JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:263 |
Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with nonlinear diffusion | |
Article | |
Zheng, Jiashan1  | |
[1] Ludong Univ, Sch Math & Stat Sci, Yantai 264025, Peoples R China | |
关键词: Navier-Stokes system; Keller-Segel model; Global existence; Nonlinear diffusion; | |
DOI : 10.1016/j.jde.2017.04.005 | |
来源: Elsevier | |
【 摘 要 】
The coupled quasilinear Keller-Segel-Navier-Stokes system {n(t) + u center dot del n = triangle n(m) - del center dot (n del c), x is an element of Omega, t > 0, c(t) + u center dot del c = triangle c - c+n, x is an element of Omega,t > 0, u(t) + kappa(u center dot del)u + del P = triangle u + n del phi, x epsilon Omega, t > 0, del center dot u = 0, x is an element of Omega,t > 0 (KSNF) is considered under Neumann boundary conditions for n and c and no-slip boundary conditions for u in three-dimensional bounded domains Omega subset of R-3 with smooth boundary, where m > 0, K is an element of R are given constants, phi is an element of W-1,W-infinity(Omega). If m > 2, then for all reasonably regular initial data, a corresponding initial-boundary value problem for (KSNF) possesses a globally defined weak solution. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2017_04_005.pdf | 1053KB | download |