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1. Introduction

The main aim of this work is to prove the existence and uniqueness of strong solutions for a large
class of stochastic partial differential equations (SPDE) using the variational approach. The variational
framework has been used intensively for studying PDE and SPDE where the coefficients satisfying
the classical monotonicity and coercivity conditions. In the case of deterministic equations, the the-
ory of monotone operators started from the substantial work of Minty [25,26], then it was studied
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systematically by Browder [5,6] in order to obtain the existence of solutions for quasilinear elliptic
and parabolic partial differential equations. We refer to the monographs [4,19,36,40] for more exten-
sive exposition and references. Concerning the stochastic equations, it was first investigated in the
seminal works of Pardoux [27] and Krylov and Rozovskii [18], where they adapted the monotonicity
tricks to prove the existence and uniqueness of solutions for a class of semilinear and quasilinear
SPDE. Later on, this result has been further generalized by many authors, see e.g. Gyöngy [14], Ren et
al. [29], Röckner and Wang [30], Zhang [41] (and the references therein). Recently, this framework has
been substantially extended by Röckner and the author in [23] for more general class of SPDE with
coefficients satisfying the coercivity and local monotonicity conditions, hence many more fundamen-
tal examples such as stochastic Burgers type equations and stochastic 2D Navier–Stokes equations can
be included into this framework now (see [1,7,12,22,24] for more examples).

However, the standard coercivity condition has been assumed in all the literatures mentioned
above, which excludes some interesting examples. In this paper we will show the existence and
uniqueness of strong solutions for a class of SPDE where the coefficients satisfy a specific type
Lyapunov condition (we call it “one-sided linear growth” here) instead of the classical coercivity con-
dition. Based on [23], we also use the local monotonicity condition here to replace the standard
monotonicity condition. One motivating example is the stochastic tamed 3D Navier–Stokes equation,
which is a regularized version of classical stochastic 3D Navier–Stokes equation and has been investi-
gated by Röckner and Zhang [31,32] (see also [33,34]). One interesting feature of this equation is that
one cannot find one appropriate Gelfand triple such that both the (local) monotonicity and coercivity
conditions hold at the same time. Therefore, here we use a modified (coercivity) condition to over-
come this difficulty. This Lyapunov type condition (see (H3) below) is inspired by the recent work of
Es-sarhir and von Renesse [8](see also [9]), where they introduce this type of condition to study the
stochastic curve shortening flow in the plane.

The main result (see Theorem 1.1) generalize the recent existence and uniqueness theorem in [8]
(see Remark 1.2), hence it can be applied to the equation of stochastic curve shortening flow with
some locally monotone perturbations in the drift (see Section 3.2). In fact, we apply the main re-
sult to a general divergence form of SPDE in Section 3.2, which also covers the example of singular
stochastic p-Laplace equations. Comparing with the classical result (cf. [18,28]) on singular stochastic
p-Laplace equations, we also obtain a new invariance result in a smaller state space for the solu-
tions of a class of SPDE and also establish a much stronger regularity estimate for the solution, which
could be used to substantially improve the recent result obtained in [21]. This line of investigation
will be further continued in future works. Here we need to emphasize that we only consider nuclear
noise in our framework instead of white noise, the reason is that we want to use the variational ap-
proach to study a very general class of SPDE and we want to establish stronger regularity estimates
for the solution. The main result of this paper can be also applied to stochastic tamed 3D Navier–
Stokes equations to establish the existence and uniqueness result. Unlike in [31,32,34], here we can
use a different Gelfand triple to obtain the existence and uniqueness of solutions for stochastic tamed
3D Navier–Stokes equations and the proof is significantly simplified comparing with some previous
works. Moreover, we should remark that the main result is also applicable to stochastic fast diffu-
sion equations, stochastic Burgers type equations and stochastic reaction–diffusion equations having
any (odd) degree polynomial perturbation with negative leading coefficient in the drift, which avoid
the standard linear growth condition assumed in [18,27,28] and certain polynomial growth condition
in [23]. We refer to Section 3 for more details.

Now we introduce the variational framework in details. Let (H, 〈·, ·〉H ) be a separable Hilbert space
and identified with its dual space H∗ by the Riesz isomorphism, and let (V , 〈·, ·〉V ) be a Hilbert space
such that it is continuously and densely embedded into H . Then we have the following Gelfand triple

V ⊂ H ≡ H∗ ⊂ V ∗,

where V ∗ is the dual space of V (w.r.t. 〈·, ·〉H ).
If V ∗ 〈·, ·〉V denotes the dualization between V and V ∗ , then it follows that

V ∗ 〈u, v〉V = 〈u, v〉H , u ∈ H, v ∈ V .
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Let {Wt}t�0 be a cylindrical Wiener process on a separable Hilbert space (U , 〈·, ·〉U ) w.r.t. a
complete filtered probability space (Ω,F ,Ft ,P) and (L2(U ; V ),‖ ·‖2) denote the space of all Hilbert–
Schmidt operators from U to V . We consider the following stochastic evolution equation

dXt = A(t, Xt)dt + B(t, Xt)dWt, (1.1)

where for some fixed time T ,

A : [0, T ] × V × Ω → V ∗, B : [0, T ] × V × Ω → L2(U ; V )

are progressively measurable, i.e. for every t ∈ [0, T ], these maps restricted to [0, t] × V × Ω are
B([0, t]) ⊗B(V ) ⊗Ft -measurable (where B denotes the corresponding Borel σ -algebra).

We need to assume a further assumption concerning the Gelfand triple:

(H0) There exists an orthogonal set {e1, e2, . . .} in (V , 〈·, ·〉V ) such that it constitute an orthonormal
basis of (H, 〈·, ·〉H ).

The precise conditions on the coefficients of (1.1) can be formulated as follows:
Suppose there exist constants α � 2, K and a positive adapted process f such that the following

conditions hold for all v, v1, v2 ∈ V and (t,ω) ∈ [0, T ] × Ω .

(H1) (Hemicontinuity) The map s �→ V ∗ 〈A(t, v1 + sv2), v〉V is continuous on R.
(H2) (Local monotonicity) There exists a locally bounded measurable function ρ : V → [0,+∞) such

that

2V ∗
〈
A(t, v1) − A(t, v2), v1 − v2

〉
V + ∥∥B(t, v1) − B(t, v2)

∥∥2
L2(U ;H)

�
(

K + ρ(v2)
)‖v1 − v2‖2

H .

(H3) (One-sided linear growth) For any n ∈ N, the operator A maps Hn := span{e1, . . . , en} into V
such that 〈

A(t, v), v
〉
V � ft + K‖v‖2

V , v ∈ Hn.

(H4) (Growth)

∥∥A(t, v)
∥∥

V ∗ � f
α−1
α

t + K‖v‖α−1
V ,∥∥B(t, v)

∥∥2
2 � K

(
ft + ‖v‖2

V

)
,

ρ(v) � K
(
1 + ‖v‖α

V

)
.

