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We study the forward self-similar solutions to a parabolic system modeling
chemotaxis

u, =V -(NVu—uVv), w,=Av+u

in the whole space R?, where 7 is a positive constant. Using the Liouville-type
result and the method of moving planes, it is proved that self-similar solutions (u, v)
must be radially symmetric about the origin. Then the structure of the set of self-
similar solutions is investigated. As a consequence, it is shown that there exists a
threshold in [ u for the existence of self-similar solutions. In particular, for 0<t
< 1/2, there exists a self-similar solution (u, v) if and only if [ u<87m. © 2002 Elsevier
Science (USA)
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1. INTRODUCTION

We are concerned with the parabolic system of the form

%IV'(VM—MVU), xeRY, ¢>0,
(1.1)
r%:Aeru, xeRY, >0,

where 7> 0 is a constant. This is a simplified system of the one given by
Keller and Segel [21] describing chemotactic feature of cellular slime molds
sensitive to the gradient of a chemical substance secreted by themselves. The
functions u(x, £)=0 and v(x, #)=>0 denote the cell density of cellular slime
molds and the concentration of the chemical substance at place x and time ¢,
respectively.

Backward self-similar solutions are studied in [13] for t = 0. The present
paper is devoted to the forward self-similar solutions. Namely, this system is
invariant under the similarity transformation

wy(x, 1) = 2Pu(ix,2%) and  v(x, 1) = v(x, 1)

for A >0, that is, if (u,v) is a solution of (1.1) globally in time, then so is
(uy,v;). A solution (u,v) is said to be self-similar, when the solution is
invariant under this transformation, that is, u(x, r) = u,(x, ¥) and v(x, 1) =
v;(x, t) for all 1> 0. Letting A = l/ﬁ, we see that (u,v) has the form

u(x, 1) = % p <\%> and  o(x, 1) = (%) (1.2)

for x € RY and > 0. It follows that
[ e =22 [ g0ay (1.3)
RN RN

for ¢ € L'(R"). Therefore, self-similar solution (u,v) preserves the mass
[u(-, t)||L1(Rz) if and only if N = 2. On the other hand, the mass conservation
of u(.,t) follows formally in the original system (1.1) in any space
dimensions. Regarding this fact, we study the case N = 2 in this paper.

By a direct computation it is shown that (u, v) in (1.2) satisfies (1.1) if and
only if (¢, ) satisfies

V- (Vo - V) +1x-Vp+¢ =0 xeR,

1.4
Alp—k%x-Vx//—qu:O, xeR2. (1.4
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We are concerned with the classical solutions (¢, ) € C2(R?) x CX(R?) of
(1.4) satisfying

$, =0 inR> and  PXx),Y(x) - 0 as x| > . (1.5)
Define the solution set & of (1.4) as

S = {($, ) € CX(R?) x CHR?): (¢, ) is a solution of (1.4) with (1.5)}.
(1.6)

Put ¢(x) = ce M"/4e¥®_ where ¢ is a positive constant. Then ¢ satisfies the
first equation of (1.4), and so if we find a positive solution y of

Ay + %x VYt ce A =0 in R

satisfying y(x) — 0 as |x| — oo, we can obtain the solutions (¢,y) e &.
Therefore, the existence of solutions (¢, ) € & follows from [26, Proposi-
tion 2; 27, Theorem 1.1]. (We also obtain & #( by Lemma 4.2 below. See
also Proposition A.l in Appendix A.) We investigate the structure of the
solution set .&.

THEOREM 1. Any (¢, ) € & is radially symmetric about the origin, and
satisfies ¢, € L'(R?).

THEOREM 2. The solution set & is expressed as a one-parameter family:
S = UP(9): Y(5)) 15 € R

If A(s) = ()11 2)» then (P(s), Y(s)) and A(s) satisfy the following properties:
(1) s (p(s), ¥(s)) € CHR?) x CAR?) and s+ (s) € R are continuous;
(i) (¢(s), Y(s)) — (0,0) in CX(R?) x CXR?) and (s) — 0 as s - —0o0;
(iii) ||tp(s)||Lw(Rz) — 00, A(s) = 8, and P(s)dx — 8ndo(dx) in the
sense of measure as s — 00, where 0y(dx) denotes Dirac’s delta function with
the support in origin;

(iv) 0<A(s)<8r for seR, if 0<t<1/2, and 0<i(s)<max{4r®/3,
4m’1?/3} for seR, if t>1/2.

As a consequence of Theorem 2 we obtain the following:

COROLLARY. There exists a constant 7* satisfying i* = 8n, if 0<t<1/2,
and 8n < 2* <max{4n’/3,4n3c%/3}, if ©>1/2, such that
() for every Ae(0,7%), there exists a solution (¢p,\)e S satisfying
||¢||L1(R2) =7

(i) for 4> 2¥, there exists no solution (¢, ) € & satisfying ||¢||L1(R2) = A
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Remark. Biler [1] has shown that system (1.4) with t = 1 has a radial
solution (¢, Yr) satisfying ||(/)||L|(Rz) = Afor every 4 € (0, 87), and has no radial
solutions (¢, }) satisfying ||¢||L|(Rz)/2n>7.82. .

Theorem 1 is a consequence of the following:
THEOREM 3. Assume that (¢,\) is a nonnegative solution of (1.4)

satisfying ¢, € L°(R?). Then ¢ and \ are positive, and there exists a
constant ¢ > 0 such that

D(x) = ge H/4eV®), (1.7)
Assume furthermore that y(x) — 0 as |x| > co. Then ¢ and y are radially
symmetric about the origin, and satisfy 0¢/or<0 and oy /or<0 for r =
|x| >0, and
o) =0 ™™ and  W(x) = O(e ™LA 46 k] > oo,
The proof of Theorem 3 consists of two steps. First, we show that (1.7)
holds by employing the Liouville-type result essentially due to Meyers and
Serrin [24]. Then we show the radial symmetry of solutions by the method of
moving planes. This device was first developed by Serrin [36] in PDE theory,
and later extended and generalized by Gidas et al. [8,9]. We will obtain a
symmetry result for Eq. (1.8) below with a change of variables as in [31].

By Theorem 3 it follows that under the condition ¢,y € L°(R?), system
(1.4) is reduced to the equation

Ay + %x VYt ae b AY =0 in R (1.8)

for some positive constant . Moreover, (¢, ) € & if and only if i satisfies
(1.8) with

Yx) -0 as |x| - oo, (1.9)
and ¢ is given by (1.7). Let 1 = ||(]5||L1([R2). From (1.7) we see that

A= a/ e P/ dy.
RZ

Then (1.8) is rewritten as the elliptic equation with the nonlocal term,

Ay + % XV + de Wl / e A gy =0 in B2 (1.10)
R2
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The proof of Theorem 2 is based on the ODE arguments to Egs.
(1.8) and (1.10). Furthermore, we employ the results by Brezis and
Merle [2] concerning the asymptotic behavior of sequences of solutions
of

—Aug = Vi(x)e™  in Q, (1.11)

where Q = R? is a bounded domain and ¥ is a nonnegative continuous
function. We also need Theorem 4 in order to prove Theorem 2. Here we
recall Theorem 3 in [2].

