期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:262
Derivation of homogenized Euler Lagrange equations for von Karman rods
Article
Bukal, Mario1  Pawelczyk, Matthaeus2  Velcic, Igor1 
[1] Univ Zagreb, Fac Elect Engn & Comp, Unska 3, Zagreb 10000, Croatia
[2] Tech Univ Dresden, Inst Geometrie, Fachrichtung Math, Zellerscher Weg 12-14, D-01069 Dresden, Germany
关键词: Elasticity;    Homogenization;    Dimension reduction;    Convergence of equilibria;   
DOI  :  10.1016/j.jde.2017.02.009
来源: Elsevier
PDF
【 摘 要 】

In this paper we study the effects of simultaneous homogenization and dimension reduction in the context of convergence of stationary points for thin nonhomogeneous rods under the assumption of the von Karman scaling. Assuming stationarity conditions for a sequence of deformations close to a rigid body motion, we prove that the corresponding sequences of scaled displacements and twist functions converge to a limit point, which is the stationary point of the homogenized von Karman rod model. The analogous result holds true for the von Karman plate model. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_02_009.pdf 1530KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次