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Abstract

This paper is concerned with the orbital instability for a specific class of periodic traveling wave solutions 
with the mean zero property and large spatial period related to the modified Camassa–Holm equation. These 
solutions, called snoidal waves, are written in terms of the Jacobi elliptic functions. To prove our result we 
use the abstract method of Grillakis, Shatah and Strauss [23], the Floquet theory for periodic eigenvalue 
problems and the n-gaps potentials theory of Dubrovin, Matveev and Novikov [19].
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

The original Camassa–Holm equation was obtained by Fuchssteiner and Fokas [21] by using 
the method of recursion operators, and it is a model for the unidirectional propagation of shallow 
water waves over a flat bottom in dimensionless space-time variables (x, t) [9]. Later, Camassa 
and Holm derived the original Camassa–Holm equation from physical principles [8]. In [25], 
Johnson describes a method to obtain the Camassa–Holm equation in the context of water waves 
which requires a detour via the Green–Naghdi model equations. Also, Constantin and Lannes 
in [15] have shown the relevance of this equation as a model for the propagation of shallow 
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water waves, proving that this is a valid approximation for the governing equations for water 
waves.

This work has the interest in to investigate the existence and orbital stability of smooth peri-
odic traveling wave solutions φ(x − ct) of the modified Camassa–Holm (mCH) equation

ut − uxxt = uuxxx + 2uxuxx − 3u2ux, x ∈ R, t > 0. (1)

Here subscripts t and x denote partial differentiation with respect to t and x.
Observe that the transformation u(x, t) �→ ũ(x + κt, t) reduces (1) to the modified Dullin–

Gottwald–Holm (mDGH) equation [29]

ũt + κũx − ũxxt − κũxxx = ũũxxx + 2ũx ũxx − 3ũ2ũx, x ∈R, t > 0.

In [20], Dullin, Gottwald and Holm discussed the classical DGH equation for a unidirectional 
water wave with fluid velocity u(x, t), where the constant κ �= 0 is the linear wave speed for 
undisturbed water at rest at spatial infinity.

The mCH equation can also be obtained from the ab-family of modified equations [24]

ut + (a(u))x − uxxt =
(

b′(u)
u2

x

2
+ b(u)uxx

)
x

(2)

where a, b : R −→ R are smooth functions and a(0) = 0, by considering a(u) = u3 and 
b(u) = u.

The traveling wave transformation u(x, t) = φ(x − ct) reduces (1) to the ordinary differential 
equation

(φ − c)φ′′ + (φ′)2

2
− φ3 + cφ = Aφ, (3)

which can be written in the form (φ′)2 = Fφ(φ(ξ)), where Fφ is a third degree polynomial in φ. 
More precisely, Fφ(t) = t3 + d2t

2 + d1t + d0, where d0 = c3 − 2c2 + 4Aφ , d1 = c2 − 2c and 
d2 = c, and Aφ an integration constant. The integration constant Aφ can be chosen different from 
zero and such that, by the Cardano–Tartaglia formula, the polynomial Fφ will have three real and 
distinct roots. Moreover, we assume that φ is smooth and L-periodic.

From [24] it is also known that

E(u) = −
L∫

0

[
u4

4
+ uu2

x

2

]
dx, F (u) = 1

2

L∫
0

[u2 + u2
x] dx and V (u) =

L∫
0

u dx (4)

are important conservation laws of the temporal variable t to (1), where u = u(x, t) is an appro-
priately smooth solution of this equation.

In view of (4), the traveling wave equation (3) takes the form

E′(φ) + cF ′(φ) = Aφ. (5)



1948 A. Darós, L.K. Arruda / J. Differential Equations 266 (2019) 1946–1968
In general, a crucial point in the abstract theories of stability is the characterization of the 
periodic traveling wave φ of speed c as a critical point of the functional E + cF . As in [2,3], to 
overcome this difficult we assume that φ has mean zero, that is,

L∫
0

φ = 0,

what physically amounts to demanding that the wavetrain has the same mean depth as does the 
undisturbed free surface.

Orbital stability of solitons associated to the original Camassa–Holm equation was proved 
by Constantin and Strauss [12] while the orbital stability of positive solitary waves to the mCH 
equation was proved by Yin, Tian and Fan [32]. In [30], Lopes proved the stability of peakons 
to a generalized Camassa–Holm equation that encompasses the mCH equation. The peakons of 
original Camassa–Holm equation are solitons, recovering their shape and speed after interac-
tion [5,8], obtained by assigning the value zero in the parameter of this one-parameter family of 
equations (more details, [13,14,16]), but differently of its solitary waves they have a corner at 
their crest (where they are continuous but their lateral derivatives, which exist, are at an angle). 
One can prove the orbital stability of the peaked solutions to Camassa–Holm equation, [11,27], 
in the sense that their shape is stable under small perturbations, and therefore these patterns are 
detectable. Lenells in [28] used integrability to prove stability for the periodic Camassa–Holm 
equation by considering this equation as the compatibility condition of two linear problems. We 
emphasize that the same kind of argumentation could not be used in our case to get a better result 
regarding to stability of all smooth periodic traveling waves since there is no Lax formalism to 
mCH equation.