THEOREM A (Brezis and Merle [2]). Suppose that
0<hx)<C, xeQ, (1.12)

for some positive constant Cy. Let {u;} be a sequence of solutions of (1.11)
satisfying

limsup/e“"dx<oo. (1.13)
Q

k—00

Then there exists a subsequence (still denoted by {uy}) satisfying one of the
following alternatives:

() {uy} is bounded in L, (Q);

(ii) wx — —o0 uniformly on compact subset of Q;

(iii) there exists a finite blowup set # = {ay,...,a;} < Q such that, for
any 1<i<{, there exist {x;} < Q, x; — a;, vi(xg) = 00, and vy - —00
uniformly on compact subsets of Q\B. Moreover, Vie™t dx — Zle 0;04,(dx) in
the sense of measure with o; =4n, where d,,(dx) is Dirac’s delta function with
the support in x = a;.

It was conjectured in [2] that each o; can be written as o; = 8mm;
for some positive integer m;. This was established by Li and Shafrir
[23]. Chen has shown in [3] that any positive integer m; can occur in the
case V; =1 and Q is a unit disk. On the other hand, under more restric-
tive assumptions that 7 € C'(Q) we obtain the following theorem. It is
related to Theorem 0.3 of Li [22] and is proven in the appendix of the
present paper.

THEOREM 4. Suppose that V € C'(Q) satisfies (1.12) and

IV Vil < Ci (1.14)
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for some positive constants Cy and Cy. Let {u} be a sequence of solutions of
(1.11) satisfying (1.13) and

, —mi < 1.1
négx uy nggl)n w, <G (1.15)

for some positive constant C,. Assume that alternative (iii) in Theorem A
holds. Then o; = 87 for each i € {1,2,...,(}.

Recently, attentions have been paid to blowup problems for the system

%:V-(Vu—qu), xeQ, >0,
r%:Av—yv—l—u, xeQ, t>0,
ou Ov

= = Q >
Eilew 0, xeoQ, >0,
u(x,0) = ug, v(x,0) =10y, xe€€Q,

where Q = R? is a bounded domain with smooth boundary 6Q, t and 7 are
positive constants, and v is the outer normal unit vector. As concerns
dynamic aspects of solutions, Nanjundiah [32] has given a conjecture that
blowup solution u(x, ¢) will form a d-function singularity as ¢t /* Tax < + 00,
where T,.x denotes the maximal time for the existence of the solution. Such
a phenomenon is referred to as chemotactic collapse. Herrero and Velazquez
[14-16] constructed a family of radially symmetric solutions on Q
= {x e R*: x| <1}, satisfying

u(x, t) dx — 8mdo(dx) + f(x) dx

as t /" Tmax < + 00 in M(Q), where f e C(Q\{0}) N L'(Q) is a nonnegative
function. If t = 0, the blowup mechanism has been clarified much more by
Senba and Suzuki [34].

Childress and Percus [5] and Childress [4] have studied the stationary
problem and have conjectured that there exists a threshold in ||uol|,1q) for
the blow up of the solution (u,v). Their arguments were heuristic, while
recent studies are supporting their validity rigorously, see [12,18,28]. In
particular, it is proven that [jug||1q) <47 implies Tinax = +00 by Nagai et al.
[30], Biler [1], and Gajewski and Zacharias [7], independently. Furthermore,
the optimality of the condition |{ugll,1q)<4m for Thax = +00 is shown by
Nagai [29] and Senba and Suzuki [35]. For related results, we refer to
Horstmann and Wang [17].

On the other hand, concerning the Cauchy problem for the semilinear
parabolic equation in R", it is asserted that self-similar solutions take an
important role in the asymptotic behavior of the solutions, see, e.g.
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[6,19,20]. From corollary, we are led to the following conjectures for
problem (1.1) with N = 2 subject to the initial condition u(x,0) = up and
u(x,0) = vy in R?.

For 0<t<1/2,if ||”0||L1([R2) < 87 then the solution of the Cauchy problem
to (1.1) exists globally in time, and if ||140||L1(R2) > 87 then the solution can
blow up in a finite time.

We organize this paper as follows. In Section 2 we show that (1.7) holds
by employing the Liouville-type result. In Section 3 we show the radial
symmetry of solutions by the method of moving planes, and then give the
proof of Theorem 3. In Section 4 we give the ODE arguments to investigate
the properties of radial solutions of (1.8). We study the behavior of
sequences {(¢, ¥,)} < & satisfying ||xpk||Lw(Rz) — 00 in Section 5. In Section
6 we investigate the upper bounds of [||| 2. Finally, in Section 7 we prove
Theorem 2 by using the results in Sections 4— 6. In Appendixes, A and B, we
are concerned with the existence of solutions to problem (1.8) and (1.9), and
give the proof of Theorem 4.

2. REDUCTION TO THE SINGLE EQUATION

In this section we show that system (1.4) is reduced to Eq. (1.8) if ¢,
¥ € L(R?). More precisely, we have the following:

ProrosITION 2.1.  Let (p,) be a nonnegative solution of (1.4) with ¢,
Y € L°(R?). Then relation (1.7) holds with some constant ¢ > 0.

To prove this proposition we use the Liouville-type result for second-
order elliptic inequalities essentially due to Meyers and Serrin [24].

LEmMMA 2.1. Let u satisfy
Au+Vb-Vu=0  in R (2.1)

Assume that x - Vb(x)<0 for large |x|. If sup, g u(x) <00, then u must be a
constant function.

Proof. Take a function p as u(r) = 1/log(1 + r). Then p satisfies the
Meyers—Serrin condition

/%@ dt = 00, where k(f) = exp<— /t@ ds).
1 t 1 s
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Define v as
"k(t
v(r):/ %dt, r=1.
1

Then v(r) is positive and increasing for » € (1, 00), and satisfies v(r) — o0 as
r — 00. Furthermore, v = v(|x|) solves

k(lx1)

Av+ Vb -Vv= 5
|x

(—u(x]) + x - Vb(x)).

By the assumption, there exists a large R > 0 such that
Av+ Vb-Vv<0 for |x|=R. (2.2)

Now assume to the contrary that u is not a constant function. Without
loss of generality, we may assume that u« is not a constant function in |x| <R.
Define

U(r) = sup{u(x): |x| = r}.

Then U(r) is strictly increasing for »>=R. To see why, suppose R<r; <r, and
U(r1) = U(ry). Then u attains its maximum for |x| <r; at an interior point and
by the strong maximum principle u is constant, which contradicts the
assumption. Therefore, U(r) is strictly increasing, and we have U(R + 1) >
U(R). Choose ¢ > 0 so small that

UR+1)—-UR

. 2.
0<0< RT 1) = o) 2:3)
Put w(x) = u(x) — dv(|x|). Then it follows from (2.1) and (2.2) that
Aw+Vb-Vw>0 for |x|=R. 2.4)

From (2.3) we obtain U(R + 1) — 6v(R + 1) > U(R) — ov(R). This implies

sup  w(x) > sup w(x).
[x|=R+1 |x|=R

Since w(x) - —0o as |x| > 0o, w has the maximum at a point x, € R?,
[xo| > R. Then we have Aw + Vb - Vw<0 at x = xy. This contradicts (2.4).
Hence, u must be a constant function. 1

LEMMA 2.2. Let (¢,) be a nonnegative solution of (1.4) with ¢,
Y € L(R?). Then Vi € L¥(R?).



