR2Þ ¼ 2p lims!1 FðsÞ:
Define u and v as

uðr; tÞ ¼
1

t
f

r ffiffi
t

p
 !

and vðr; tÞ ¼ c
r ffiffi
t

p
 !

;

respectively. Put U and V as

U ðr; tÞ ¼
Z r

0

suðs; tÞ ds and V ðr; tÞ ¼
Z r

0

svðs; tÞ ds:

Then, by the change of variables, we obtain

U ðr; tÞ ¼
1

2

Z r2=t

0

fð
ffiffi
s

p
Þ ds and V ðr; tÞ ¼

t
2

Z r2=t

0

cð
ffiffi
s

p
Þ ds:
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By the definition of C and F we have

U ðr; tÞ ¼ F
r2

t

� 

and V ðr; tÞ ¼ tC

r2

t

� 

: ð6:2Þ

Now we verify that ðU ; V Þ satisfies

Ut ¼ rðr�1UrÞr � Urðr
�1VrÞr;

tVt ¼ rðr�1VrÞr þ U

(
ð6:3Þ

for ðr; tÞ 2 ½0;1Þ 
 ð0;1Þ: Since ðu; vÞ solves (1.1), we see that

rut ¼ ðrurÞr � rurvr � uðrvrÞr and trvt ¼ ðrvrÞr þ ru:

Then we obtainZ r

0

sutðs; tÞ ds ¼ rur � ruvr and t
Z r

0

svtðs; tÞ ds ¼ rvr þ
Z r

0

suðs; tÞ ds:

Thus we obtain (6.3). By virtue of (6.2) we have (6.1). ]

Lemma 6.2. We have

�sC00ðsÞ ¼
1

4
e�ts=4

Z s

0

ett=4F0ðtÞ dt > 0 for s > 0: ð6:4Þ

Proof. Put W ðsÞ ¼ �4sC00ðsÞ: From the second equation of (6.1), we
have

F0 ¼ ð�4sC00Þ0 � tsC00 ¼ W 0 þ
t
4
W :

Since sC00ðsÞ ¼
ffiffi
s

p
c0ð

ffiffi
s

p
Þ=4; we have W ð0Þ ¼ lims!0 W ðsÞ ¼ 0: Then we

obtain

W ðsÞ ¼ e�ts=4
Z s

0

ett=4F0ðtÞ dt:

Since F0ðsÞ ¼ fð
ffiffi
s

p
Þ=2 > 0; we obtain the assertion. ]

Lemma 6.3. We have sC00ðsÞ ! 0 as s! 1 and, for s > 0;

05CðsÞ � sC0ðsÞ4

t
4

R s
0

t
ett=4 � 1

dt5s if 05t41;

t
4

R s
0

t
et=4 � 1

dt if t > 1:

8><
>:
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Proof. From the first equation of (6.1) and (6.4) we have

F00 þ
1

4
F0 þ

1

2s
e�ts=4F0

Z s

0

ett=4F0ðtÞ dt ¼ 0:

We note that F0ðsÞ ¼ fð
ffiffi
s

p
Þ=2 > 0: Then, for the case 05t41; we have

F00 þ
t
4
F0 þ

1

2s
e�ts=4F0

Z s

0

ett=4F0ðtÞ dt40;

that is,

ðets=4F0Þ0 þ
1

2s
F0
Z s

0

ett=4F0ðtÞ dt40: ð6:5Þ

For the case t > 1 we have

F00 þ
1

4
F0 þ

1

2s
e�ts=4F0

Z s

0

et=4F0ðtÞ dt40;

that is,

ðes=4F0Þ0 þ
1

2s
eð1�tÞs=4F0

Z s

0

et=4F0ðtÞ dt40: ð6:6Þ

First we consider the case 05t41: Define Z as

ZðsÞ ¼
Z s

0

ett=4F0ðtÞ dt:

From (6.5) we have

sZ 00 þ 1
2 e

�ts=4Z 0Z40: ð6:7Þ

By integrating the above on ½0; s� we obtain

sZ 0 � Z þ
1

4
e�ts=4Z2 þ

t
16

Z s

0

e�tt=4Z2ðtÞ dt40:

Then we have sZ 0 � Z þ e�ts=4Z2=440: Dividing the inequality by Z2 it
follows that ðs=ZÞ05e�ts=4=4: Therefore we obtain