This paper is based on the nonlinear stability studies of positive periodic traveling wave so-
lutions of the classical Korteweg–de Vries presented in [4] by Arruda, and for periodic traveling
waves of KdV equation satisfying the mean zero property presented in [2] by Angulo, Bona 
and Scialom. It is worth point out that similar classes of such solutions for Korteweg–de Vries 
equation, found already in the 19th century works of Boussinesq (1871, 1872) and Korteweg and 
de Vries (1895), or for mCH equation found recently via computational methods by Deng [18], 
may be written in terms of the Jacobi elliptic cnoidal (cn) or snoidal (sn) function, respectively, 
where sn2 + cn2 = 1.

In this article we first show the existence of a nontrivial smooth curve c ∈ (0, 1) �→ φc ∈
H 1

per([0, L]) of L-periodic snoidal (sn) wave solutions to equation (1), with a fixed period 

L > 4
√

128
9 π , using the ideas of Arruda in [4]. Then the orbital instability of these snoidal wave 

solutions to mCH equation is established, in the subspace of H 1
per([0, L]) of functions with mean 

zero, for c ∈ (0, 1) and L large enough using the method developed by Grillakis, Shatah and 
Strauss in [23].

Theorem 1. Let L > 0 be an arbitrary but fixed and large enough constant. Consider u(x, t) =
φc(x −ct), with c ∈ (0, 1) such that [c2 −3c] < − 32π4

L4 , the snoidal wave solution with mean zero 
for equation (1) given by (9). Then, there is k0 ∈ (0, 1) small enough such that writing c ≡ c(k)

for all k ∈ (0, k0) as in (27), the snoidal wave φc(k) is orbitally unstable. Here k is the modulus 
of the function sn.
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In the course of this work, the following notation will be used:
〈f, g〉 = 〈f, g〉L2

per([0,L])
= ∫ L

0 fg dx,

〈f, g〉1 = 〈f, g〉H 1
per([0,L])

= ∫ L

0 fg dx + ∫ L

0 f ′g′ dx,

||f || = ||f ||L2
per([0,L])

=
(∫ L

0 f 2 dx
)1/2

,

||f ||1 = ||f ||H 1
per([0,L])

=
(∫ L

0 f 2 dx + ∫ L

0 f ′ 2 dx
)1/2

.

2. Existence of a nontrivial smooth curve of snoidal wave solutions with a fixed period L
for equation (1)

In this section we establish the existence of a family of even L-periodic traveling wave solu-
tions φ = φ(x − ct) for the equation

(φ − c)φ′′ + (φ′)2

2
− φ3 + cφ = Aφ, (6)

such that the mapping c �→ φc is C1.
Multiplying (6) by φ′, a second integration is possible yielding the first-order equation

(φ′)2 − 1

2
[φ3 + d2φ

2 + d1φ + d0] = C0, (7)

where C0 = Bφ

φ−c
and Bφ is another constant of integration which will be considered equal to zero 

here.
To c ∈ (0, 3), we can write (7), equivalently, by

(φ′)2 = 1

2
Fφ(φ(ξ)) = 1

2
(φ − α0)(φ − β0)(φ − γ0), (8)

where α0, β0, γ0 are the distinct real zeros of the polynomial Fφ(t) satisfying the relations

⎧⎨
⎩

α0 + β0 + γ0 = −c

α0β0 + α0γ0 + β0γ0 = c2 − 2c

α0β0γ0 = −c3 + 2c2 − 4Aφ.

Furthermore, we assume that α0 < β0 < γ0 and so we obtain from system above that α0 < 0, and 
we obtain from (8) that α0 ≤ φ ≤ β0. By defining ϕ = φ

α0
, (8) becomes (ϕ′)2 = α0

2 (ϕ − 1)(ϕ −
η1)(ϕ − η2), where η1 = β0

α0
and η2 = γ0

α0
. We also impose the crest of the wave to be at ξ = 0, 

that is, ϕ(0) = 1. Now we define a further variable ψ via the relation ϕ − 1 = (η1 − 1) sin2 ψ and 
thus we obtain that

(ψ ′)2 = α0

8
(η2 − 1)

[
1 −

(
η1 − 1

η2 − 1
sin2 ψ

)]

and ψ(0) = 0. In order to write this in a standard form we define k2 = η1−1
η2−1 and l = α0

8 (η2 − 1). 

It follows that 0 < k2 < 1 and l > 0 and we obtain 
∫ ψ

0
dt√

2
= √

lξ . Therefore, from the 

1−k2 sin t
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definition of the Jacobi elliptic function y = sn(u, k) (see (34)), we can write the last equality as 
sin2 ψ = sn2(

√
lξ, k), and hence ϕ = 1 + (η1 − 1)sn2(

√
lξ, k). We arrive finally to the conven-

tional form

φ(ξ) = φc(ξ ;α0, β0, γ0) = α0 + (β0 − α0)sn2

(√
γ0 − α0

8
ξ, k

)
, (9)

where α0 < β0 < γ0, k2 = η1−1
η2−1 and

γ0 = −c − α0 − β0 = c2 − 2c − α0β0

α0 + β0
. (10)

Remark 1. Let us see how the solution behaves in degenerate cases. For c > 0, consider whether 
or not periodic solutions can persist if α0 = β0 or β0 = γ0. As φ assumes only values in the range 
[α0, β0], we conclude that the first case leads only to the constant solution φ ≡ α0 = β0. In fact, 
the limit of (9) as α0 → β0 is uniform in the variable ξ and is exactly this constant solution. 
However, c and γ0 are fixed, so making β0 ↑ γ0, we get α0 = −c − 2γ0 in (10) and k → 1. 
Moreover, as sn2 + cn2 = 1 and the elliptic function cn converges, uniformly on compact sets, 
to the hyperbolic function sech, (9) becomes, in this limit,

lim
β0↑γ0

φ = ϕ = ϕ∞ − a sech2
(√

a

8
ξ

)

where ϕ∞ = γ0 and a = γ0 − α0. If γ0 = 0, the bell-shaped soliton solution of speed c

ϕ(ξ) = ϕc(ξ) = −c sech2
(√

c

8
ξ

)
,

presented by Wazwaz in [34], is recovered. Note that β0 = γ0 = 0 exactly when Aφ = Bφ = 0, 
as one would expect.