394 NAITO, SUZUKI, AND YOSHIDA

Proof. Define u and v by (1.2). Then (u, v) solves (1.1), and it holds that

1
Ol ey = 7l and Ol = Wl ey

Take #) > 0. From the second equation of (1.1) we have

1 t
u(t) = /D10y 4 = / O () ds = v1(1) + va(0),  t>15, (2.5)
T

fo

where {e®} is the heat semigroup. We recall the LP-L9 estimates for the
linear heat equation

||ve([/T)AW||Lq(R2) < Ctl/qfl/p*I/ZHWHLF(RZ) (26)

for >0 with 1< p<g<<oo, where C = C(7) is a positive constant, see e.g.
[10]. In particular we have

IV W2y SCE VWl ey for £>0.
Put #) = ¢/2 in (2.5). Then it follows that
IV 01Ol g2y < CE 1100/ 2D ey < CE Pty 2.7)

and
! 1/2 ! 1/2
V030 ey < C // =5 Pl ds <l / e — )5 ds.
t
By the change of variable s = fg, we have
! 1/2
IVes(Oll ey <€ ol [ R A

From (2.7) and (2.8) we obtain sup,.o #'/2[|Vo(0)||,~ &) < 00. By the definition
of v it follows that ¢'/?|[Vo()l«ge) = ||Vl//||Lx(Rz) Thus we have
Ve L°(R?). 1

Proof of  Proposition 2.1. Put  w(x) = —p(x)e /4e=¥™ <0. Then

e MV = —V — x¢p/2 + dVip. From the first equation of (1.4) we
have

V(e ™A Vw)y=0 or Aw+Vh-Vw=0 inR?
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where Vb(x) = —x/2 + Viy(x). From Lemma 2.2 we have

)
x-Vb(x) = <7 +x- Vl//(x)> <0

for large |x|. As a consequence of Lemma 2.1, w must be a constant function.
This completes the proof of Proposition 2.1. 1

3. RADIAL SYMMETRY: PROOF OF THEOREM 3

In this section we investigate the radial symmetry of solutions to (1.8) and
prove Theorem 3. Namely, we show the following:

PROPOSITION 3.1.  Let yy € C2(R?) be a positive solution of (1.8) with (1.9).
Then y must be radially symmetric about the origin.

We prepare several lemmas.
LEmMA 3.1.  We have
Y(x) < Cemntnhibl /4 £ 3 e R2 (3.1)
with some constant C > 0.
Proof. Define

Lu:—Au—%x-Vu

and p121t k., =min{l,7}. Let C be a positive constant and let v(x) =
Ce *"/4 Then

Lv = Cxk;, (l + (i) _4KT) |x|2) ekl /4> CKTe_”"xlz/“.

Since Ly = ge M/4¢¥ if we choose C so large that Ck, > gel’li~e | then
Lv> Ly in R?. Since v,y — 0 as |x| > 00, by the maximum principle we have
v=y in R?. This implies (3.1). 1

We define w(x, ¢) by

oWl

wx, £) = £~ (%) where o = . (3.2)
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LeEmMMA 3.2. (i) For every T>0 we have supg.,.yw(x,t) -0 as
[x] = oo.
(ii) For every u>0 we have supy,., w(x, ) - 0 as t - 0.

Proof. From Lemma 3.1 we have |y*y(») — 0 as |y| — oo, that is, for
all ¢ > 0 there exists R > 0 such that

Iy y(y)<e  for [y|=R. (3.3)

From (3.2) we have

20
W w(x, 1) = (%) w(\%) (3.4)

(i) Fix T>0. From (3.3) and (3.4) it follows that

sup  x|Pw(x, f)<e for [x|>RV/T.

0<t<T

Since € > 0 is arbitrary, we obtain supy .,y w(x, t) - 0 as |x| - oo.
(i) From (3.3) and (3.4) it follows that

12 sup wix, 1)< sup [x[*w(x, )<e  for 0<r<(u/R)*.

e>p P>
Then we have supy,., w(x,7) > 0asz— 0. 1
For u e R we define 7, and X, by
T,={x=(,x)eR|x;=pu and X, = {xeR*|x;<pu},

respectively. For x € R? and p € R let x* be the reflection of x with respect to
T,, that is, x* = (2u — x1, x2). It is easy to see that if u >0,

x| > x| forxeX, and {x':xeZXZ,} ={x:x;>u} < {x:|x|>pu}.
By Lemma 3.2 we have the following:

Lemma 3.3. (1) For every T>0 we have supy.,.yw(x*, ) > 0 as
|x| = 00, x € X,
(ii) For every u>0 we have sup,.s w(x", 1) =0 as ¢ — 0.

LEmMA 3.4. Let u> 0. Define z(x, t) = w(x, t) — w(x*, t). Then

1z, 2Az+cy(x, )z in Xy x (0,00) and z=0 on T, x(0,00), (3.5)
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where

1
culx, 1) = % (—OC‘L’ + Ge*lx\z/(4t) / esl//(X/\/;)+(1—s)W(x“/\/;) dS). (3.6)

0
We have c,(x, t)<0 in R? x (0, 00).
Proof. By virtue of (3.2) we have
w, = Aw — (x—; W gt e /Al
Let wh(x, t) = w(x*, t). Then w" satisfies
wh = AwF — a—: Wh - gt WA g
Since [x*| > |x|, we obtain
Wi < Aw! — a—: Wh 4 g e A
Then we obtain tz,>Az 4 ¢,z, where ¢, is the function in (3.6). Since «
satisfies ot = gel’l>@ | we have teu(x, )< — ot + oeVlixw =0 for
(x, 1) € R? x (0,00).
LEMMA 3.5. Let u>0. We have w(x, t) =w(x*, ) for (x, t) € Z, x (0, 00).
Proof. Let z(x, ) = w(x, t) — w(x*, f). We show that z(x, £) >0 for (x, ¢) €
X, x (0,00). Assume to the contrary that there exists a (xo, #) € X, x (0, 00)
such that z(xg, #p) <0. Take 6 >0 so small that z(xo, tp) < — 0. By (ii) of
Lemma 3.3 we can take T € (0, #o) so that w(x*, Ty) <6 for x € X,. Then it
follows from w(x, t) > 0 that

z(x, Tp)= — 0 for x e X,. (3.7)

Fix T > ty. By (i) of Lemma 3.3 we can take R > |xy| so large that w(x*, )<
for [x|=R, x € £, t € [T, T]. Then we obtain

2x,)> -8 forxeX, K=R, te[h,T] (3.8)

Define O = {x e X, : |[x|<R}. Let I' be a parabolic boundary of O x (Tp, T),
that is,

I'= (0 x {Tv}) v (90 x (Tv, T)).
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From (3.5), (3.7), and (3.8) we have
1z 2 Az + c(x, )z in Q% (Ty, T) and zz—0 onlT.

Put Z = z 4 . Because c,(x, ) <0, it follows from the above inequality that
i zAZ+c(x,)Z in O x (T, T) and Z=20 onlT.

By the maximum principle [33] we have Z>0 on Q x [Tp, T], which implies
that

2, )= -6  on Qx [T, T (3.9)

On the other hand, (x¢, #) € O X (Ty, T) and z(xo, ty) < — J. This contradicts
(3.9). Hence, z(x, ) =0 for (x, 1) e X, x (0,00). 1

Proof of Proposition 3.1. From Lemma 3.5 we have w(x, ) =w(x*, 1) for
u>0and (x, 1) € £, x (0,00). From the continuity of w we have w(x, )=w
(x°, £) for (x, 1) € £y x (0,00). We can repeat the previous arguments for the
negative x;-direction to conclude that w(x, )<w(x’, ¢) for (x,¢) e Xy x
(0, 00). Hence w(x, f) is symmetric with respect to the plane x; = 0, which
implies that ¥ is symmetric with respect to the plane x; = 0. Since Eq. (1.8)
is invariant under the rotation, it follows that y is symmetric in every
direction. Therefore, y is radially symmetric with respect to the origin. 1§

Proof of Theorem 3. Let (¢,) be a nonnegative solution of (1.4) with
¢, W € L°(R%). Then ¢ is given by (1.7) for some constant ¢ >0 from
Proposition 2.1. It follows that ¢ >0 in R?, and ¢(x) = O(e "/4) as
|x| = oo. From the second equation of (1.4), y satisfies Eq. (1.8). By the
strong maximum principle, ¥ > 0 in R”.