Remark 1.1. Recall that ‖ · ‖2 denotes the norm ‖ · ‖L2(U ;V ) , hence there exists a constant C such that

‖ · ‖L2(U ;H) � C‖ · ‖2.

Definition 1.1 (Solution of SPDE). A continuous H-valued (Ft)-adapted process {Xt}t∈[0,T ] is called a
solution of (1.1), if for its dt × P-equivalent class X̄ we have

X̄ ∈ Lα
([0, T ] × Ω,dt × P; V

)
and P-a.s.,

Xt = X0 +
t∫

A(s, X̄s)ds +
t∫

B(s, X̄s)dW s, t ∈ [0, T ].

0 0
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Now we can state the main result of this work.

Theorem 1.1. Suppose (H0)–(H5) hold for f ∈ L
α
2 ([0, T ] × Ω;dt × P). Then for any X0 ∈ Lα(Ω,F0;P; V ),

(1.1) has a unique solution {Xt}t∈[0,T ] and it satisfies

X ∈ Lα
(
Ω; L∞([0, T ]; V

)) ∩ Lα
(
Ω; C

([0, T ]; H
))

.

In particular, we have

E sup
t∈[0,T ]

‖Xt‖α
H +Eess sup

t∈[0,T ]
‖Xt‖α

V < ∞. (1.2)

Moreover, if A(t, ·)(ω), B(t, ·)(ω) are independent of t ∈ [0, T ] and ω ∈ Ω , then the solution {Xt}t∈[0,T ] of
(1.1) is a Markov process.

Remark 1.2. (1) If (H3) is replaced by the following classical coercivity condition (δ > 0):

V ∗
〈
A(t, v), v

〉
V � −δ‖v‖α

V + ft + K‖v‖2
H , v ∈ V , (1.3)

then the existence and uniqueness of strong solutions has been recently established in [23] ((H0) can
be avoided in this case). Comparing with (1.2), in [23] one can only show the solution satisfies the
following regularity estimate:

E

(
sup

t∈[0,T ]
‖Xt‖α

H +
T∫

0

‖Xt‖α
V dt

)
< ∞.

(2) Similar type of regularity estimate as (1.2) has been established in [21] for a class of SPDE
with additive noise using some Yosida approximation techniques (see also [11,30]). Using similar
techniques as in [21], under some conditions, it is possible to prove the right continuity of solution
in V and obtain the following stronger estimate:

E sup
t∈[0,T ]

‖Xt‖α
V < ∞.

This property and some further applications will be investigated in future work.
(3) The role of classical coercivity condition is to obtain some a priori estimate of the solution

w.r.t. V -norm (cf. [18,23,28]) by applying Itô’s formula to ‖ · ‖2
H (in this case ‖ · ‖2

H is a good Lyapunov
function). However, for some SPDEs (see Section 3 for concrete examples) the coercivity condition
(1.3) fails to hold, however, one can show the one-sided linear growth condition (H3) (we refer to the
recent work of Brzeźniak et al. [2] for a similar type condition posed in the setting of SPDE in M-type
2 Banach spaces and Brzeźniak and Peszat [3] for similar techniques used for the case α > 2). In this
case ‖ · ‖2

V turns out to be a good Lyapunov function, one can get some analog a priori estimate from
(H3) by using Itô’s formula to ‖ · ‖α

V .
Another remark is that in [22](see also [24]) we introduced a more general type of local mono-

tonicity condition (see (3.2) in Section 3) than (H2), which links to the important concept of pseudo
monotone operator introduced by Brézis.

(4) This theorem also generalizes the recent result of Es-sarhir and von Renesse in [8] (Theo-
rem 2.3), where they proved a similar result in the case of ρ ≡ 0 in (H2) and α = 2 in (H4). Note that
α = 2 in (H4) implies that A has at most linear growth, which excludes some interesting examples.
Therefore, the result in [8] cannot be applied to the examples of stochastic tamed 3D Navier–Stokes
equations, stochastic Burgers type equations and stochastic reaction–diffusion equations (see Section 3
for the details).
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The rest of the paper is organized as follows: the proof of the main theorem is given in the next
section; in Section 3 some concrete examples of SPDE will be investigated as the application of the
main result. Throughout this paper C always denote some generic constant which may change from
line to line.

2. Proof of Theorem 1.1

The proof combines the arguments used in [8] and [23]. Based on Galerkin approximation, we will
use the one-sided linear growth condition (H3) to obtain some a priori estimates for the approximated
solutions by applying Itô’s formula to ‖·‖α

V , then we will show the limit of the approximated solutions
solves the original equation (1.1) using the local monotonicity techniques in [23].

We first consider the standard Galerkin approximation to (1.1). Recall that

{e1, e2, . . .} ⊂ V

is an orthonormal basis of H and Hn = span{e1, . . . , en}. Let Pn : V ∗ → Hn be defined by

Pn y =
n∑

i=1

V ∗ 〈y, ei〉V ei, y ∈ V ∗.

Hence Pn|H is the orthogonal projection onto Hn in H and we have

V ∗
〈
Pn A(t, u), v

〉
V = 〈

Pn A(t, u), v
〉
H = V ∗

〈
A(t, u), v

〉
V , u ∈ V , v ∈ Hn.

By (H0) we know that for v ∈ Hn we have

〈ei, v〉V = 0, i � n + 1.

By (H3) we know that for u ∈ Hn we have A(t, u) ∈ V and

∞∑
i=1

V ∗
〈
A(t, u), ei

〉
V ei =

∞∑
i=1

〈
A(t, u), ei

〉
H ei = A(t, u).

Then for any u, v ∈ Hn we have

〈
Pn A(t, u), v

〉
V =

〈
n∑

i=1

V ∗
〈
A(t, u), ei

〉
V ei, v

〉
V

=
〈 ∞∑

i=1

V ∗
〈
A(t, u), ei

〉
V ei, v

〉
V

= 〈
A(t, u), v

〉
V . (2.1)

Let {g1, g2, . . .} be an orthonormal basis of U and

W (n)
t :=

n∑
i=1

〈Wt, gi〉U gi = P̃n Wt,

where P̃n is the orthogonal projection onto span{g1, . . . , gn} in U .
Then for each n ∈ N we consider the following (finite-dimensional) stochastic equation on Hn:

dX (n)
t = Pn A

(
t, X (n)

t

)
dt + Pn B

(
t, X (n)

t

)
dW (n)

t , X (n)
0 = Pn X0. (2.2)
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According to the classical result for the solvability of SDE in finite-dimensional space (cf. e.g. [17,18]),
(H0)–(H4) imply that (2.2) has a unique strong solution.