From (10) we have that α0, β0 belong to the ellipse � given by

α2
0 + α0β0 + β2

0 + cα0 + cβ0 + c2 − 2c = 0, (11)

and since α0 < β0, it follows that A0 < α0 < B0 < β0 where

A0 = −c − 2
√−2c2 + 6c

3
and B0 = −c − √−2c2 + 6c

3
.

Also, since sn2 has fundamental period 2K(k), where K(k) = F(π
2 , k), φ has fundamental 

period Tφ equal to

Tφ = 4
√

2√ K(k).

γ0 − α0
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Next, we prove that Tφ > 4π
4
√

−8c2+24c
. Firstly, we express Tφ as a function of α0 and c. For 

this, following (11), every α0 ∈ (A0, B0) defines a unique real value of β0 such that (α0, β0) is 
inside the ellipse � and

β0 =
−c − α0 −

√
−2cα0 − 3α2

0 − 3c2 + 8c

2
.

So, by defining γ0 ≡ −c − α0 − β0, we obtain for

k2(α0, c) =
−c − 3α0 −

√
−2cα0 − 3α2

0 − 3c2 + 8c

−c − 3α0 +
√

−2cα0 − 3α2
0 − 3c2 + 8c

(12)

that

Tφ(α0, c) = 8K(k(α0, c))√
−c − 3α0 +

√
−2cα0 − 3α2

0 − 3c2 + 8c

.

Then by fixing c ∈ (0, 3), we have that Tφ(α0, c) → +∞ as α0 → A0 and Tφ(α0, c) →
4π

4
√

−8c2+24c
as α0 → B0. So, since the mapping α0 ∈ (A0, B0) �−→ Tφ(α0, c) is strictly decreasing 

(see proof of Theorem 2), it follows that Tφ is strictly larger than 4π
4
√

−8c2+24c
.

Now, we obtain a snoidal wave solution with period L. For c0 ∈ (0, 3) such that [c2
0 − 3c0] <

− 32π4

L4 there is a unique α0,0 ∈ (A0(c0), B0(c0)) such that Tφ(α0,0, c0) = L. So, for c0 and α0,0
such that (α0,0, β0,0) ∈ �(c0), we have that the snoidal wave φ = φc0 = φc0(·; α0,0, β0,0, γ0,0)

with γ0,0 = − 3c0
b+1 − α0,0 − β0,0 has fundamental period L and satisfies (6) with c = c0.

In addition, by the above analysis the snoidal wave φ(·, α0, β0, γ0) = φc(·, α0, β0, γ0) in (9)
is completely determined by parameters c and α0 and will be denoted by φc(·, α0) or φc.

Next we ensure the existence of a smooth curve of snoidal wave solutions for equation (6). 
Thus, at least locally the choice of α0,0 above depends smoothly of c0.

Theorem 2. Let L > 4
√

128
9 π arbitrary but fixed. Consider c0 ∈ (0, 1) such that [c2

0 − 3c0] <
− 32π4

L4 and α0,0 ≡ α0(c0) ∈ (A0, B0) such that Tφc0
= L. Then the following holds:

(a) There exists an interval J (c0) around c0, an interval J (α0,0) around α0(c0) and a unique 
smooth function 
 :J (c0) −→ J (α0,0) such that 
(c0) = α0,0 and

8K(k)√
−c − 3α0 +

√
−2cα0 − 3α2

0 − 3c2 + 8c

= L, (13)

where c ∈ J (c0), α0 = 
(c) and k2 ≡ k2(c) ∈ (0, 1) is defined in (12).
(b) The snoidal wave solution given by (9), φc(·; α0, β0, γ0), determined by α0 ≡ α0(c), β0 ≡

β0(c) and γ0 ≡ γ0(c), has a fundamental period L and satisfies the equation (6). Moreover, the 
mapping
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c ∈ J (c0) −→ φc ∈ H 1
per([0,L])

is a smooth function.

Proof. The idea of the proof is to apply the Implicit Function Theorem. We consider the open 
set � = {(α, c) | c ∈ (0, 1), [c2 − 3c] < − 32π4

L4 and α ∈ (A0, B0)} ⊂ R
2 and define � : � −→ R

by

�(α, c) = 8K(k(α, c))√
−c − 3α + √−2cα − 3α2 − 3c2 + 8c

where k(α, c) is defined in (12), with α0 = α. By the hypotheses, �(α0,0, c0) = Tφc0
= L.

Denoting ν ≡ ν(α) = −c − 3α and σ ≡ σ(α) ≡ −2cα − 3α2 − 3c2 + 8c, we have that

∂�

∂α
= 4K[3 + σ− 1

2 (3α + c)]
(ν + √

σ)
3
2

+ 8

(ν + √
σ)

1
2

(
dK

dk

∂k

∂α

)
.