Assume furthermore that y/(x) — 0 as |x] » oco. Then, by Proposition 3.1,
Y must be radially symmetric about the origin. Hence y = y/(r), r = |x],
satisfies the ordinary differential equation

1
v, + (_ +2 r) W, +oe " ed =0
ro 2
or

(refrz/“lﬁr)r +ore ™V = 0 for r>0.

From ,(0) = 0, we have

»
rerr_/4[//r = —0’/ Se(r_l)s_/“ew ds<0 fOr r>0.
0
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This implies that ,(r)<0 for r>0. From Lemma 3.1 we obtain y(r) =
O(e~™in{m1ir*/4) a5 — 00, This completes the proof of Theorem 3. 1§
4. STRUCTURE OF THE SOLUTIONS SET TO (1.8) WITH (1.9)
From Theorem 3 the solution  of (1.8) with (1.9) must be radially

symmetric about the origin. Then the study of the solutions is reduced to the
problem

1
U+ (; +3 ) Y, +oe i =0, >0,

‘//r(O) =0 and lim,. l//(r) =0,

4.1),

where ¢ > 0. In this section we investigate the structure of the pair (g, ) of a
parameter and a solution. Define the set € as

% = {(a,y):0>0 and ¢ € C*(0,00) N C'[0,00) is a solution of (4.1),}.
(4.2)

For (a,) € 4 we have y € C*[0,00) by Lemma 4.1.

PrOPOSITION 4.1.  The set € is written by one-parameter families
(a(s),Y(r;s)) on seR, that is, € = {(a(s),Y(r;s)):s € R}. The pairs (o(s),
W(r;s)) satisfy the following properties:

(i) s (a(s), ¥(-;5)) € (0,00) x C?[0,00) is continuous;
(i) lims,_o o(s) = 0 and lim,_, _, Y(-;5) = 0 in C?[0, 00);

(ii1) Timy o[- 8)llop0,n0) = Lm0 ¥(0;5) = 00.
First we show the following:

LemMa 4.1, Let € C*(0,00) n C'[0,00) be a solution to (4.1),. Then
€ C?[0,00) and sup,~ Yy (r) = Y(0). Moreover we have

342
sup |y,(r|<n'ee’®  and sup |¢,,(r)|<% o0 (4.3)

r=0 r=0

Proof. From (4.1),, we have (re™/*y,), + are™ V' /4e¥ =0 for r> 0.
From ,(0) = 0, it follows that

b=~ | el DO g (44)
0
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By using L’Hospital’s rule we obtain

. lﬁ,.(r) . o r (171)52/4 W(E) O'el//(o)
111% r :15% e+ J, se el = - 2

which implies e C?[0, 00). Since ¥,(r)<0 for >0 from (4.4), we have

sup,> o ¥(r) = ¥(0).
From (4.4) we have

1 [ en > Y(O)
|%®K<h£&r de)oeh®. 4.5)

We see that (1/r) [; ce €l de< I e=€/4 g¢ = 11/2. Then the left-hand side
of (4.3) holds.
From the equation in (4.1), we have

1 2 . 1
1= (1457 )0+ ae 0 < (L4 S o+ 0.

We note here that

1 7 \1 [ P 1 [ T [ P 1
S lp)s | e €har<s | acvl | e fitac =< 11 (46)
r 2 r Jo r2 0 2 0 2

It follows from (4.5) and (4.6) that

1 142
-+ : r) ()< R ae? .
ro 2 2

Therefore, we obtain the right-hand side of (4.3). This completes the proof
of Lemma 4.1. 1

To prove Proposition 4.1 we consider the initial value problem

1
Wyr + (_ + % l") Wy + e—1‘2/4ew = 07 r> 0’
r

w(0) =0 and w(0) = s,

4.7),
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where s € R. We denote by w(r;s) the solution of problem (4.7),. We easily
see that w(r;s) and w,(r;s) satisfy, respectively,

"1 2 ¢ > "
w(r;s) =s — / z e /A (/ ne T /4 gwlns) dn) dé (4.8)
0 0

and
1 o [T 200 e
wilrs) = — e/ / £ DI AME) g, (4.9)
0

Define /(7) as

01 } 14
I(7) = / z e /A (/ 11@“’1)’72/4 dn) dé.
0 0

From [25, Lemma 1] it follows that I(t) = (logt)/(r — 1) if t#1, I(z) = 1 if
7 = 1. We easily obtain w,(r;s) <0 for »> 0 and w(r;s)=s — €*I(t) for r=0
(see [25, Lemma 2]). Then lim,_, w(r;s) exists and is a finite value. Put
t(s) = lim,_, o, w(r; ).

LEMMA 4.2. Fors e R, let Yi(r;s) = w(r;s) — t(s). Then y(r;s) is a solution
to (4.1), with ¢ = €"9). Conversely, let y(r) be a solution of (4.1),. Then, for
some s € R, y(r) = y(r;s) and o = &'©.

Proof. It is clear that y(r;s) is a solution to (4.1), with ¢ = e'®.
Conversely, let () be a solution of (4.1),, and let w(r) = ¥(r) + log a. Then
w(r) satisfies (4.7), with s = (0) + log 6. By the uniqueness we obtain w(r)
=w(r;s) with s =y(0) + logg. We have lim,_ w(r;s) = lim,_,, w(r) =
logg. Then #(s) = logo, that is, ¢ = ¢¥. Hence we obtain y(r) = w(r) —
log 0 = w(r;s) — t(s), which implies y(r) = Y(r;s). 1

From [25, Lemma 5(ii)] it follows that, for s, 52 € R,

sup [w(r;s1) — w(r; s2)| < Cils1 — 2], (4.10)

r=0

where C; = exp(e™I(t)) and m = max{s;, s»}. Moreover, we have the
following:

LEmMA 4.3. Let s1, 57 € R, and let m = max{sy, s,}. Then we have

(i) Sup,=g [wi(r;51) — wo(r; 52)| < Calsy — s2], where Cy = n'/?e" Cy;
(i) sup,>g Wi (r;51) — Wi (7 52)| < Cslsp — 52,
where C3 = (3 + 21)e"C /2.
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Proof. From (4.9) we have
1 " . . .
W, (2 51) — Wi 52)| <; efrr2/4/ ée(rfl)§2/4|ew(€,31) _ ew(§,52)| dé.
0

Note that |e"©1) — 92| < e |w(t; 51) — w(t; s2)| with m = max{si, s»}. Then
from (4.10) we have [e"©) — "(52)| < Ce™|s; — s5|. Then it follows that

1 r 2
[w,-(r; 1) — w(r; $2)| < Cre™|s) — s3] <r/ e * /4 df). 4.11)
0

From (1/7) [J Ee €14 dé< [¥ e €/ dé = n'/2, we obtain (i).

From (4.7), we see that wy(r;s) = —(1/r + tr/2)wu(r;5) — e " /4,
Then we have

1
i 51) = w73 52)| < (; +3 r) P 51) = Wz s2)] + € s1) = Wi s2).

