JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:262 |
Derivation of homogenized Euler Lagrange equations for von Karman rods | |
Article | |
Bukal, Mario1  Pawelczyk, Matthaeus2  Velcic, Igor1  | |
[1] Univ Zagreb, Fac Elect Engn & Comp, Unska 3, Zagreb 10000, Croatia | |
[2] Tech Univ Dresden, Inst Geometrie, Fachrichtung Math, Zellerscher Weg 12-14, D-01069 Dresden, Germany | |
关键词: Elasticity; Homogenization; Dimension reduction; Convergence of equilibria; | |
DOI : 10.1016/j.jde.2017.02.009 | |
来源: Elsevier | |
【 摘 要 】
In this paper we study the effects of simultaneous homogenization and dimension reduction in the context of convergence of stationary points for thin nonhomogeneous rods under the assumption of the von Karman scaling. Assuming stationarity conditions for a sequence of deformations close to a rigid body motion, we prove that the corresponding sequences of scaled displacements and twist functions converge to a limit point, which is the stationary point of the homogenized von Karman rod model. The analogous result holds true for the von Karman plate model. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2017_02_009.pdf | 1530KB | download |