Now, from (12) it follows that ∂k2

∂α
= −6σ−2ν2√

σ(ν+√
σ)2 . Since ∂k2

∂α
= 2k ∂k

∂α
, we obtain that ∂k

∂α
= 1

2k
·

−6σ−2ν2√
σ(ν+√

σ)2 < 0. Thus, ∂�
∂α

< 0. In fact,

∂�

∂α
= 4K[3√

σ − ν]
√

σ(ν + √
σ)

3
2

− 4

(
dK

dk

)[
6σ + 2ν2

k
√

σ(ν + √
σ)

5
2

]
< 0

⇔
(

dK

dk

)(
6σ + 2ν2

k
√

σ(ν + √
σ)

5
2

)
>

K(3
√

σ − ν)
√

σ(ν + √
σ)

3
2

⇔ (E − k′2K)(6σ + 2ν2) > K(3
√

σ − ν)k2k′2(ν + √
σ)

⇔ E(6σ + 2ν2) > K(3
√

σ − ν)k2k′2(ν + √
σ) + (6σ + 2ν2)k′2K

⇔ E(6σ + 2ν2) > Kk2k′2(3ν
√

σ + 3σ − ν2 − ν
√

σ) + (6σ + 2ν2)k′2K

⇔ E(6σ + 2ν2) > Kk2k′2(2ν
√

σ + 3σ) + Kk′2ν2 + k′4ν2K + 6σk′2K (14)

Now E(6σ +2ν2) = (1 −k2)ν2E +6σE +ν2E +ν2k2E = ν2k′2(1 −k′2)E +ν2k2(1 +k′2)E +
ν2k2E+6σE. Since ν >

√
σ > 0 and the fact that k �→ E(k) +K(k) is strictly increasing implies 

that E(1 +k′2) > 2k′2K , we have that k2ν2E(1 +k′2) > 2ν2k2k′2K > 2ν
√

σk2k′2K . Moreover, 
3σE = 3σ(k2 + k′2)E = 3σk2E + 3σk′2E and E − k′2K > 0 imply that 3σk2E > 3σk2k′2K . 
So, the inequality (14) is equivalent to

E(6σ + 2ν2) > (2ν
√

σ + 3σ)k2k′2K + ν2k′2(1 + k′2)E + ν2k2E + 6σk′2K

Now, we have to show that ν2k′2(1 + k′2)E + ν2k2E > Kk′2ν2 + Kk′4ν2. This follows 
from ν2k′2(1 + k′2)E > 2ν2k′4K and the relation ν2k′4K + ν2k2E − Kk′2ν2 = −ν2k′2k2K +
ν2k2E = ν2k2(E − k′2K) > 0. Therefore, there exists a unique smooth function 
, defined in 
a neighborhood J (c0) of c0, such that �(
(c), c) = L, for every c ∈ J (c0). So we obtain (13)
and this completes the proof of theorem. �
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Corollary 1. Consider the mapping 
 :J (c0) −→ J (α0,0) determined by Theorem 2. Then 
 is 

a strictly decreasing function in I1 ∩J (c0), where I1 = (0, 3−√
3

2 ).

Proof. By Theorem 2 we have that �(
(c), c) = L for every c ∈ J (c0) and so by Implicit 
Function Theorem,

d


dc
(c) = −

∂�
∂c
∂�
∂α

. (15)

We will analyze the signal of function ∂�
∂c

. In order to do this, we denote again ν ≡ ν(c) =
−c − 3α and σ ≡ σ(c) = −2cα − 3α2 − 3c2 + 8c, and we note that

∂�

∂c
= −2K(−√

σ − α − 3c + 4)
√

σ(ν + √
σ)

3
2

+ 8

(ν + √
σ)

1
2

(
dK

dk

∂k

∂c

)
, (16)

where k(α, c) is defined by (12), with α0 = α. Now,

∂k

∂c
= 1

k
· −σ − ν(−α − 3c + 4)√

σ(ν + √
σ)2

. (17)

Finally, it is enough to study the signal of the expressions [−σ −ν(−α−3c+4)] and (−√
σ −

α − 3c + 4) in equations (16) and (17). �
Now we prove that the modulus function k(c) is strictly increasing.

Proposition 1. Consider c ∈ (0, 1) such that [c2 − 3c] < − 32π4

L4 , α0 = 
(c) and the modulus 
function

k(c) ≡ k(
(c), c) =
√√√√−c − 3
(c) − √−2c
(c) − 3[
(c)]2 − 3c2 + 8c

−c − 3
(c) + √−2c
(c) − 3[
(c)]2 − 3c2 + 8c
.

Then, d
dc

k(c) > 0.

Proof. We have that

dk

dc
(c) = 1

2k
· −6σ − 2ν2

√
σ(ν + √

σ)2
· d

dc

(c) + 1

2k
· −2

√
σ − 2νσ− 1

2 (−α − 3c + 4)

(ν + √
σ)2

,

where ν ≡ ν(c) = −c − 3
(c) and σ ≡ σ(c) = −2c
(c) − 3[
(c)]2 − 3c2 + 8c.
Now, denoting ρ ≡ ρ(c) = −
(c) − 3c + 4 and using (15), we get that

dk

dc
(c) > 0 ⇔ 1

2k
· −6σ − 2ν2

√
σ(ν + √

σ)2

{
−4K[−1 + σ− 1

2 ρ]
(ν + √

σ)
3
2

+ 8

(
dK

dk

)[
1

2k
· −2

√
σ − 2νσ− 1

2 ρ
√ 5

2

]}

(ν + σ)
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> − 1

2k
· −2

√
σ − 2νσ− 1

2 ρ

(ν + √
σ)2

{
−4K(3

√
σ − ν)

√
σ(ν + √

σ)
3
2

+ 8

(
dK

dk

)[
1

2k
· 6σ + 2ν2

√
σ(ν + √

σ)
5
2

]}
.