Then from (4.11) and (4.6) we obtain

+ 27

C1€m|S1 — 821

1 1
< LT ) (3 51) — o 52)| <
ro 2

Therefore we obtain (ii). 1
LEMMA 4.4. Let s1, 52 € R, and let m = max {s{, s»}. Then we have

(1) t(s1) — t(s2)| < Cilsy — s2l, where Ci = exp(e™I(1));
(i) limg, (s — #(s)) = 0;
(1) supgeg t(s)< — log (7).

Proof. Letting r — 00 in (4.10), we have (i). Since w(r;s)<s for r > 0, it
follows from (4.8) that

"1 22 ¢ 2
0<s — w(r;s)ée“'/ Ee‘“ /4 (/ e /4 dn) dé.
0 0

Letting » - 0o we have 0<s — #(s)<e'l(t) for s € R. This implies that (ii)
holds.

Since w(r;s) is decreasing in » > 0, it follows from (4.9) that

,
wy(r; s) < L g e a / g DE/A g,
r 0
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Then we obtain

d —w(r;s 1 —1r ' — 1
demng e 2/4/ £DEMA g
r r 0

Integrating the above on [0,00) we have e ™) — e >1(1) or e ™ >I(1).
This implies that (iii) holds. 1

Proof of Proposition 4.1. By Lemma 4.2 we have € = {(a(s),¥(;5)):
s e R}, where a(s) = € and Y(r;s) = w(r;s) — (s). We see that w(:;s) e
C?[0,00) and #(s) € R are continuous for s € R by Lemmas 4.3 and 4.4(i),
respectively. Thus (i) holds.

By Lemma 4.4(ii) we have a(s) = ¢® — 0 and y(0;5) =s —#(s) - 0 as
s — —o0. Then, by Lemma 4.1 we conclude that y(-;s) — 0 in C?[0, 00) as
s —» —o0. Thus (ii) holds.

From Lemma 4.1 we have [[/(:; $)|| ~j0,.0) = ¥(0;5). From Lemma 4.4(iii)
we have lim,_,« Y(0;5) = lim,_, oo (s — #(s)) = lim,_, (s + log I(t)) = co. Thus
(iii) holds. This completes the proof of Proposition 4.1. &

5. BLOWUP ANALYSIS TO SELF-SIMILAR SOLUTIONS
This section is concerned with case (iii) of Theorem 2. We study the
asymptotic behavior of sequences {(¢;, )} < & satisfying [[ll @2, = 00

as k - 0o. We show the following:

PROPOSITION 5.1.  Let (¢4, ;) € &, and let A = ||¢k||L1(R2)- Assume that
Wl g2y = 00 as k — oo (5.1

and that {1} is bounded. Then there exists a subsequence, which we call again
(Y, b1 and Iy, satisfying 2, — 8 as k — oo and

¢ (x)dx — 8mdy(dx) as k - o0 (5.2)

in the sense of measure, where d¢(dx) is Dirac’s delta function with the support
in origin.

In order to prove Proposition 5.1 we make use of Theorems A and 4 in
Section 1. We also need the following result by Brezis and Merle [2].
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THEOREM B (Brezis and Merle [2]). Assume {u;} is a sequence of
solutions of (1.11) such that

Wil <C I l@<C,  and / Ve ds <dn,
Q

Sfor some constant C >0, where u* = max {u,0}. Then {u} is bounded in
L. (Q).

Now we prepare several lemmas.

LEMMA 5.1.  Assume that f € C(R*) n LY(R?). Let we CA(R*) n L'(R?)
be a solution of

waf%me: f for x e R%. (5.3)

Then we have Wl ey + VWL Ry < C||f||L1(Rz)for some positive constant C.

Proof. Define W and F, respectively, as

X 1 X
Wx,t)=w|—— and Fx,H)=-f|—|.
w0=+(7) wo=1+(Z)
Then W and F satisfy
1w, f)||L|(R2) = tHWHLl(RZ) and IFC, t)”Ll(RZ) = Hf”L‘([RZ) (5.4

for #> 0. Furthermore, from (5.3) we have tW, = AW + F in R* x (0, 00).
Since W — 0 in L'(R?) as r — 0 from (5.4), we obtain

1 t
Wix, t) = - / =IDAR( 5) ds.
0
Then it follows from (5.4) that
1 [ t
t”W“Ll(RZ) =Iw(, t)||L1(R2)<; A [1F(, S)HLI(Rl) ds <; ”f”Ll([RZ)-

Therefore, we obtain ||w||L1(Rz)<r’1||f||L1(Rz).
Next we show VW g2y < CI Al g2y By the LP-L7 estimates (2.6) with
p=g¢g =1 we have

IVIAEC )l ey <C =) PHIFC 9llpgey = € =) gy
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Then we obtain
1 [ L
IV W, Ol ey < /0 IVl OARC, )|l g2y ds < CE P 1l ge)-

By the definition of W it follows that [[VIW(., D)l g2 =12 VWL g2)-
Therefore, we conclude that [|[Vwl|; g2 <CIlfll,iRe)- This completes the
proof of Lemma 5.1. 1

Let (¢, ) € &, and let A = (|l ge)- Then (4, ¥y) solves (1.10), that
18,

A + % x- Vi, + ike"|2/4e‘”// e"y‘z/“e‘/’k(”dy =0 for x e R%. (5.5)
R

2

From Theorem 3, we have e L(R%), VY, =Y, (r), r=1|x|, and oy, /or
<0 for r>0. Assume that (5.1) holds. Then ||1pk||Lx(Rz) =;(0) - o0 as
k — o0o. We always use B, to denote a ball of radius r centered at origin, that
is, B, = {x e R?: |x| <r}.

LEMMA 5.2. (i) We have ||llpi g2y + IVl ge) = O1) as k — oo.
(i1) For all r > 0 we have sup, ||lpk||Lm(R2\Br) <o00.

Proof. (i) Put

frlx) = }vkeIx|2/4e'//k(x)//[Rz 67|Y|2/4e¢k()’) .
Then f; € C2(R*) n L'(R?). We have y, € L'(R?) and
—Ayy — x Vi = fi for x € R?.

By Lemma 5.1 we obtain [l gy + IVl g2y < Cllfillpi g2y for some
constant C > 0. Since I fillp g2y = Ax = O(1) and as k — o0, the assertion of
(i) holds.

(iii)) Assume to the contrary that sup, ”‘//k”L‘(RzB )y =00 for some ry >
0. Since Y, (r) is decreasing in » > 0, there exists a subsequence which we call
again {y;}, such that inf e, (y) > coask — oo. Then |||l g2 — 00 as
k — oo, which contradicts assertion (i). 1

Take R > 0. Let g, be a unique solution of the problem

—Agr = %x -V, in Bg, gr =0 on OBg.
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LEMMA 5.3. We  have  ||gill~@p,y = O(1)  and  ||Vgillp~s,) = O(1)
as k — o0.