ZðsÞ4
ts

1� e�ts=4
: ð6:8Þ
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From (6.4) we have �sC00 ¼ e�ts=4ZðsÞ=4 > 0: Then

05� sC00ðsÞ4
ts

4ðets=4 � 1Þ
51 for s > 0:

This implies sC00ðsÞ ! 0 as s! 1: By integrating the above on ½0; s� we
obtain the assertion.
Next we consider the case t > 1: Define Z as

ZðsÞ ¼
Z s

0

et=4F0ðtÞ dt:

Then from (6.6) we have (6.7). By the similar argument above we obtain
(6.8). We see that

e�ts=4
Z s

0

ett=4F0ðtÞ dt ¼
Z s

0

e�tðs�tÞ=4F0ðtÞ dt4
Z s

0

e�ðs�tÞ=4F0ðtÞ dt ¼ e�s=4ZðsÞ:

Then from (6.4) and (6.8) we have

05� sC00ðsÞ4
1

4
e�s=tZðsÞ4

ts
4ðes=4 � eð1�tÞs=4Þ

4
ts

4ðes=4 � 1Þ
:

Therefore, sC00ðsÞ ! 0 as s! 1: By integrating the above we obtain the
assertion. ]

Proof of Proposition 6.1. First we consider the case 05t41: From the
second equation of (6.1) we have FðsÞ ¼ �4sC00ðsÞ þ t CðsÞ � sC0ðsÞ

� �
: From

Lemma 6.3 we obtain

lim
s!1

FðsÞ ¼ lim
s!1

tðCðsÞ � sC0ðsÞÞ4
t2

4

Z 1

0

s
ets=4 � 1

ds:

By the change of variable z ¼ ts=4 it follows that

lim
s!1

FðsÞ44
Z 1

0

z
ez � 1

dz ¼
2

3
p2:

Since jjfjjL1ðR2Þ ¼ 2p lims!1FðsÞ from Lemma 6.1, we obtain the assertion.
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Next we consider the case t > 1: By a similar argument we obtain

lim
s!1

FðsÞ4
t2

4

Z 1

0

s
es=4 � 1

ds ¼ 4t2
Z 1

0

z
ez � 1

dz ¼
2

3
p2t2;

which implies the assertion.
Finally, we consider the case 05t41=2: The change of variables

t ¼ ðlog sÞ=2; kðtÞ ¼ FðsÞ; ‘ðtÞ ¼ 2sF0ðsÞ; mðtÞ ¼ CðsÞ;

nðtÞ ¼ 2sC0ðsÞ

transforms (6.1) into

’kk ¼ ‘; ’mm ¼ n;

’‘‘ ¼ 2� k þ tm�
tn
2

�
e2t

2

� 

‘;

’nn ¼ 2nþ e2t
tn
2

þ tm� k
� �

;

8>>>>><
>>>>>:

where ’¼ d=dt: Hence we have

d
dt
ððk � 2Þ2 þ 2‘Þ ¼ 2‘ tm�

tn
2

�
e2t

2

� 

¼ 4sF0ðsÞ tðCðsÞ � sC0ðsÞÞ �

s
2

� �
4 0

by Lemma 6.3. Then ðkðtÞ � 2Þ2 þ 2‘ðtÞ is decreasing for t > �1: We
note that limt!�1 kðtÞ ¼ Fð0Þ ¼ 0 and limt!�1 ‘ðtÞ ¼ lims!0 2sF0ðsÞ ¼
lims!0 sfð

ffiffi
s

p
Þ ¼ 0: Then we have

ðkðtÞ � 2Þ2 þ 2‘ðtÞ54 for t > �1:

Since ‘ðtÞ ¼ 2sF0ðsÞ ¼ sfð
ffiffi
s

p
Þ > 0 and limt!1 ððkðtÞ � 2Þ2 þ 2‘ðtÞÞ54; we

obtain limt!1 kðtÞ54: Thus lims!1 FðsÞ54; which implies jjfjjL1ðR2Þ58p: ]