The above inequality is true, if and only if

[−6σ − 2ν2] · [1 − σ− 1
2 ρ] > [−2

√
σ − 2νσ− 1

2 ρ] · [3√
σ − ν]

or, equivalently,

3σ
1
2 ρ − νσ

1
2 − ν2 + 3νρ > 0.

Therefore, as 3σ
1
2 ρ − νσ

1
2 = −σ

1
2 [8c − 12] > 0 and −ν2 + 3νρ = −ν[8c − 12] > 0 the proof 

is complete. �
3. Orbital instability of snoidal waves with mean zero for the mCH equation

In this section we shall show that the orbit Oφc is unstable in the H 1
per([0, L])-sense by the 

flow of the mCH equation. By orbital stability, we will understand that for each ε > 0 there 
is δ = δ(ε) > 0 such that if infr∈R ||u0 − φc(· + r)||1 < δ, then the solution u(t) of (1) with 
u(0) = u0 satisfies

inf
r∈R ||u(t) − φc(· + r)||1 < ε

for all t for which u(t) exists. Otherwise, we will say that the orbit Oφc is unstable.

Theorem 3. Let L > 0 fixed. Given u0 ∈ Hs([0, L]), s > 3
2 , there exists a maximal t0 > 0 and a 

unique solution u(x, t) to mCH equation (1) such that

u ∈ C([0, t0),H
s([0,L])) ∩ C1([0, t0),H

s−1([0,L])).

Moreover, the solution depends continuously on the initial data.

Proof. See Hakkaev, Iliev and Kirchev in [24]. �
3.1. Hamiltonian structure

To u(t) ∈ H 1
per([0, L]), with t ≥ 0, we can write (1) in the form

ut = J1E
′(u), (18)

where J1 = ∂x(1 − ∂2
x )−1 is a skew-symmetric linear Hamiltonian operator and E′ denotes 

the derivative of Gâteaux of functional E in (4), calculated in relation to the inner product 
of L2

per([0, L]).
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For the convenience of the reader, we present the Lemma below.

Lemma 1. The smooth functionals E(u), F(u) and V (u) in (4) are conserved quantities in time 
to mCH equation.

Proof. Initially, from (1) we have

d

dt
V (u) =

L∫
0

ut dx =
L∫

0

uuxxx dx =
L∫

0

(uuxx)x − uxuxx dx = 0.

Now, multiplying (1) by u and integrating on the compact [0, L], we get

d

dt
F (u) =

L∫
0

uut + uxuxt dx =
L∫

0

uut − uuxxt dx = 0.

To show that E(u) is invariant in time, we will use the Hamiltonian formulation (18). Note 
that

d

dt
E(u(t)) = 〈E′, ut 〉 = 〈E′(u), J1E

′(u)〉 = −〈J1E
′,E′(u)〉

and since J1 is skew-symmetric the result follows. �
Remark 2. It should be noted that applying the method of Grillakis, Shatah and Strauss, [22,23], 
directly to problem (18), requires certain subtlety. The main reason emerges from the fact that 
J1 it’s not onto or, even less, one-to-one. In [22], according to the authors themselves, it’s not 
necessary J1 to be onto since the periodic traveling wave solution φc belong to the range of J1. 
Already to overcome the difficulty of J1 be not one-to-one in [23], Deconinck and Kapitula [17], 
considered general equations of the form

ut = JE ′(u), u(0) = u0

in a Hilbert space X, where J : X → range(J ) ⊂ X is skew-symmetric and E : X → R is a 
functional of class C2, restricted to the following closed subspace of mean zero,

V=
⎧⎨
⎩f ∈ L2([0,L]) / [f ] = 1

L

L∫
0

f (x) dx = 0

⎫⎬
⎭ ,

which for our study makes perfect sense, since we are considering periodic traveling waves φc

with mean zero.
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3.2. Spectral analysis

In this section we study the spectral properties associated to the periodic eigenvalue problem 
considered on [0, L]

⎧⎨
⎩
Hcψ := [(φc − c)∂2

ξ + φ′
c∂ξ + c − 3φ2

c + φ′′
c ]ψ = λψ

ψ(0) = ψ(L)

ψ ′(0) = ψ ′(L),

(19)

where c ∈ (0, 1) is such that [c2 − 3c] < − 32π4

L4 and φc is the L-periodic snoidal wave (9) given 
by Theorem 2.

The system (19) characterizes a periodic Sturm–Liouville problem with functions p = c −
φc > 0, q = c − 3φ2

c +φ′′
c and ω = 1 in L1((0, L), R) (see Appendix). Moreover, from Floquet’s 

theory applied to the periodic eigenvalue problem (19) related to the following semi-periodic 
eigenvalue problem considered on [0, L]:

⎧⎨
⎩
Hcψ = μψ

ψ(0) = −ψ(L)

ψ ′(0) = −ψ ′(L),

(20)

implies that the spectrum of Hc is real and purely discrete and, denoting by {λn}n≥0 and 
{μn+1}n≥0 the eigenvalues of Hc with periodic bounded values and semi-periodic respectively, 
it satisfies the following sequence

−∞ < λ0 < μ1 ≤ μ2 < λ1 ≤ λ2 < μ3 ≤ μ4 < λ3 ≤ λ4 < · · · , (21)

with λn, μn+1 → +∞ when n → +∞ and λ0 with simple multiplicity (see Appendix, Theo-
rem 4).