Proof. We have gy = gr(r), r = |x|, since Y, =y, (r). We see that gi(r)
satisfies

T
—(rg) =35 0<r<R,  gi(0) = gu(R) =0,
where ' = d/dr. We will show that

lgkllexor = O, llgill~pr = O(1)  as k — oc. (5.6)

By integrating the equation above, we obtain
/ _ T : 2.1
—rg,(r) = 5 s7Y(s) ds.
0
Then it follows that
’ T "o T (7 /
g, ()| <= / s () ds<= / sl (s)| ds for 0<r<R.
2}" 0 2 0

Thus we obtain

/ T R !

gl g0,z S5 ; sy (s)l ds. (5.7)
We note that [* g}(s) ds = gi(R) — gi(r) = —g(r). Then
R
001 [ GOl <RIglg  for 0<r<R
From (5.7) we obtain
R [R
oo <G [ s (58)
By Lemma 5.2(i) we have
R
2 /0 SO ds = [Vlla0 < IVl = O)  as k - oo,

From (5.7) and (5.8) we obtain (5.6). This completes the proof of
Lemma 5.3. 1
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Now define vy, as
uk(x) = Y (x) — gi(x) — log ( / e /A dy)- (5.9)
[RZ

It follows from (5.5) that

—Avgp = —Ay, — % x- Vi = Je P Ao e for x e Bg.  (5.10)
Then we have

—Avy = Vi(x)e™ in Bpg, (5.11)

where Vi(x) = e "/4e% . Since {J} is bounded and by Lemma 5.3, we
have 0 <V (x) < Cp and ||V V|1~ (g, < C1 for some constants Cy and C;. Since
vy 1s radial symmetry and satisfies —Av, >0 in Bg, vi(r) is nonincreasing in
r € (0, R) by the maximum principle.

LEmMMA 5.4. There exists a subsequence, which we call again {v}, such
that vi(0) — 00 and vi(x) — —o0 uniformly on compact subset of Bg\{0} as
k — 00. Moreover,

/ Ve dx — 8n as k - oo (5.12)
Br
and
/ 2 e MPHAID dy S 00 as k — oo, (5.13)
R

Proof. We see that

/ ) gy < eloliviay / 1) gy / / e WO gy <
B Br R?

for some constant C > 0. Hence, by applying Theorem A, there exists a
subsequence (still denoted by {v;}) satisfying one of the alternatives (i)—(iii)
in Theorem A.

Assume that the first alternative (i) holds. Since {v;} and {g;} are
bounded in L;° (Bg) and ¥,(0) —» co as k — o0, it follows from (5.9) that

loc

log ( / eI /Agh» dY> = ,(0) — gi(0) — 1(0) > 00 as k — oo,
R2
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Let yy € Bg\{0}. Then from (5.9) we have V() = 0o as k — oco. This
contradicts Lemma 5.2(ii).

Assume that the second alternative (ii) holds. Since v(r) is nonincreasing
in », we have vy - —oo uniformly on Bg. Then

/ e dx — 0 as k — oo. (5.14)
Br

Put
Wi =Y — G and Wi(x) = Vk(x)// o P /4 0 dy.
RZ

Then we have —Aw;, = W;e™ in Bg. Because ¥, >0, we have
Wi(x) < Vk(x)// e—|y|2/4 dy<C
IRZ
for some constant C>0. We find that |[willz1 g, < W ello sy + 9kl @) =
O(1) as k - 0o by Lemmas 5.2 and 5.3. It follows from (5.14) that
Wi(y)e™ ) dy = / Ve(»)e* D dy < Co/ eV dy - 0 as k — oo.

Bg Bg Bg

Hence, by applying Theorem B we obtain ||w,j’||Lx(Br) = O(1) as k — o0. This
contradicts wi(0) = ¥;(0) — gx(0) —» 0o as k — 0.

Therefore, the third alternative (iii) must hold. By Lemma 5.2(ii) we have
the blowup set 4 = {0}. Then v;(0) - oo and vx(x) - —oo uniformly on
compact subset of Bg\ {0}. Moreover,

/ Ve dx — o as k - oo (5.15)
Bg

for some a«>4n. Since vy is radial symmetry, we have maxgg, vy — mingg, vk
= 0. By applying Theorem 4, we obtain « = 8z in (5.15).
Let xo € Bz\{0}. From v;(xo) - —00 as k — co we have

log (/ e PE/Ah) dy) = Y (x0) — gr(xo) — vklxg) - 00 as k — oo,
RZ

which implies that (5.13) holds. 1

Proof of Proposition 5.1. Let {v;} be a subsequence obtained in Lemma
5.4. First we verify that, for all » >0,

/[REZ\B Ve dy — 0 as k — oo. (5.16)
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From Lemma 5.2(ii) there exists a constant M = M(r) > 0 such that |}, (x)|
<M for |x|=r. Since

I Jrrg e PO dy jpeM Jr e /4 gy
g < g ’
fRz e*|y|2/4e‘//k(y) dy fRz e*mz/“e‘l/k(}’) dy

/ Ve(»)e™ ) dy =
R*\B,

it follows from (5.13) that (5.16) holds.
From (5.10), (5.11), and the second equation of (1.4) we have

Vie™ = —Avy = =AY, — % x- Vi, = ¢y
From (5.12) and (5.16) we have
2 = bl ey = / Vie™ dy
RZ

:/ Vke”"’dy—&—/ Ve dy — 8n as k — o0o.
Br R?\Bg

Thus 4+ — 8m as k — o0. Since {¢;} is bounded in L'(R?), we may extract a
subsequence, which we call again {¢,}, such that ¢, converges in the sense
of measures on R’ to some nonnegative bounded measure p, i.c.

L oweonas— [ na

for every neC(R?) with compact support. From (5.16) we have
Jws, Px(x)dx — 0 as k — oo for every r>0. Then ¢; — 0 in Ll (R*\{0})
and hence p is supported on {0}. Thus we obtain du = ady(dx) with o = 87,
which implies that (5.2) holds. This completes the proof of Proposition 5.1. 1

6. L'-NORMS OF SELF-SIMILAR SOLUTIONS

This section is concerned with case (iv) of Theorem 2 and we investigate
the upper bounds of 91l we) for (o, ) € &

ProrosITION 6.1.  Let (¢, ) € &. Then
1,1 2y <max{d o, 4 e}
Moreover, if 0<t<1/2 then |||, g2 <87

We prove Proposition 6.1, following the idea of Biler [1]. By Theorem 1
the solution (¢, ¥) € & must be radially symmetric about the origin. Define
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® and W, respectively, as
o) = 5 / H/Dd and W =3 / Yo d.
0 0

First we show the following:

LEmMMA 6.1. We have ||¢)||L1(Rz):2nlimﬁoo<D(s). Moreover, (®,%¥)
solves

(6.1)

1 _
O 1@ - 20 =0,
459" + sV — 1P+ D=0

for s> 0, where ' = d/ds.

Proof. We see that

o0 1 o0
Joay=2x [“rowrar=2a(3 [ oc/nar),

which implies ||¢||L1(Rz) = 2x lim_, o, D(s).
Define u and v as

u(r, f) = %q& (&) and  o(r, 1) = w(&)

respectively. Put U and V as

”

Ur,t) = /Or su(s, t) ds and V(r, 1) = /0 sv(s, t) ds.

Then, by the change of variables, we obtain

2

r/t r/t
U, t):% /0 6(/s)ds  and  V(r t):é /0 W(\/5) ds.
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By the definition of ¥ and ® we have

2

U(r, f) = cD(r?) and  V(r, 1) = (¥ (?) (6.2)

Now we verify that (U, V) satisfies

{ U = r(r'0), — U7, 63)

W =r(r'V), + U
for (r, 1) € [0, 00) x (0, 00). Since (u, v) solves (1.1), we see that
ru, = (ru,), — rupv, — u(rv,), and o, = (rvy), + ru.