For convenience we use the following notations in the proof:

K = Lα
([0, T ] × Ω,dt × P; V

)
,

K ∗ = L
α

α−1
([0, T ] × Ω,dt × P; V ∗),

J = L2([0, T ] × Ω,dt × P; L2(U ; H)
)
.

Now we construct the solution of (1.1). As preparation we first need to get some a priori estimates
for X (n) .

Lemma 2.1. Under the assumptions in Theorem 1.1, there exists C > 0 such that for all n ∈N we have

E sup
t∈[0,T ]

∥∥X (n)
t

∥∥α

V � C

(
E‖X0‖α

V +E

T∫
0

f α/2
t dt

)
. (2.3)

In particular, there exists C > 0 such that for all n ∈ N,

∥∥X (n)
∥∥

K + ∥∥A
(·, X (n)

)∥∥
K ∗ +E sup

t∈[0,T ]
∥∥X (n)

t

∥∥α

H � C

(
E‖X0‖α

V +E

T∫
0

(
ft + f α/2

t

)
dt

)
.

Proof. By Itô’s formula, (2.1), (H4) and (H3) we have for any p � 2,

∥∥X (n)
t

∥∥p
V = ∥∥X (n)

0

∥∥p
V + p(p − 2)

t∫
0

∥∥X (n)
s

∥∥p−4
V

∥∥(
Pn B

(
s, X (n)

s
)

P̃n
)∗

X (n)
s

∥∥2
V ds

+ p

2

t∫
0

∥∥X (n)
s

∥∥p−2
V

(
2
〈
A
(
s, X (n)

s
)
, X (n)

s
〉
V + ∥∥Pn B

(
s, X (n)

s
)

P̃n
∥∥2

2

)
ds

+ p

t∫
0

∥∥X (n)
s

∥∥p−2
V

〈
X (n)

s , Pn B
(
s, X (n)

s
)

dW (n)
s

〉
V

� ‖X0‖p
V + C

t∫
0

(∥∥X (n)
s

∥∥p
V + f s · ∥∥X (n)

s

∥∥p−2
V

)
ds

+ p

t∫
0

∥∥X (n)
s

∥∥p−2
V

〈
X (n)

s , Pn B
(
s, X (n)

s
)

dW (n)
s

〉
V

� ‖X0‖p
V + C

t∫
0

(∥∥X (n)
s

∥∥p
V + f p/2

s
)

ds + p

t∫
0

∥∥X (n)
s

∥∥p−2
V

〈
X (n)

s , Pn B
(
s, X (n)

s
)

dW (n)
s

〉
V ,

t ∈ [0, T ], (2.4)

where constant C is independent of n.
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For any given n we define the stopping time

τ
(n)
R = inf

{
t ∈ [0, T ]: ∥∥X (n)

t

∥∥
V > R

} ∧ T , R > 0,

where we take inf ∅ = ∞ as convention.
It is obvious that

lim
R→∞τ

(n)
R = T , P− a.s., n ∈ N.

Then by the Burkholder–Davis–Gundy inequality and (H4) we have

E sup
r∈[0,t]

∣∣∣∣∣
r∫

0

∥∥X (n)
s

∥∥p−2
V

〈
X (n)

s , Pn B
(
s, X (n)

s
)

dW (n)
s

〉
V

∣∣∣∣∣

� 3E

( t∫
0

∥∥X (n)
s

∥∥2p−2
V

∥∥B
(
s, X (n)

s
)∥∥2

2 ds

)1/2

� 3E

(
sup

0
s ∈ [0, t]∥∥X (n)

s

∥∥2p−2
V · C

t∫
0

(∥∥X (n)
s

∥∥2
V + f s

)
ds

)1/2

� 3E

[
ε sup

s∈[0,t]
∥∥X (n)

s

∥∥p
V + Cε

( t∫
0

(∥∥X (n)
s

∥∥2
V + f s

)
ds

)p/2]

� 3εE sup
s∈[0,t]

∥∥X (n)
s

∥∥p
V + 3 · (2T )p/2−1CεE

t∫
0

(∥∥X (n)
s

∥∥p
V + f p/2

s
)

ds, t ∈ [
0, τ

(n)
R

]
, (2.5)

where ε > 0 is a small constant and Cε comes from Young’s inequality.
Then by (2.4), (2.5) and Gronwall’s lemma we have

E sup
t∈[0,τ

(n)
R ]

∥∥X (n)
t

∥∥p
V � C

(
E‖X0‖p

V +E

T∫
0

f p/2
s ds

)
, n � 1,

where C is independent of n.
Let p = α and R → ∞, then (2.3) follows from the monotone convergence theorem. �
The rest of the proof is similar to the argument in [23], we include it here for completeness.

Proof of Theorem 1.1. (1) Existence: by Lemma 2.1 there exists a subsequence nk → ∞ such that

(i) X (nk) → X̄ weakly in K and weakly star in Lα(Ω; L∞([0, T ]; V )).
(ii) Y (nk) := A(·, X (nk)) → Y weakly in K ∗ .

(iii) Z (nk) := Pnk B(·, X (nk)) → Z weakly in J and hence

·∫
0

Pnk B
(
s, X (nk)

s
)

dW (nk)
s →

·∫
0

Zs dW s

weakly in L∞([0, T ],dt; L2(Ω,P; H)).
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Now we define the following process

Xt := X0 +
t∫

0

Ys ds +
t∫

0

Zs dW s, t ∈ [0, T ], (2.6)

then it is easy to show that X = X̄ , dt × P-a.e.
By [28, Theorem 4.2.5] (or [18]) and Lemma 2.1 we know that X is an H-valued continuous (Ft)-

adapted process and satisfies

E sup
t∈[0,T ]

‖Xt‖α
H +Eess sup

t∈[0,T ]
‖Xt‖α

V < ∞.

Therefore, for the existence of solutions to (1.1) it is sufficient to show that

A(·, X̄) = Y , B(·, X̄) = Z , dt × P− a.e.

Define

M =
{

φ: φ is V -valued (Ft)-adapted process such that E

T∫
0

ρ(φs)ds < ∞
}

.