In addition, before establishing our next theorem, denoting respectively ϕn and ψn+1 by the 
eigenfunctions associated with the eigenvalues λn and μn+1, we note that the number of zeros of 
ϕn and ψn+1 is determined in the following form (see Appendix, Theorem 4)

ϕ0 has no zeros in [0,L],
ϕ2n+1 and ϕ2n+2 have each one exactly 2n + 2 zeros in [0,L),

ψ2n+3 and ψ2n+4 have each one exactly 2n + 3 zeros in [0,L).

(22)

Proposition 2. Let Hc be the linear operator defined on H 1
per([0, L]) by (19). Then,

(i) the first three eigenvalues of Hc are simple;
(ii) the second or the third eigenvalue of Hc is respectively λ1 = 0 or λ2 = 0, with λ1 < λ2.

Proof. Replacing u(x, t) = φc(x − ct) in (1), we obtain

Hcφ
′
c = (φc − c)φ′′′

c + 2φ′
cφ

′′
c + cφ′

c − 3φ2
c φ′

c = 0.

So, φ′
c is the eigenfunction associated to eigenvalue null. Since φc is a periodic function that 

assumes its maximum and minimum values, it follows that φ′
c has only two zeros in [0, L) and 
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so, by (22), we have that φ′
c = ϕ1 �= ϕ2, or φ′

c = ϕ2 �= ϕ1 or φ′
c = ϕ1 = ϕ2, that is, (21) is one of 

the three forms below:

0 = λ1 < λ2, or λ1 < λ2 = 0 or λ1 = λ2 = 0.

We’ll see that only the first two possibilities can happen, showing that the eigenvalue λ = 0
is simple. For this, suppose that there exist f1 and f2 eigenfunctions associated to eigenvalue 

λ = 0. As we can see, using the Sturm–Liouville operator L := − d
dx

(
p(x)

dy
dx

)
+ q(x)y(x)

0 =
∫

L[f1]f2 = −p[f ′
1f2 − f1f

′
2]

and so f ′
1f2 − f1f

′
2 = 0 because p > 0. Thus, λ = 0 is simple.

Therefore, it follows that λ1 < λ2 both with multiplicity equal to one (see Appendix, Theo-
rem 4). �

The next result completes the spectral analysis for the operator Hc and show that eigenvalue 
λ1 in (21) is exactly zero, that is, there is a single negative eigenvalue in spectrum of Hc.

Proposition 3. Let L > 0 be an arbitrary but fixed and large enough constant. Consider u(x, t) =
φc(x − ct), with c ∈ (0, 1) such that [c2 − 3c] < − 32π4

L4 , the periodic snoidal wave solution with 
mean zero for equation (1). Then, there exists k1 ∈ (0, 1) small such that, writing c ≡ c(k) as 
in (27), the operator Hc(k) has only a negative eigenvalue which is also simple, for all k ∈ (0, k1).

Proof. Initially, we write the eigenvalue equation Hc(k)ψ = λψ in (19) as

a2ψ
′′ + a1ψ

′ + a0ψ = 0,

where a2 ≡ a2(ξ) = φc − c, a1 ≡ a1(ξ) = φ′
c and a0 ≡ a0(ξ) = c − 3φ2

c + φ′′
c − λ. So, using the 

transformation [6]

ψ(ξ) = exp

⎛
⎝−

L∫
0

a1(ξ)

2a2(ξ)
dξ

⎞
⎠ · u(ξ),

we obtain a new eigenvalue equation without the term with u′,

Lcu(ξ) := a2(ξ)u′′(ξ) − r(ξ)u(ξ) = λu(ξ), (23)

where r(ξ) = −φ′′
c

2 − (φ′
c)

2

4(φc−c)
− c + 3φ2

c .

Now, let’s look at the periodic eigenvalue problem in H 1
per([0, L]),

⎧⎨
⎩
Lcu = λu

u(0) = u(L)

u′(0) = u′(L),
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where Lc was defined in (23). This system was studied by Dubrovin [19] and Novikov [31] for 
more general Lc operators (see Appendix). To our problem, we have n = 2 and q2(ξ) = a2(ξ)

in (43) and (44). Therefore, to equation

−u′′ + (φc − c)(ξ)u = υu

(see the auxiliary Dirichlet problem (44)), we have after an integration by parts in the variable ξ ,

υ = ||u′||2 + ∫ L

0 (φc − c)u2

||u||2 . (24)

Also, as A0 ≤ α0 ≤ B0 and α0 ≤ φc ≤ β0 we get

−4c − 2
√−2c2 + 6c

3
= A0 − c ≤ φc − c < 0.

Finally, writing c = c(k) as in (27), we see that there is k1 ∈ (0, 1) small such that for 
k ∈ (0, k1) the left side of the inequality above tends to zero when we take L large enough. 
Then, by continuity, υ ≥ 0 in (24). Note that all eigenvalues in the more general problem (44)
are negatives, independently of the number of gaps (see Appendix). In particular, this shows that 
υ1 ≥ 0 to Dirichlet problem (44) with two gaps, Fig. 2.