7. PROOF OF THEOREM 2

By Theorem 3 it is shown that ðf;cÞ 2 S if and only if c ¼ cðrÞ; r ¼ jyj;
solves ð4:1Þs for some s > 0 and f is given by (1.7). By Proposition 4.1, the
set C defined by (4.2) is written by one-parameter families ðsðsÞ;cðr; sÞÞ on
s 2 R: Let

fðr; sÞ ¼ sðsÞe�r
2=4ecðr:sÞ: ð7:1Þ
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ThenS is written by one-parameter families ðfðr; sÞ;cðr; sÞÞ on s 2 R: From
Proposition 4.1(i) and (ii) and (7.1) we have s/ðfð�; sÞ;cð�; sÞÞ 2 C2½0;1Þ 

C2½0;1Þ is continuous and ðfð�; sÞ;cð�; sÞÞ ! ð0; 0Þ in C2½0;1Þ 
 C2½0;1Þ as
s! �1: We see that

lðsÞ ¼ 2p
Z 1

0

rfðr; sÞ dr: ð7:2Þ

Then lðsÞ is continuous and satisfies lðsÞ ! 0 as s! �1: Hence, (i) and (ii)
hold. By Proposition 6.1 we obtain (iv).
We have jjcð�; sÞjjL1½0;1Þ ¼ cð0; sÞ ! 1 as s! 1 from (iii) of Proposition

4.1. Let fskg be a sequence satisfying sk ! 1 as k ! 1:We note that flkg is
bounded by Proposition 6.1. By applying Proposition 5.1, there exists a
subsequence (still denoted by fskg) such that lðskÞ ! 8p and fkðjxj; skÞ dx*
8pd0ðdxÞ as k ! 1: Therefore, (iii) holds. This completes the proof of
Theorem 2. ]

APPENDIX A. EXISTENCE OF SOLUTIONS TO (1.8) WITH (1.9)

The following theorem refines the previous results [26, Theorem 1; 25,
Theorems 1 and 2; and 27, Theorem 1.1].

Theorem A.1. For any t > 0 there exists sn > 0 such that

(i) if s > sn; then (1.8) with (1.9) has no solution;
(ii) if s ¼ sn; then (1.8) with (1.9) has at least one solution;
(iii) if 05s5sn; then (1.8) with (1.9) has at least two distinct solutions

%
cs; %ccs satisfying lims!0

%
csð0Þ ¼ 0 and lims!0

%ccsð0Þ ¼ 1:

Proof. By Theorem 1 problem (1.8) with (1.9) is reduced to
problem ð4:1Þs: By Proposition 4.1 the set C defined by (4.2) is written by
one-parameter families ðsðsÞ;cðr; sÞÞ on s 2 R: From (7.1) and (7.2) we find
that

sðsÞ ¼ lðsÞ 2p
Z 1

0

re�r
2=4ecðr:sÞ dr

� 
�
¼ lðsÞ

Z
R2
e�jyj2=4ecðjyj:sÞ dy

�
:

From (5.13) in Lemma 5.4 we have

Z
R2
e�jyj2=4ecðjyj:sÞ dy ! 1 as s! 1:



NAITO, SUZUKI, AND YOSHIDA416
Then sðsÞ ! 0 as s! 1: Therefore, from Proposition 4.1(ii), sðsÞ satisfies

lim
s!�1

sðsÞ ¼ 0:

Let sn ¼ sups2R sðsÞ: Then there exists sn 2 R such that sn ¼ sðsnÞ: By
Proposition 4.1 it is shown that ð4:1Þs has a solution if and only if s ¼ sðsÞ
for some s 2 R: Therefore, ð4:1Þs has no solution, if s > sn; and ð4:1Þs has at
least one solution, if s ¼ sn: If s 2 ð0;snÞ; by the mean value theorem, there
exists s1; s2 2 R; s15sn5s2 such that s ¼ sðs1Þ ¼ sðs2Þ: Then ð4:1Þs has at
least two solutions csðs1Þ and csðs2Þ: We note that lims!�1 csðsÞð0Þ ¼ 0 and
lims!1 csðsÞð0Þ ¼ 1 by Proposition 4.1(ii) and (iii). Since lims!�1 sðsÞ ¼ 0;
we can choose solutions %ccs and

%
cs satisfying lims!0

%
csð0Þ ¼ 0 and

lims!0
%ccsð0Þ ¼ 1: This completes the proof of Theorem A.1. ]

APPENDIX B. PROOF OF THEOREM 4

Define hk 2 C2ðOÞ \ Cð %OOÞ by

Dhk ¼ 0 in O and hk ¼ uk on @O:

We may assume that f0g 2 O without loss of generality.