For φ ∈ K ∩M∩ Lα(Ω; L∞([0, T ]; H)), using Itô’s formula we have (cf. e.g. the proofs of Lemma 3.3
and Theorem 4.1 in [35])

E
(
e− ∫ t

0 (K+ρ(φs)) ds
∥∥X (nk)

t

∥∥2
H

) −E
(∥∥X (nk)

0

∥∥2
H

)

= E

[ t∫
0

e− ∫ s
0 (K+ρ(φr)) dr(2V ∗

〈
Pnk A

(
s, X (nk)

s
)
, X (nk)

s
〉
V

+ ∥∥Pnk B
(
s, X (nk)

s
)

P̃nk

∥∥2
L2(U ;H)

− (
K + ρ(φs)

)∥∥X (nk)
s

∥∥2
H

)
ds

]

� E

[ t∫
0

e− ∫ s
0 (K+ρ(φr)) dr(2V ∗

〈
A
(
s, X (nk)

s
)
, X (nk)

s
〉
V

+ ∥∥B
(
s, X (nk)

s
)∥∥2

L2(U ;H)
− (

K + ρ(φs)
)∥∥X (nk)

s

∥∥2
H

)
ds

]

= E

[ t∫
0

e− ∫ s
0 (K+ρ(φr)) dr(2V ∗

〈
A
(
s, X (nk)

s
) − A(s, φs), X (nk)

s − φs
〉
V

+ ∥∥B
(
s, X (nk)

s
) − B(s, φs)

∥∥2
L2(U ;H)

− (
K + ρ(φs)

)∥∥X (nk)
s − φs

∥∥2
H

)
ds

]

+E

[ t∫
e− ∫ s

0 (K+ρ(φr)) dr(2V ∗
〈
A
(
s, X (nk)

s
) − A(s, φs),φs

〉
V

0
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+ 2V ∗
〈
A(s, φs), X (nk)

s
〉
V − ∥∥B(s, φs)

∥∥2
L2(U ;H)

+ 2
〈
B
(
s, X (nk)

s
)
, B(s, φs)

〉
L2(U ,H)

− 2
(

K + ρ(φs)
)〈

X (nk)
s , φs

〉
H + (

K + ρ(φs)
)‖φs‖2

H

)
ds

]
. (2.7)

Let k → ∞, by (H2) and the lower semicontinuity (cf. [28, (4.2.27)] for details) we have for every
nonnegative ψ ∈ L∞([0, T ];dt),

E

[ T∫
0

ψt
(
e− ∫ t

0 (K+ρ(φs)) ds‖Xt‖2
H − ‖X0‖2

H

)
dt

]

� lim inf
k→∞

E

[ T∫
0

ψt
(
e− ∫ t

0 (K+ρ(φs)) ds
∥∥X (nk)

t

∥∥2
H − ∥∥X (nk)

0

∥∥2
H

)
dt

]

� E

[ T∫
0

ψt

( t∫
0

e− ∫ s
0 (K+ρ(φr)) dr(2V ∗

〈
Ys − A(s, φs),φs

〉
V

+ 2V ∗
〈
A(s, φs), X̄s

〉
V − ∥∥B(s, φs)

∥∥2
L2(U ;H)

+ 2
〈
Zs, B(s, φs)

〉
L2(U ,H)

− 2
(

K + ρ(φs)
)〈Xs, φs〉H + (

K + ρ(φs)
)‖φs‖2

H

)
ds

)
dt

]
. (2.8)

By Itô’s formula we have for φ ∈ K ∩M∩ Lα(Ω; L∞([0, T ]; H)),

E
(
e− ∫ t

0 (K+ρ(φs)) ds‖Xt‖2
H

) −E
(‖X0‖2

H

)

= E

[ t∫
0

e− ∫ s
0 (K+ρ(φr)) dr(2V ∗ 〈Ys, X̄s〉V + ‖Zs‖2

L2(U ;H) − (
K + ρ(φs)

)‖Xs‖2
H

)
ds

]
. (2.9)

Combining (2.9) with (2.8) we obtain that

0 � E

[ T∫
0

ψt

( t∫
0

e− ∫ s
0 (K+ρ(φr)) dr(2V ∗

〈
Ys − A(s, φs), X̄s − φs

〉
V

+ ∥∥B(s, φs) − Zs
∥∥2

L2(U ;H)
− (

K + ρ(φs)
)‖Xs − φs‖2

H

)
ds

)
dt

]
. (2.10)

Note that Lemma 2.1 and (H4) imply that

X̄ ∈ K ∩M∩ Lα
(
Ω; L∞([0, T ]; H

))
,

then by taking φ = X̄ we obtain that Z = B(·, X̄).
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Moreover, if we first take φ = X̄ − εφ̃v for φ̃ ∈ L∞([0, T ] × Ω;dt × P;R) and v ∈ V , then divide it
by ε and let ε → 0 we have

0 � E

[ T∫
0

ψt

( t∫
0

e− ∫ s
0 (K+ρ( X̄r)) dr φ̃s V ∗

〈
Ys − A(s, X̄s), v

〉
V ds

)
dt

]
. (2.11)

Then Y = A(·, X̄) follows from the arbitrariness of ψ and φ̃.
Therefore, X̄ is a solution of (1.1).
(2) Uniqueness: suppose Xt and Yt are the solutions of (1.1) with initial conditions X0 and Y0

respectively, i.e.

Xt = X0 +
t∫

0

A(s, Xs)ds +
t∫

0

B(s, Xs)dW s, t ∈ [0, T ],

Yt = Y0 +
t∫

0

A(s, Ys)ds +
t∫

0

B(s, Ys)dW s, t ∈ [0, T ]. (2.12)

Then by Itô’s formula and (H2) we have (cf. e.g. [35])

e− ∫ t
0 (K+ρ(Ys)) ds‖Xt − Yt‖2

H

� ‖X0 − Y0‖2
H + 2

t∫
0

e− ∫ s
0 (K+ρ(Yr)) dr 〈Xs − Ys, B(s, Xs)dW s − B(s, Ys)dW s

〉
H , t ∈ [0, T ].

By a standard localization argument we have

E
[
e− ∫ t

0 (K+ρ(Ys)) ds‖Xt − Yt‖2
H

]
� E‖X0 − Y0‖2

H , t ∈ [0, T ].

If X0 = Y0,P-a.s., then

E
[
e− ∫ t

0 (K+ρ(Ys)) ds‖Xt − Yt‖2
H

] = 0, t ∈ [0, T ].

Since (H4) and Lemma 2.1 imply that

t∫
0

(
K + ρ(Ys)

)
ds < ∞, P-a.s., t ∈ [0, T ],

we have

Xt = Yt, P-a.s., t ∈ [0, T ].

Therefore, the pathwise uniqueness follows from the path continuity of X and Y in H .
(3) Markov property: the proof of Markov property is same as in [28, Proposition 4.3.5] (see also

[18, Theorem II.2.4]), hence we omit the details here. �
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3. Application to examples

3.1. Stochastic tamed 3D Navier–Stokes equation

Let Λ be a bounded domain in R
3 with sufficiently smooth boundary and C∞

0 (Λ,R3) denote the
set of all smooth functions from Λ to R

3 with compact support. For p � 1, let (L p(Λ,R3),‖ · ‖Lp ) be
the vector valued L p-space. For any integer m > 0, let W m,2

0 denote the standard Sobolev space on Λ

with values in R
3, i.e. the closure of C∞

0 (Λ,R3) with respect to the following norm:

‖u‖2
W m,2

0
=

( ∑
0�|α|�m

∫
Λ

∣∣Dαu
∣∣2

dx

)2

.

For the reader’s convenience, we recall the following Gagliardo–Nirenberg interpolation inequality,
which is used very often in the study of PDE theory.