So, since zero is a eigenvalue in (19) and λ1 < υ1 < λ2, it follows from Proposition 2 that 
λ1 = 0 in (21). �

We now define the function d by

d(c) = E(φc(·)) + cF (φc(·)) (25)

to prove the next proposition which is the heart of Theorem 1 in this work.

Proposition 4 (Concavity of d(c)). Let L > 0 be an arbitrary but fixed and large enough con-

stant. Consider u(x, t) = φc(x − ct), with c ∈ (0, 1) such that [c2 − 3c] < − 32π4

L4 , the periodic 
snoidal wave solution with mean zero for equation (1). Then, there exists k2 ∈ (0, 1) small such 
that

c ≡ c(k) = 3L2 − √
9L4 − 512[(1 + k2)2 + 3(1 − k2)2]K4

2L2 , ∀k ∈ (0, k2), (26)

and d(c) is a concave function.

Proof. By (13) we have that ν +√
σ = 64K2

L2 , and by (12) we have that ν −√
σ = 64k2K2

L2 , where 
ν ≡ ν(α0, c) = −c − 3α0 and σ ≡ σ(α0, c) = −2cα0 − 3α2

0 − 3c2 + 8c. So, we obtain that

ν = 32(1 + k2)K2

and
√

σ = 32(1 − k2)K2

.

L2 L2
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Therefore, solving the system

⎧⎨
⎩ −c − 3α0 = 32(1+k2)K2

L2

−2cα0 − 3α2
0 − 3c2 + 8c = 322(1−k2)2K4

L4

we conclude that

c = 3L2 − √
9L4 − 512[(1 + k2)2 + 3(1 − k2)2]K4

2L2 (27)

and

α0 = −3L2 − 64(1 + k2)K2 + √
9L4 − 512[(1 + k2)2 + 3(1 − k2)2]K4

6L2 .

Now, by (5) and since φc has mean zero, we get

d ′(c) =
〈
E′(φc) + cF ′(φc),

d

dc
φc

〉
+ F(φc) = F(φc).

So, from (4) we see that

d ′′(c) = d

dc

⎛
⎝1

2

L∫
0

φ2
c + (φ′

c)
2 dξ

⎞
⎠ (28)

and, using the equation (7), we can rewrite (28) as follows

d ′′(c) = d

dc

⎡
⎣1

4

L∫
0

φ3
c + (2 + c)φ2

c + 2(2Aφc − c2) + c3 dξ

⎤
⎦ .

Note that

d

dc

⎛
⎝1

4

L∫
0

2(2Aφc − c2) + c3 dξ

⎞
⎠ = L

4
[3c2 − 4c]

and yet,

d

dc

⎛
⎝1

4

L∫
φ3

c + (2 + c)φ2
c dξ

⎞
⎠ = d

dc

⎛
⎝ L∫

φ3
c dξ

⎞
⎠ + (2 + c)

d

dc

⎛
⎝ L∫

φ2
c dξ

⎞
⎠ +

L∫
φ2

c dξ.
0 0 0 0
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Therefore, to prove this proposition is enough to show that

d

dc

⎛
⎝ L∫

0

φ3
c dξ

⎞
⎠ + (2 + c)

d

dc

⎛
⎝ L∫

0

φ2
c dξ

⎞
⎠ < 0 and

L

4
[3c2 − 4c] +

L∫
0

φ2
c dξ < 0. (29)

For this, using the explicit solution (9) and the formulas 310.02, 312.02, 312.04 and 312.05 
presented in [1,7], together with the periodicity of the functions sn2, sn4 and sn6, we have

L∫
0

φ2
c dξ = −1024K2

L3 (K2 − 2KE + E2) + 1024K3

3L3 (k2K − 2k2E + 2K − 2E) (30)

and

L∫
0

φ3
c dξ = −32768K3

L5
(K3 − 3K2E + 3KE2 − E3)

+ 98304K3

L5
(K3 − 3K2E + 2KE2 + KE − E2) (31)

− 16384K4

L5
(2k2K2 − 6k2KE − 8KE + 4k2E2 + 4E2 + 4K2)

+ 16384K5

15L5
(30k6K − 58k4K − 18k2K + 16K − 48k4E − 26k2E − 16E)

Taking the derivatives of the expressions (30) and (31) with respect to the parameter c, we see 
that

d

dc

⎛
⎝ L∫

0

φ3
c dξ

⎞
⎠ + (2 + c)

d

dc

⎛
⎝ L∫

0

φ2
c dξ

⎞
⎠ = g1(k, c) · dk

dc

with

g1(k, c) := K2

L5k(1 − k2)

[
−2048(2 + c)L2

K
m1(k) + 2048(2 + c)L2m2(k)

+ 1024(2 + c)L2m3(k) + 1024(2 + c)L2Km4(k) − 98304m5(k) − 98304Km6(k)

+ 294912m7(k) + 98304Km8(k) − 131072Km9(k) + 32768K2m10(k)

+ 32768K2

3
m11(k) + 32768K3

15
m12(k)