Then we obtain

»

/0" su (s, t)ds = ru, — ruv, and 7 /Or svi(s, 1) ds = rv, + /0 su(s, t) ds.
Thus we obtain (6.3). By virtue of (6.2) we have (6.1). 1
LEMMA 6.2.  We have
_sW(s) = % e/t /0 LYy di >0 for s> 0, (6.4)

Proof. Put W(s) = —4s¥"(s). From the second equation of (6.1), we
have

D = (—4sP"Y — sV = W' +£ W

Since sW"(s) = \/sy'(y/s)/4, we have W(0)=lim,_ W(s) = 0. Then we
obtain

s
W(s) = e ™/* / /4 (1) dt.
0

Since @'(s) = ¢(\/§)/ 2 >0, we obtain the assertion. 1§

LEMMA 6.3.  We have s¥”(s) — 0 as s — oo and, for s >0,

s t .
% 0 T]dl‘<S lf0<'L'<1,
0<W¥(s) — s¥'(s)< € .

Z Omdt if‘T>1.
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Proof. From the first equation of (6.1) and (6.4) we have

1 1 s
O 4~ @+ — e/ / /4 (1) dt = 0.
4 2S 0

We note that @'(s) = (]5(\/5)/2 > (0. Then, for the case 0<t<1, we have
O+l + 1 oy / A (1) di <0,
4 2s 0
that is,
) 1 s
(e/4'y +5- @’ / /4 (1) d < 0. (6.5)
S 0

For the case T > 1 we have

1 1 s
(DN 4= (Dl +— efrs/4q)// 61/4(D/(t) d[<0,

4 2S 0
that is,
1 S
(4D + % eU=/4! / 4/ (1) dr <0. (6.6)
S 0

First we consider the case 0 <t < 1. Define Z as
Z(s) = / /A (1) dt.
0

From (6.5) we have
sZ" +1e™M7'7<0. (6.7)

By integrating the above on [0, s] we obtain

1 N
s7 —Z+-e w2 L / e " 72(1) di <0.
4 16 J,

Then we have sZ’ — Z + e ™/*7%/4<0. Dividing the inequality by Z* it
follows that (s/Z)' =e™/* /4. Therefore we obtain

Z(s)< 7 s

T— (6.8)
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From (6.4) we have —s¥" = e"®/*Z(s)/4 > 0. Then

0< —sP'(s)< <1 for s> 0.

TS
4(ers/4 _ 1)

This implies s¥”(s) — 0 as s — oo. By integrating the above on [0, s] we
obtain the assertion.
Next we consider the case T > 1. Define Z as

Z(s) = /0 ¢4 (1) dt.

Then from (6.6) we have (6.7). By the similar argument above we obtain
(6.8). We see that

e /4 / A (¢ dt — / e Y (1) dr < / e SR (1) di = e Z(s).
0 0 0

Then from (6.4) and (6.8) we have

T8 < T8
4(es/4 _ e(l—r)s/4) \4(@;/4 _ 1)’

1
0< — s¥"(s) <3 e Z(s)<

Therefore, s¥”(s) — 0 as s — co. By integrating the above we obtain the
assertion. 1

Proof of Proposition 6.1. First we consider the case 0 <t<1. From the
second equation of (6.1) we have ®(s) = —4s¥"(s) + (¥(s) — s¥'(s)). From
Lemma 6.3 we obtain

,52 o0 s
lim @(s) = lim t(‘P(s) — s¥'(s)) <— / — s
§—00 5§00 4 0 ews/4 — 1

By the change of variable z = 7s/4 it follows that

%0 2
lim q)(s)<4/ f =
0 e

§—00 — 1 3

Since ||@]], ®) =27 lim;_,,®(s) from Lemma 6.1, we obtain the assertion.
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Next we consider the case t > 1. By a similar argument we obtain

‘L'2 0 s o0 z
lim O(s)<— / ———ds = 412/ dz = = n*1°,
§—00 4 0 es/4 _ 1 0 ez

which implies the assertion.
Finally, we consider the case 0<t<1/2. The change of variables

t = (logs)/2, k(1) = O(s), (1) = 25@'(s), m(t) = ¥(s),
n(t) = 2s\¥'(s)

transforms (6.1) into

k=¢, m=n,
2

. m e
t=12—-k —— —— ¢
( +m 3 2),
™m

f1=2n+e2‘(7+‘cm—k),

where * = d/dt. Hence we have

m e

d , , K
(k=27 +20 =2 (‘z:m . 7) — 4sD/(s) (‘c(‘P(s) — sW(s)) — 5)

<0
by Lemma 6.3. Then (k(f) —2)* + 2£(7) is decreasing for > —oco. We
note that lim,,_ . k(f) = ®(0) =0 and lim,,_. £(f) = lim,_q 2s®'(s) =
lim,_,9 s¢(y/s) = 0. Then we have

(k(f) — 2)* + 20()<4  for t> —o0.

Since £(1) = 25®/(s) = sp(1/5) > 0 and lim,,, ((k(1) — 2)* + 26(1) <4, we
obtain lim,,, k(1) <4. Thus lim,_,, ®(s) <4, which implies [|¢]l,1 g, <Sm. 1

7. PROOF OF THEOREM 2

By Theorem 3 it is shown that (¢, ) € & if and only if ¥ = y(r), r = |y,
solves (4.1), for some ¢ >0 and ¢ is given by (1.7). By Proposition 4.1, the
set € defined by (4.2) is written by one-parameter families (a(s), ¥ (r;s)) on
seR. Let

(s 5) = a(s)e "4V, (7.1)
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Then & is written by one-parameter families (¢(r, s), Y(r, s)) on s € R. From
Proposition 4.1(i) and (ii) and (7.1) we have s+ (¢(-;5), Y(+; 5)) € C?[0, 00) x
C?[0, o0) is continuous and (¢(-; ), Y(-;s)) = (0,0) in C?[0, c0) x C?[0, 00) as
s —> —o0. We see that

As)=2m /% ro(r;s) dr. (7.2)
0

Then A(s) is continuous and satisfies A(s) — 0 as s - —o0. Hence, (i) and (ii)
hold. By Proposition 6.1 we obtain (iv).

We have [[J/(-, $)||~0,00) = (0, 5) —> 00 as's — oo from (iii) of Proposition
4.1. Let {s;} be a sequence satisfying sy — 00 as k — 00. We note that {;} is
bounded by Proposition 6.1. By applying Proposition 5.1, there exists a
subsequence (still denoted by {sx}) such that A(sy) — 8w and ¢, (x|, sx) dx —
8mdy(dx) as k — oo. Therefore, (iii) holds. This completes the proof of
Theorem 2. 1

APPENDIX A. EXISTENCE OF SOLUTIONS TO (1.8) WITH (1.9)

The following theorem refines the previous results [26, Theorem 1; 25,
Theorems 1 and 2; and 27, Theorem 1.1].

THEOREM A.l. For any © > 0 there exists ¢* > 0 such that

(i) if ¢ > ¢, then (1.8) with (1.9) has no solution;

(ii) if ¢ = ¢*, then (1.8) with (1.9) has at least one solution;

(iii) if 0<o <™, then (1.8) with (1.9) has at least two distinct solutions
Vo, Yo satisfying limg_o Y,(0) = 0 and lim,_,¢ Y,(0) = oo.

Proof. By Theorem 1 problem (1.8) with (1.9) is reduced to
problem (4.1),. By Proposition 4.1 the set ¥ defined by (4.2) is written by
one-parameter families (a(s), Y(r;s)) on s € R. From (7.1) and (7.2) we find
that

a(s) = ),(s)/ (Zn/k re "4l dr) = i(s)// eI /Ah ks dy.
0 R?

From (5.13) in Lemma 5.4 we have

/ e PRI gy 0o as s — oo,
IRZ
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Then o(s) — 0 as s — 00. Therefore, from Proposition 4.1(ii), o(s) satisfies

q_l}girloc a(s) = 0.