Lemma B.1. Let r > 0 satisfying %BBr � O: Then jjrhk jjL1ðBrÞ ¼ Oð1Þ as

k ! 1:

Proof. By the maximum principle, we have max %OO hk �min %OO hk4
max@O hk �min@O hk : Then from (1.15) we obtain

max
%OO
hk �min

%OO
hk4C2

with a positive constant C2: Let *hhkðxÞ ¼ hkðxÞ �min %OO hk : Then
*hhk satisfies

D *hhk ¼ 0 in O; 04 *hhk4C2:

Since @ *hhk=@xi; i ¼ 1; 2; is harmonic, by the mean value theorem [11] and
Gauss–Green theorem, we obtain

@ *hhk
@xi

¼
1

pr2

Z
Br

@ *hhk
@xi

dx ¼
1

pr2

Z
@Br

*hhkni ds
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for i ¼ 1; 2; where n ¼ ðn1; n2Þ is the outer normal unit vector on @Br: Then it
follows that

@ *hhk
@xi

�����
�����4 1

pr2

Z
@Br

j *hhk j ds4
2C1
r

; i ¼ 1; 2:

Since jrhk j ¼ jr *hhk j; we conclude that jjrhk jjL1ðBrÞ ¼ Oð1Þ as k ! 1: ]

Let wkðxÞ ¼ ukðxÞ � hkðxÞ in O: Then

�Dwk ¼ WkðxÞewk in O; wk ¼ 0 on @O;

where WkðxÞ ¼ ehk ðxÞVkðxÞ: Let Gðx; yÞ be Green’s function of �D in O with
respect to the zero boundary conditions

�DxGðx; yÞ ¼ dy ; x 2 O; Gðx; yÞ ¼ 0; x 2 @O:

Then we have

rwkðxÞ ¼
Z
O
rxGðx; yÞWkðyÞewk ðyÞ dy; x 2 O: ðB:1Þ

Put zkðxÞ ¼ WkðxÞewk ðxÞ:

Lemma B.2. For c 2 C20ðOÞ we have

�
Z
O
ðDcÞzk dx ¼

Z
O
ðrðlogWkÞ � rcÞzk dx

þ
1

2

Z Z
O
O

rðx; yÞzkðxÞzkðyÞ dx dy; ðB:2Þ

where rðx; yÞ ¼ rxGðx; yÞ � rcðxÞ þ ryGðx; yÞ � rcðyÞ:

Proof. We see that

rzk ¼ ðrWkÞewk þ Wkewkrwk ¼ zkrðlogWkÞ þ zkrwk :

Then, for c 2 C20ðOÞ; we obtain

�
Z
O
ðDcÞzk dx ¼

Z
O
ðrðlogWkÞ � rcÞzk dxþ

Z
O
ðrwk � rcÞzk dx: ðB:3Þ
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From (B.1) and Fubini’s theorem, we find thatZ
O
ðrwkðxÞ � rcðxÞÞzkðxÞ dx

¼
Z Z

O
O
ðrxGðx; yÞ � rcðxÞÞzkðxÞzkðyÞ dx dy: ðB:4Þ

By changing the role of x and y in (B.4) we obtainZ
O
ðrwkðyÞ � rcðyÞÞzkðyÞ dy ¼

Z Z
O
O

ðryGðx; yÞ � rcðyÞÞzkðxÞzkðyÞ dx dy:

Hence, we obtainZ
O
ðrwk � rcÞzk dx ¼

1

2

Z Z
O
O

rðx; yÞzkðxÞzkðyÞ dx dy:

From (B.3) we obtain (B.2). ]

Without loss of generality, we may assume that the blowup set B contains
f0g; and that there exists a R > 0 satisfying fx : 05jxj5Rg \B ¼ |:
Therefore, fukg satisfies

max
%BBR

uk ! 1 and max
%BBR=Br

uk ! �1 as k ! 1 ðB:5Þ

for all r 2 ð0;RÞ: Moreover,

Vkeuk dx* ad0ðdxÞ ðB:6Þ

on BR in the sense of measure for some a54p:

Lemma B.3. There exist constants r0 2 ð0;RÞ and a > 0 such that VkðxÞ5a
for x 2 Br0 :