Proposition 3.1. If q ∈ [1,∞] such that

1

q
= 1

2
− mγ

3
, 0 � γ � 1,

then there exists a constant Cm,q > 0 such that for any u ∈ W m,2
0 ,

‖u‖Lq � Cm,q‖u‖γ

W m,2
0

‖u‖1−γ

L2 . (3.1)

Now we define

H0 := {
u ∈ L2(Λ,R3): div(u) = 0

}
, Hm := {

u ∈ W m,2
0 : div(u) = 0

}
.

The norm of W m,2
0 restricted to Hm will be denoted by ‖ · ‖Hm . Note that H0 is a closed linear

subspace of the Hilbert space L2(Λ,R3). In the literature it is well known that one can use the
following Gelfand triple

V := H1 ⊆ H := H0 ⊆ V ∗, (�)

to analyze the Navier–Stokes equation and it works very well in 2D case even with general stochastic
perturbations (cf. [1,23,39] and the references therein). However, as pointed out in [23,22], the growth
condition in [23] (which is different with (H4) here) fails to hold on this Gelfand triple for the 3D
Navier–Stokes equation.

Motivated by the recent works on (stochastic) tamed 3D Navier–Stokes equation (cf. [31–33]), one
can verify the growth condition in [23,22] if we use the following Gelfand triple:

V := H2 ⊆ H := H1 ⊆ V ∗. (��)

But there exist two problems for working with the Gelfand triple (��). The first one is that the clas-
sical coercivity condition (see (1.3)) does not hold anymore for 3D Navier–Stokes equation under this
Gelfand triple. One possibility to verify the classical coercivity condition is to add a dissipative control
term (see gN in (3.3) below) to (stochastic) 3D Navier–Stokes equation.
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The second problem is that, instead of (H2), we can only verify the following type local mono-
tonicity condition for 3D Navier–Stokes equation under the triple (��) (cf. [22]):

V ∗
〈
A(t, v1) − A(t, v2), v1 − v2

〉
V �

(
K + η(v1) + ρ(v2)

)‖v1 − v2‖2
H , (3.2)

where η,ρ : V → [0,+∞) are some locally bounded measurable functions. The additional term η
(depend on another variable v1) will cause many technical difficulties in the proof of existence of
solutions, we refer to [22] where the well-posedness of a class of PDE has been established under
this type of local monotonicity condition.

Therefore, the motivation of using (H2) and (H3) here is that one can combine the advantages of
working with these two Gelfand triples such that both the local monotonicity condition and one-sided
linear growth condition hold on one Gelfand triple. More precisely, we will use the Gelfand triple (�)

for stochastic tamed 3D Navier–Stokes equation in order to verify the local monotonicity condition
(H2) (instead of (3.2)); then we can verify the one-sided linear growth condition (H3) under this
triple, which is formally equivalent to the classical coercivity condition (1.3) under the Gelfand triple
(��); finally, we can show that the growth condition (H4) also holds for stochastic tamed 3D Navier–
Stokes equation on the triple (�).

For all the examples in below, {Wt}t�0 denotes a cylindrical Wiener process on a separable Hilbert
space (U , 〈·, ·〉U ) w.r.t. a complete filtered probability space (Ω,F ,Ft ,P).

The first example is a tamed version of stochastic 3D Navier–Stokes equation, which has been
recently investigated in a series of works of Röckner et al [31–34]. The classical 3D Navier–Stokes
equations (i.e. gN = 0, B = 0 in (3.3)) is a standard model to describe the evolution of velocity fields
of an incompressible fluid (cf. [10,20,39]), the uniqueness and regularity of weak solutions are still
open problems up to now. The stochastic tamed 3D Navier–Stokes equation is a regularized version
of the classical stochastic 3D Navier–Stokes equation and it can be formulated as follows:

dXt = [
ν�Xt − (Xt · ∇)Xt + ∇p(t) − gN

(|Xt |2
)

Xt
]

dt + B(Xt)dWt ,

div(Xt) = 0, X0 = x0,

Xt |∂Λ = 0, (3.3)

where ν > 0 is the viscosity constant, p is the (unknown) pressure and the taming function gN :
R+ → R+ is smooth and satisfies for some N > 0,

⎧⎨
⎩

gN(r) = 0, if r � N,

gN(r) = (r − N)/ν, if r � N + 1,

0 � g′
N(r) � C, r � 0.

The main feature of (3.3) is that if there is a bounded smooth solution to the classical (stochastic)
3D Navier–Stokes equation, then this smooth solution must also satisfy this tamed equation for some
large enough N .

Let P be the orthogonal (Helmhotz–Leray) projection from L2(Λ,R3) to H0 (cf. [20,39]). It’s well
known that P is continuous (cf. [13,37]). For any u ∈ H0 and v ∈ L2(Λ,R3) we have

〈u, v〉H0 := 〈u,Pv〉H0 = 〈u, v〉L2 .

We consider the following Gelfand triple:

V := H1 ⊆ H := H0 ⊆ V ∗ = (
H1)∗

,

then it is well known that the following operators
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A : W 2,2(Λ,R3) ∩ V → H, Au = νP�u,

F : DF ⊂ H × V → H, F (u, v) = −P
[
(u · ∇)v

]
, F (u) := F (u, u)

can be extended to the following well defined operators:

A : V → V ∗, F : V × V → V ∗.

Moreover, we have

V ∗
〈
F (u, v), w

〉
V = −V ∗

〈
F (u, w), v

〉
V , V ∗

〈
F (u, v), v

〉
V = 0, u, v, w ∈ V . (3.4)

Without loss of generality we may assume ν = 1. Now we show the existence and uniqueness of
solutions to (3.3).

Example 3.2. Suppose x0 ∈ L4(Ω,F0,P; H1) and B : V → (L2(U ; V ); ‖ · ‖2) satisfies that

∥∥B(v)
∥∥2

2 � C
(
1 + ‖v‖2

V

)
, v ∈ V ,∥∥B(v1) − B(v2)

∥∥2
L2(U ;H)

� C‖v1 − v2‖2
H , v1, v2 ∈ V . (3.5)

Then (3.3) has a unique solution X ∈ L4(Ω,P, L∞([0, T ]; H1)) ∩ L4(Ω,P, C([0, T ]; H0)). In particular,
we have

E sup
t∈[0,T ]

‖Xt‖4
H +Eess sup

t∈[0,T ]
‖Xt‖4

V < ∞.

Proof. It is well known that (3.3) can be rewritten into the following variational form:

dXt = [
A Xt + F (Xt) −P

(
gN

(|Xt |2
)

Xt
)]

dt + B(Xt)dWt , X0 = x0.

It is easy to see that all eigenvectors {ei, i = 1,2, . . .} ⊂ H2 of A constitute an orthonormal basis of
H0 and an orthogonal set in H1, i.e. (H0) holds.

