期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:255
Well-posedness of stochastic partial differential equations with Lyapunov condition
Article
Liu, Wei1,2 
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词: Local monotonicity;    Lyapunov condition;    Navier-Stokes equation;    Mean curvature flow;    p-Laplace equation;    Fast diffusion equation;   
DOI  :  10.1016/j.jde.2013.04.021
来源: Elsevier
PDF
【 摘 要 】

In this paper we show the existence and uniqueness of strong solutions for a large class of SPDE where the coefficients satisfy the local monotonicity and Lyapunov condition (one-sided linear growth condition). Moreover, some new invariance result and stronger regularity estimate are also established for the solutions. As examples, the main result is applied to stochastic tamed 3D Navier-Stokes equations, stochastic generalized curve shortening flow, singular stochastic p-Laplace equations, stochastic fast diffusion equations, stochastic Burgers type equations and stochastic reaction-diffusion equations. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2013_04_021.pdf 278KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次