Let ¢* = sup,g o(s). Then there exists s* € R such that ¢* = o(s*). By
Proposition 4.1 it is shown that (4.1), has a solution if and only if ¢ = a(s)
for some s € R. Therefore, (4.1), has no solution, if ¢ > ¢*, and (4.1), has at
least one solution, if ¢ = ¢*. If g € (0, 6*), by the mean value theorem, there
exists sy, 52 € R, 51 <s*<s, such that ¢ = a(s;) = a(sp). Then (4.1), has at
least two solutions v, and ). We note that lim,_,  ¥,,(0) = 0 and
lim;, « ¥ 451 (0) = 00 by Proposition 4.1(ii) and (iii). Since lim;, 4+~ o(s) = 0,
we can_choose solutions ¥, and , satisfying lim,_o/s(0) =0 and
lim,_,0 ¥4(0) = oo. This completes the proof of Theorem A.1. 1

APPENDIX B. PROOF OF THEOREM 4
Define A € CX(Q) N C(Q) by
Ahy =0 in Q and hy = u, on 0Q.
We may assume that {0} € Q without loss of generality.

LemMA B.1.  Let r>0 satisfying B, = Q. Then |[Vhl|~@s, = O(1) as
k — oo.

Proof. By the maximum principle, we have maxg sy —ming Ay <
maxpq hy — mingg A;. Then from (1.15) we obtain

max A; —min ;<G
Q )
with a positive constant Cs. Let Ag(x) = h(x) — ming /. Then hy satisfies

Al =0 in Q, 0<h <C.

Since 6ﬁk/8xi, i = 1,2, is harmonic, by the mean value theorem [11] and
Gauss—Green theorem, we obtain

o 1 ohy 1 .
a—m—m/Bra—x’ldx—m\/ﬁ\Brhk}’hdS
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fori = 1,2, where n = (n1, ny) is the outer normal unit vector on 0B,. Then it
follows that

o
ox i

1 . 2C
< / | ds <= i=1,2.
OB,

S -
Since |Vhi| = [V, we conclude that VAl <@,y = O1) as k —» co. 1
Let wi(x) = up(x) — hy(x) in Q. Then
—Awp = W(x)e™  in Q, wy =0 on 0Q,

where Wi (x) = ¢*W7V;(x). Let G(x, y) be Green’s function of —A in Q with
respect to the zero boundary conditions

—AG(x,y) =0y, x€Q, G(x,y) =0, xeodQ.
Then we have
Vi) = [ V.G e dy xeQ (B.1)
Q
Put zx(x) = W (x)e"®.
LEMMA B.2.  For y € C3(Q) we have
— / (AY)zy dx = / (V(log Wy) - Vr)zy dx
Q o)
1
w5 [ ] sememmad. ®2)
QxQ
where p(x, y) = V,.G(x, y) - VY(x) + V,G(x, y) - V().
Proof. We see that
Vzi = (VW)e™ + Wie" Vwy = zV(log W) + z; Vwy.

Then, for € C}(Q), we obtain

— / (AY)zy dx = /(V(log W) - V)zi dx + /(Vwk -V)zpdx. (B.3)
Q Q Q
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From (B.1) and Fubini’s theorem, we find that
0 Vit
~ [ | 5.6 Vona ) drdy. (B.4)
By changing the role of x and y in (B.4) we obtain
[ @w-vsomzmar= [ [ 9,660 Vpomawe) .

Hence, we obtain
1
/ (Vo Ve ds = 5 / / (e, @ze(y) d dy.
Q QxQ

From (B.3) we obtain (B.2). 1

Without loss of generality, we may assume that the blowup set % contains
{0}, and that there exists a R>0 satisfying {x:0<[x|<R} "% = 0.
Therefore, {u;} satisfies

max u; — 00 and max u; — —00 as k - oo (B.5)
By BR\B,

for all » € (0, R). Moreover,
Ve dx — ado(dx) (B.6)
on By in the sense of measure for some o> 4n.

LemMA B.3.  There exist constants ry € (0,R) and a > 0 such that Vi(x)=a
forxeB

.
Proof. First we show lim inf_, o, V;(0) > 0. Assume to the contrary that
lim inf V4(0) = 0.
k—o00
From (1.12) and (1.14), by taking a subsequence in {V;} (still denoted by

{Vi}), there exists ¥y € C(Q) such that ¥} — ¥, in C(Bg) and ¥,(0) = 0.
Let xx € Br, ug(xx) = max, g u(x). It follows from (B.5) that

xp — 0 and ug(x;) — 00. (B.7)
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Let 6; = e “)/2 Tt follows from (B.7) that §; — 0. For |x|<R/(25;), we
consider the sequence of functions v(x) = ug(dxx + x;) + 21og ;. Then vy
satisfies

—Avi(x) = Vi(dpx + xk)ev"(x) for x e BR/(z(S/;)-

Moreover, we have v;(0) = 0, v(x)<0 in Bg/qs5,), and

/ e gy < / 4 gy < C
Brsy) Bg

for some positive constant C.

For each r > 0 the sequence {v;} is well defined in B, for & large enough. It
follows from Theorem A that only alternative (i) may occur, hence {v;} is
bounded in L} (B,) and, by standard elliptic estimates, also in Cﬁ;é‘(B,), 0
<a< 1. Therefore, a subsequence in {v;} converges in CIZOC(B,). We may do
the same arguments for a sequence r; — 0o, and pass to a diagonal
subsequence (which we will still denote as {v;}) converging in CIZOC(IRZ) to v

which satisfies —Av = 75(0)e’ in R>. Moreover, v(0) = 0, v<0 in R?, and
/ e’ dx<C. (B.8)
R?

Since ¥y(0) = 0, v is harmonic in R*. Then v is a constant. This contradicts
(B.8). Thus we conclude that lim infy_,, V;(0) > 0.

From (1.14) there exist constants 7y € (0,R) and a > 0 satisfying V;(x)=>a
forxeB,. 1

Proof of Theorem 4. We will show that « = 87 in (B.6). Take ¢ € C3(Bg)
sothat 0<¢ <1 and ¢ = 1 for x € B,,, where ry is a constant in Lemma B.3.
Let y(x) = [x]*¢(x). Then we have y € C3(Br). Moreover, it follows that
AY(x) = 4 and Vi(x) = 2x for x € B,,.

We recall that W;(x) = ¢*®¥,(x). Then we have

VW, V'V
log W3) = —~ — Vh, 4+ —~.
V(log W) m Vh, + 7

From Lemmas B.1 and B.3 and (1.12) we obtain |V log W(x)|< C for x € B,,
with some constant C. Then we have

IV (x) - V(log Wi(x))| <2Clx|  for x € By,. (B.9)
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We see that G(x,y) = —(1/2n)log|x — y| 4+ K(x, y), where K(x,y) is a

smooth function on Q x Q. Then p(x, y) defined in Lemma B.2 satisfies

1
plx,y) = - +2x -V K(x,y) +2y-V,K(x, ) for x € B,,. (B.10)

We see that zy(x) = Wi (x)e"* ™ = Vi (x)e™™. From (B.6) we have z;(x) dx —

ado(dx) on By in the sense of measure. Furthermore, we have

2 (W)zk(y) dx dy — 2*6,—o(dx) ® ,—o(dy) = 0*S(x,y)=(0.0)(dx dy)

on By in the sense of measure. Letting £ — oo in (B.2), from (B.9) and
(B.10), we have —d4na = —o?/(2n). From o>4n, we obtain o« = 8x. This
completes the proof of Theorem 4. 1

1

13.
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