By Hölder’s inequality we have the following estimate:

‖ψ‖L3(Λ;R3) � ‖ψ‖1/2
L2(Λ;R3)

‖ψ‖1/2
L6(Λ;R3)

, ψ ∈ L6(Λ;R3).
Note that W 1,2

0 (Λ;R3) ⊆ L6(Λ;R3), then by (3.4) one can show that

V ∗
〈
F (u) − F (v), u − v

〉
V = −V ∗

〈
F (u − v), v

〉
V

� C‖u − v‖V ‖u − v‖L3(Λ;R3)‖v‖L6(Λ;R3)

� C‖u − v‖3/2
V ‖u − v‖1/2

H ‖v‖L6(Λ;R3)

� 1

2
‖u − v‖2

V + C‖v‖4
L6(Λ;R3)

‖u − v‖2
H , u, v ∈ V .

Hence we have the following estimate (recall that ν = 1):

V ∗
〈
Au + F (u) − Av − F (v), u − v

〉
V � −1‖u − v‖2

V + C
(
1 + ‖v‖4

L6(Λ;R3)

)‖u − v‖2
H .
2



W. Liu / J. Differential Equations 255 (2013) 572–592 585
By the definition of gN and (3.1) we have

−V ∗
〈
P

(
gN

(|u|2)u
) −P

(
gN

(|v|2)v
)
, u − v

〉
V

= −〈
gN

(|v|2)(u − v), u − v
〉
H + 〈(

gN
(|v|2) − gN

(|u|2))u, u − v
〉
H

�
∫

{|u|>|v|}

(
gN

(|v|2) − gN
(|u|2))(|u|2 − u · v

)
dx

+
∫

{|u|�|v|}

(
gN

(|v|2) − gN
(|u|2))(|u|2 − u · v

)
dx

� C

∫
{|u|�|v|}

∣∣|v|2 − |u|2∣∣ · |u| · |u − v|dx

� C

∫
{|u|�|v|}

|u|2 · |u − v|2 dx

� C‖v‖2
L6(Λ;R3)

‖u − v‖2
L3(Λ;R3)

� C‖v‖2
L6(Λ;R3)

‖u − v‖H‖u − v‖V

� 1

4
‖u − v‖2

V + C‖v‖4
L6(Λ;R3)

‖u − v‖2
H , u, v ∈ V .

Hence (H2) holds with ρ(v) = C‖v‖4
L6(Λ;R3)

.

We recall the following estimate for v ∈ span{e1, e1, . . . , en} (cf. [31, Lemma 2.3]):

〈Av, v〉V = 〈
P�v, (I − �)v

〉
H � −‖v‖2

H2 + ‖v‖2
V ,

〈
F (v), v

〉
V = −〈

P
[
(v · ∇)v

]
, (I − �)v

〉
H � 1

2
‖v‖2

H2 + 1

2

∥∥|v| · |∇v|∥∥2
H ,

−〈
P

(
gN

(|v|2)v
)
, v

〉
V = −〈

P
(

gN
(|v|2)v

)
, (I − �)v

〉
H � −∥∥|v| · |∇v|∥∥2

H + C N‖v‖2
V . (3.6)

Then it is easy to verify (H3) as follows:

〈
Av + F (v) −P

(
gN

(|v|2)v
)
, v

〉
V � −1

2
‖v‖2

H2 + C(N + 1)‖v‖2
V , v ∈ span{e1, e1, . . . , en}.

Concerning the growth condition, we have that

∥∥F (v)
∥∥

V ∗ � C‖v‖2
L4(Λ;R3)

� C‖v‖2
V , v ∈ V .

By (3.1) we have

∥∥gN
(|v|2)v

∥∥2
V ∗ � C‖v‖2

L6(Λ;R3)
� C‖v‖2

V , v ∈ V .

Hence we know that (H4) holds with α = 4.
Then the existence and uniqueness of solutions to (3.3) follows from Theorem 1.1. �
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Remark 3.1. (1) In [31], the existence of solutions was obtained by Yamada–Watanabe theorem, i.e.
they proved the existence of martingale solutions and pathwise uniqueness. Here we construct the
solution directly by the Galerkin approximation and local monotonicity arguments.

(2) Another main difference is that in [31,34] the authors used the Gelfand triple (��) to analyze
the equation. This is very crucial in their works because the following inequality (cf. [16]) plays a very
important role in their proofs:

sup
x

∣∣u(x)
∣∣2 � C‖�u‖H0‖∇u‖H0 . (3.7)

However, in this work we use the different Gelfand triple (i.e. (�)) to study the tamed equation (3.3)
and we obtain the existence and uniqueness of solutions with better regularity estimate in H1 by
applying Theorem 1.1.

3.2. Stochastic (generalized) curve shortening flow and singular stochastic p-Laplace equations

The study of the motion by mean curvature of curves and surfaces attracts more and more atten-
tions in recent years. It not only connects to many interesting mathematical theories such as nonlinear
PDEs, geometric measure theory, asymptotic analysis and singular perturbations, but also has impor-
tant applications in image processing and materials science etc (cf. [38,42]). The incorporation of
stochastic perturbations has also been widely used in these models, where the noise can come from
the thermal fluctuations, impurities and the atomistic processes describing the surface motions. How-
ever, the mathematical theory for the study of those stochastic models are quite incomplete (cf. [8]
and the references therein).

The second example here is the equation of stochastic curve shortening flow, which has been
investigated recently by Es-sarhir, von Renesse and Stannat in [8,9]. The deterministic part is a sim-
plified model in geometric PDE theory which describes the motion by mean curvature of embedded
surfaces (in the present model the surface is just some curve in the 2-dimensional plane), we refer
to [8] for more detailed exposition on the model. The random forcing was introduced to refine the
model by taking the influence of thermal noise into account. The stochastic curve shortening flow
(cf. [8,9]) is formulated in the following form:

dXt = ∂2
x Xt

1 + (∂x Xt)2
dt + B(Xt)dWt ,

where ∂x, ∂
2
x denote the first and second (spatial) derivative.

