期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:266
On the instability of elliptic traveling wave solutions of the modified Camassa-Holm equation
Article
Daros, Alisson1  Arruda, Lynnyngs Kelly2 
[1] Fed Univ Pampa, Dept Math, BR-97650000 Itaqui, Brazil
[2] Univ Fed Sao Carlos, Dept Math, PO B 676, BR-13565905 Sao Carlos, SP, Brazil
关键词: Traveling waves;    Instability;    Modified Camassa-Holm equation;   
DOI  :  10.1016/j.jde.2018.08.017
来源: Elsevier
PDF
【 摘 要 】

This paper is concerned with the orbital instability for a specific class of periodic traveling wave solutions with the mean zero property and large spatial period related to the modified Camassa-Holm equation. These solutions, called snoidal waves, are written in terms of the Jacobi elliptic functions. To prove our result we use the abstract method of Grillakis, Shatah and Strauss [23], the Floquet theory for periodic eigenvalue problems and the n-gaps potentials theory of Dubrovin, Matveev and Novikov [19]. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2018_08_017.pdf 530KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次