Proof. First we show lim infk!1 Vkð0Þ > 0: Assume to the contrary that

lim inf
k!1

Vkð0Þ ¼ 0:

From (1.12) and (1.14), by taking a subsequence in fVkg (still denoted by
fVkg), there exists V0 2 CðOÞ such that Vk ! V0 in CðBRÞ and V0ð0Þ ¼ 0:
Let xk 2 BR; ukðxkÞ ¼ maxx2 %BBR

ukðxÞ: It follows from (B.5) that

xk ! 0 and ukðxkÞ ! 1: ðB:7Þ
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Let dk ¼ e�uk ðxk Þ=2: It follows from (B.7) that dk ! 0: For jxj4R=ð2dkÞ; we
consider the sequence of functions vkðxÞ ¼ ukðdkxþ xkÞ þ 2 log dk : Then vk
satisfies

�DvkðxÞ ¼ Vkðdkxþ xkÞevkðxÞ for x 2 BR=ð2dk Þ:

Moreover, we have vkð0Þ ¼ 0; vkðxÞ40 in BR=ð2dk Þ; andZ
BR=ð2dk Þ

evk ðxÞ dx4
Z
BR

euk ðxÞ dx4C

for some positive constant C:
For each r > 0 the sequence fvkg is well defined in Br for k large enough. It

follows from Theorem A that only alternative (i) may occur, hence fvkg is
bounded in L1locðBrÞ and, by standard elliptic estimates, also in C

2;a
locðBrÞ; 0

5a51: Therefore, a subsequence in fvkg converges in C2locðBrÞ: We may do
the same arguments for a sequence rk ! 1; and pass to a diagonal
subsequence (which we will still denote as fvkg) converging in C2locðR

2Þ to v
which satisfies �Dv ¼ V0ð0Þev in R2: Moreover, vð0Þ ¼ 0; v40 in R2; and

Z
R2
ev dx4C: ðB:8Þ

Since V0ð0Þ ¼ 0; v is harmonic in R2: Then v is a constant. This contradicts
(B.8). Thus we conclude that lim infk!1 Vkð0Þ > 0:
From (1.14) there exist constants r0 2 ð0;RÞ and a > 0 satisfying VkðxÞ5a

for x 2 Br0 : ]

Proof of Theorem 4. We will show that a ¼ 8p in (B.6). Take f 2 C20ðBRÞ
so that 04f41 and f � 1 for x 2 Br0 ; where r0 is a constant in Lemma B.3.
Let cðxÞ ¼ jxj2fðxÞ: Then we have c 2 C20ðBRÞ: Moreover, it follows that
DcðxÞ ¼ 4 and rcðxÞ ¼ 2x for x 2 Br0 :
We recall that WkðxÞ ¼ ehk ðxÞVkðxÞ: Then we have

rðlogWkÞ ¼
rWk
Wk

¼ rhk þ
rVk
Vk

:

From Lemmas B.1 and B.3 and (1.12) we obtain jr logWkðxÞj4C for x 2 Br0
with some constant C: Then we have

jrcðxÞ � rðlogWkðxÞÞj42Cjxj for x 2 Br0 : ðB:9Þ
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We see that Gðx; yÞ ¼ �ð1=2pÞlog jx� yj þ Kðx; yÞ; where Kðx; yÞ is a
smooth function on %OO
 O: Then rðx; yÞ defined in Lemma B.2 satisfies

rðx; yÞ ¼ �
1

p
þ 2x � rxKðx; yÞ þ 2y � ryKðx; yÞ for x 2 Br0 : ðB:10Þ

We see that zkðxÞ ¼ WkðxÞewk ðxÞ ¼ VkðxÞevk ðxÞ: From (B.6) we have zkðxÞ dx!
ad0ðdxÞ on BR in the sense of measure. Furthermore, we have

zkðxÞzkðyÞ dx dy ! a2dx¼0ðdxÞ � dy¼0ðdyÞ ¼ a2dðx;yÞ¼ð0;0Þðdx dyÞ

on BR in the sense of measure. Letting k ! 1 in (B.2), from (B.9) and
(B.10), we have �4pa ¼ �a2=ð2pÞ: From a54p; we obtain a ¼ 8p: This
completes the proof of Theorem 4. ]
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