Based on the crucial observation

∂2
x Xt

1 + (∂x Xt)2
= ∂x

(
arctan(∂x Xt)

)
,

this equation has been investigated in [8,9] using the variational framework with following Gelfand
triple:

V := W 1,2
0

([0,1]) ⊆ H := L2([0,1]) ⊆ V ∗ = W −1,2([0,1]).
Now we consider the following form of SPDE, which covers a large class of stochastic evolution
equations such as stochastic curve shortening flow (with some nonlinear perturbations), stochastic
p-Laplace equations and stochastic reaction–diffusion equations. For simplicity we only formulate the
result for 1-dimensional underlying domain [0,1] here.

dXt = [
∂x

(
f (∂x Xt)

) + g(Xt)
]

dt + B(Xt)dWt, X0 = x0. (3.8)
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Example 3.3. Suppose that functions f , g ∈ C1(R) and there exist constants C, p � 2 such that

f ′(x) � 0,
∣∣ f (x)

∣∣ � C
(
1 + |x|), x ∈R,

g′(x) � C,
∣∣g(x)

∣∣ � C
(
1 + |x|p−1), x ∈R,(

g(x) − g(y)
)
(x − y) � C

(
1 + |y|p)|x − y|2, x, y ∈R, (3.9)

and B : V → (L2(U ; V ); ‖ · ‖2) satisfies that

∥∥B(v)
∥∥2

2 � C
(
1 + ‖v‖2

V

)
, v ∈ V ,∥∥B(v1) − B(v2)

∥∥2
L2(U ;H)

� C‖v1 − v2‖2
H , v1, v2 ∈ V .

Then for x0 ∈ L p(Ω,F0,P; V ), (3.8) has a unique solution X ∈ L p(Ω,P, L∞([0, T ]; V )) ∩ L p(Ω,P,

C([0, T ]; H)). In particular, we have

E sup
t∈[0,T ]

‖Xt‖p
L2 +Eess sup

t∈[0,T ]
‖Xt‖p

W 1,2 < ∞.

Proof. We consider the following Gelfand triple:

V := W 1,2
0

([0,1]) ⊆ H := L2([0,1]) ⊆ V ∗ = W −1,2([0,1]).
(H0) holds since all eigenvectors {ei, i = 1,2, . . .} of the Laplace operator constitute an orthonormal
basis of H and an orthogonal set in V .

By the assumptions on f we have

〈
∂x

(
f (∂x v)

)
, v

〉
V = −

1∫
0

f ′(∂x v)
(
∂2

x v
)2

dx � 0, v ∈ Hn ⊆ V ,

∥∥∂x
(

f (∂x v)
)∥∥

V ∗ �
∥∥(

f (∂x v)
)∥∥

H � C
(
1 + ‖v‖V

)
, v ∈ V ,

V ∗
〈
∂x

(
f (∂xu)

) − ∂x
(

f (∂xu)
)
, u − v

〉
V = −

1∫
0

(
f (∂xu) − f (∂xu)

)
(∂xu − ∂x v)dx � 0, u, v ∈ V .

Then it is easy to show that (H1)–(H4) hold for ∂x( f (∂x v)) (with ρ ≡ 0 and α = 2).
Hence now it is enough to show that (H1)–(H4) hold for the term g in the drift.
By the continuity of g and dominated convergence theorem it is easy to show that (H1) holds

for F .
By (3.9) and Sobolev’s inequality we have

V ∗
〈
g(u) − g(v), u − v

〉
V =

1∫
0

(
g(u) − g(v)

)
(u − v)dx

� C
(
1 + ‖v‖p

L∞
) 1∫

0

|u − v|2 dx

� C
(
1 + ‖v‖p

V

)‖u − v‖2
H , u, v ∈ V ,

i.e. (H2) holds with ρ(v) = ‖v‖p
V .
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(H3) also holds since (3.9) implies that

〈
g(v), v

〉
V = −〈

g(v), ∂2
x v

〉
H =

1∫
0

g′(v)(∂x v)2 dx � C‖v‖2
V , v ∈ Hn ⊆ V .

(H4) with α = p follows from the following estimate:

∥∥g(v)
∥∥

V ∗ � C
∥∥g(v)

∥∥
L1 � C

(
1 + ‖v‖p−1

L∞
)
� C

(
1 + ‖v‖p−1

V

)
, v ∈ V .

Therefore, the conclusion follows from Theorem 1.1. �
Remark 3.2. (1) If we take f (x) = arctan x and g(x) ≡ 0, then (3.8) reduces back to the model of
stochastic curve shortening flow (cf. [8]). Although we use the same Gelfand triple as in [8], the main
result (Theorem 2.3) in [8] cannot be applied to (3.8) because the perturbation term g is only locally
monotone and superlinear (i.e. ρ(u) = C‖u‖p

V in (H2) and α � 2 in (H4)).
(2) The simple example of g satisfying (3.9) is any polynomial of odd degree with negative leading

coefficients. Hence (3.8) also covers stochastic reaction–diffusion equations (i.e. f (x) = x).
(3) If f (x) = |x|p−2x(1 < p � 2), then (3.8) covers the singular stochastic p-Laplace equations. The

classical variational method (cf. [28]) was based on the following Gelfand triple

V := W 1,p
0

([0,1]) ⊆ H := L2([0,1]) ⊆ V ∗ = W −1,q([0,1])
and the solution of (3.8) has the following estimate:

E sup
t∈[0,T ]

‖Xt‖2
L2 +E

T∫
0

‖Xt‖p
W 1,p dt < ∞.

However, using another Gelfand triple

V := W 1,2
0

([0,1]) ⊆ H := L2([0,1]) ⊆ V ∗ = W −1,2([0,1])
we obtain a new invariance result of the solution, i.e. the solution Xt of singular stochastic p-Laplace
equation (3.8) take values in W 1,2

0 (which is smaller subspace of W 1,p
0 ) if the initial value X0 does

so. Moreover, we also prove that the solution has the following much stronger regularity estimate:

Eess sup
t∈[0,T ]

‖Xt‖2
W 1,2 < ∞.

Another advantage of using this new Gelfand triple is that we do not have any restriction on p (i.e.
1 < p � 2) if we extend the example to the multi-dimensional case (i.e. to replace [0,1] by some
bounded open domain Λ in R

d), but the classical result usually need some assumption on p due to
the Sobolev embedding of W 1,p

0 (Λ) ⊆ L2(Λ) (i.e. 2d
d+2 � p � 2).

(4) If f (x) = |x|p−2x(p > 2), then (3.8) reduces to the degenerate stochastic p-Laplace equations
and the result above cannot be applied to this case. Some invariance result in W 1,2 of the solution
for this type of equation was established in [21].
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3.3. Stochastic fast diffusion equations

Let Λ be a bounded open domain in R
d with smooth boundary and � be the standard Laplace op-

erator with Dirichlet boundary condition. We consider the following stochastic fast diffusion equations
with general multiplicative noise (cf. [18,28,29]):

dXt = (
�Ψ (Xt) + γ Xt

)
dt + B(Xt)dWt, X0 = x0, (3.10)

where γ ∈ R and Ψ : R → R is measurable. In particular, if γ = 0, B = 0 and Ψ (s) = sr := |s|r−1s for
some r ∈ (0,1), then (3.10) reduces back to the classical fast diffusion equations.

Using the Gelfand triple

V := L2(Λ) ⊆ H := W −1,2(Λ) ⊆ V ∗ = (
L2(Λ)

)∗
,

we obtain the following new invariance result and regularity estimate for the solution of (3.10), which
improves the recent result obtained in [21].

Example 3.4. Suppose that Ψ ∈ C1(R) and there exists a constant C > 0 such that

Ψ ′(x) � 0,
∣∣Ψ (x)

∣∣ � C
(
1 + |x|), x ∈R,

and B : V → (L2(U ; V ); ‖ · ‖2) satisfies that

∥∥B(v)
∥∥2

2 � C
(
1 + ‖v‖2

V

)
, v ∈ V ,∥∥B(v1) − B(v2)

∥∥2
L2(U ;H)

� C‖v1 − v2‖2
H , v1, v2 ∈ V .

Then for any x0 ∈ L2(Ω,F0,P; V ), (3.10) has a unique solution X ∈ L2(Ω,P, L∞([0, T ]; V )) ∩
L2(Ω,P, C([0, T ]; H)). In particular, we have

Eess sup
t∈[0,T ]

‖Xt‖2
L2 < ∞.

Proof. According to the classical result for (3.10) (cf. [28, Example 4.1.11]), here we only need to verify
the one-sided linear growth condition (H3) for (3.10). In fact, we have

〈
�Ψ (v) + γ v, v

〉
V = −

∫
Λ

Ψ ′(v)|∇v|2 dx + γ ‖v‖2
V � γ ‖v‖2

V , v ∈ Hn.

Therefore, the assertions follow directly from Theorem 1.1. �
Remark 3.3. (1) If Ψ (x) = |x|r−1x(0 < r < 1), then (3.10) covers the stochastic fast diffusion equations.
The classical variational method (cf. [28]) use the following Gelfand triple

V := Lr+1(Λ) ⊆ H := W −1,2(Λ) ⊆ V ∗ = (
Lr+1(Λ)

)∗

to show the solution of (3.10) satisfies the following estimate:

E sup
t∈[0,T ]

‖Xt‖2
W −1,2 +E

T∫
‖Xt‖r+1

Lr+1 dt < ∞.
0
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Here by using a different Gelfand triple

V := L2(Λ) ⊆ H := W −1,2(Λ) ⊆ V ∗ = (
L2(Λ)

)∗

we obtain a new invariance result of the solution, i.e. the solution Xt of stochastic fast diffusion
equation (3.10) take values in L2(Λ) if the initial value X0 does so. Moreover, the solution also satisfies
the following stronger regularity estimate:

Eess sup
t∈[0,T ]

‖Xt‖2
L2 < ∞.

Another improvement is that we do not need to assume the standard assumption on r here, while
the classical result requires that d−2

d+2 � r < 1 (if d � 3) due to the Sobolev embedding of Lr+1(Λ) ⊆
W −1,2(Λ) (cf. [28, Remark 4.1.15]).

(2) If Ψ (x) = |x|r−1x (r > 1), then (3.10) is the stochastic porous medium equations (cf. [1,12,28]).
Some L2-invariance result of the solution for this type of equation with additive type noise was
established in [21,30].

3.4. Stochastic Burgers type and reaction–diffusion equations

The last example is a semilinear type SPDE which is formulated as follows:

dXt = (
∂2

x Xt + f (Xt)∂x Xt + g(Xt)
)

dt + B(Xt)dWt, X0 = x0. (3.11)

If we take f = 0 and g(x) = ∑2n+1
i=0 ai xi with a2n+1 < 0 (for some fixed n ∈ N), then (3.11) reduces to

the classical stochastic reaction–diffusion equations. If g = 0, then (3.11) covers the stochastic Burgers
type equations (see [23, Remark 3.1]), which have been extensively used in the study of turbulent
fluid motion (cf. [20,39]).

The existence and uniqueness results of (3.11) driven by space–time White noise has been obtained
by Gyöngy in [15] under a different framework, in which both f and g were assumed to have linear
growth. In this work we will use different assumptions (i.e. f is bounded, g has polynomial growth
and the noise is regular in space), then we can obtain the existence and uniqueness of strong solutions
for (3.11) with better regularity estimates (see (1.2)).

Similarly as in [23, Example 3.2], we consider the following Gelfand triple for (3.11):

V := W 1,2
0

([0,1]) ⊆ H := L2([0,1]) ⊆ V ∗ = W −1,2([0,1]).
However, unlike in [23] where n = 1 is assumed for g , here by Theorem 1.1 we can obtain the exis-
tence and uniqueness of strong solutions for (3.11) with any odd degree polynomial g having negative
leading coefficients.

Example 3.5. Suppose that f is a bounded Lipschitz function on R and g ∈ C1(R) and there exists
constants C, p � 2 such that

(
g(x) − g(y)

)
(x − y) � C

(
1 + |y|p)|x − y|2, x, y ∈R,∣∣g(x)

∣∣ � C
(
1 + |x|p−1), x ∈R,

g′(x) � C, x ∈R,

and B : V → (L2(U ; V ); ‖ · ‖2) satisfies that
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∥∥B(v)
∥∥2

2 � C
(
1 + ‖v‖2

V

)
, v ∈ V ,∥∥B(v1) − B(v2)

∥∥2
L2(U ;H)

� C‖v1 − v2‖2
H , v1, v2 ∈ V .

Then for x0 ∈ L p(Ω,F0,P; V ), (3.11) has a unique solution X ∈ L p(Ω,P, L∞([0, T ]; V )) ∩ L p(Ω,P,

C([0, T ]; H)). In particular, we have

E sup
t∈[0,T ]

‖Xt‖p
L2 +Eess sup

t∈[0,T ]
‖Xt‖p

W 1,2 < ∞.

Proof. Combining with the result in the previous example, here we only need to show (H1)–(H4)
hold for the term ∂2

x + f (·)∂x .
According to the result showed in [23, Example 3.2], (H1), (H2) and (H4) hold.
Since f is bounded, by Hölder’s inequality and Young’s inequality we have

〈
∂2

x v + f (v)∂x v, v
〉
V = −〈

∂2
x v + f (v)∂x v, ∂2

x v
〉
H

= −∥∥∂2
x v

∥∥2
L2 −

1∫
0

f (v)∂x v∂2
x v dx

� −∥∥∂2
x v

∥∥2
L2 + C

∥∥∂2
x v

∥∥
L2‖v‖V

� −1

2

∥∥∂2
x v

∥∥2
L2 + C‖v‖2

V , v ∈ Hn ⊆ V ,

i.e. (H3) also holds.
Therefore, the assertion follows from Theorem 1.1. �

Remark 3.4. (1) We should remark that the existence and uniqueness of strong solutions for stochastic
reaction–diffusion equations (i.e. f = 0 in (3.11)) has been established by Zhang in [41] and Gess in
[11] using different methods. However, the regularity estimate (1.2) w.r.t. V -norm seems new for
(3.11).

(2) Similarly, one can also extend the above result from the underlying domain [0,1] to more
general high dimensional domain Λ ⊆ R

d (see e.g. [23, Example 3.2]).
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