]
, (32)

where

m1(k) := 3EK2 − 3E2K + E3 + K3k2 − 2EK2k2 + E2Kk2 − K3,

m2(k) := E2k2 − EKk2,
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m3(k) := K2k4 − 2KEk4 + K2k2 + KEk2 − 2E2k2 + 4KE − 2E2 − 2K2,

m4(k) := 2Ek4 − Kk4 − Ek2 + Kk2,

m5(k) := 4EK3 − 6E2K2 + 4E3K − E4 + K4k2 − 3K3Ek2 + 3K2E2k2 − KE3k2 − K4,

m6(k) := E3k2 − 2E2Kk2 + EK2k2,

m7(k) := K4k2 − 3K3Ek2 + 2K2E2k2 + K2Ek2 − KE2k2 + 4K3E − 5K2E2 + 2KE3

+ 2KE2 − E3 − K4 − K2E,

m8(k) := 6E2Kk2 − 13EK2k2 + 6K3k2 − 2E2k2 + 4EKk2 − K2k2 + 2E3 − 12E2K

+ 16EK2 − 6K3 + 3E2 − 4EK + K2,

m9(k) := K3k4 − 3K2Ek4 + 2KE2k4 − 3KE2k2 + K3k2 − 6KE2 + 2E3k2 + 2E3

+ 6K2E − 2K3,

m10(k) := 8E2k4 − 10EKk4 + 3K2k4 − E2k2 + 4EKk2 − 3K2k2,

m11(k) := 15K2k8 − 44K2k6 + 20K2k4 + 17K2k2 − 9KEk6 − 18KEk4 − 4KEk2

+ 16KE − 24E2k4 − 13E2k2 − 8E2 − 8K2,

m12(k) := −75Kk8 + 135Ek6 + 138Kk6 − 110Ek4 − 67Kk4 − 40Ek2 + 4Kk2.

Now, for c ∈ (0, 1) we know, by the Proposition 1, that dk
dc

> 0, then to show the first inequality 
in (29) it’s enough to prove that g1(k, c) < 0.

Note that m1(k) = k(1 − k2)K ′[K − E]2 > 0, m2 = k2E(E − K) < 0 and m4 = k2(E −
2Ek′ 2 + Kk′ 2) = k2[E(1 − k′ 2) + k′ 2(K − E)] > 0. In addition, using the power series expan-
sions of the Jacobi elliptic functions K(k) and E(k) presented in [1,7],

K(k) = π

2

(
1 + 1

4
k2 + 9

64
k4 + 25

256
k6 + · · ·

)

and

E(k) = π

2

(
1 − 1

4
k2 − 3

64
k4 − 5

256
k6 + · · ·

)
,

we have

m3(k) = k(1 − k2)

(
9

16
πk4 + 15

64
πk6 + 35

512
πk8 +O(k8)

)
> 0,

where O(k8) is a polynomial with positive constant coefficients. So, since A0 < α0 < B0, we 
obtain from (13),

8π2

√−2c2 + 6c
< L2 <

64√−2c2 + 6c
K2. (33)

Consequently, from (32) and (33), g1(k, c) < 0 if the same occurs to g2(k, c), with
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g2(k, c) := − 214π2(2 + c)

K
√−2c2 + 6c

m1(k) + 214π2(2 + c)√−2c2 + 6c
m2(k) + 216(2 + c)K2

√−2c2 + 6c
m3(k)

+ 216(2 + c)K3

√−2c2 + 6c
m4(k) − 2153m5(k) − 2153Km6(k)

+ 21532m7(k) + 2153Km8(k) − 217Km9(k) + 215K2m10(k)

+ 215K2

3
m11(k) + 215K3

15
m12(k).

Thus, using again the power series expansions of the Jacobi elliptic functions K(k) and E(k), 
we can rewrite g2(k, c), equivalently, by

g2(k, c) = −221 · 3

5
π4k2 + k4O(k, c)

where O(k, c) is a even polynomial function in k with real coefficients to c ∈ (0, 1). So, since for 
k ∈ (0, 1) sufficiently small we have g2(k, c) < 0, Fig. 1, follows the first inequality in (29).

Fig. 1. Graph of g2(k, c).

Finally, to prove the second inequality in (29) it’s enough to observe that for c(k), defined 
in (27),

L

4
[3c2 − 4c] +

L∫
0

φ2
c dξ = L

4
[3c2(k) − 4c(k)] − 1024K2

L3 (K2 − 2KE + E2)

+ 1024K3

3L3 (k2K − 2k2E + 2K − 2E)

→ 15L4 − 192π4 − 5L2
√

9L4 − 128π4
, when k → 0,
8L3
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and by continuity the result follows to L large enough.
Then, there exists k2 ∈ (0, 1) such that d(c(k)) is a concave function for all k ∈ (0, k2). �

3.3. Proof of Theorem 1

In this section, we will prove the orbital instability of the snoidal wave solutions with mean 
zero, φc(k), to equation (1) in the subspace of H 1

per([0, L]) of functions with mean zero, for k
small and L large enough, using the method developed by Grillakis, Shatah and Strauss in [23].

Denote by n(Hc) the number of negative eigenvalues of Hessian operator Hc defined in (19)
and p(d ′′(c)) the number of positive eigenvalues of the function d ′′(c). By Proposition 3, we see 
that there exists k1 ∈ (0, 1) such that for all k ∈ (0, k1), n(Hc(k)) = 1. Moreover, by Proposition 4, 
there exists k2 ∈ (0, 1) such that for all k ∈ (0, k2) we have d ′′(c(k)) < 0 and so, p(d ′′(c(k))) = 0.

Thus, taking k0 = min{k1, k2}, we conclude that for all k ∈ (0, k0),

n(Hc(k)) − p(d ′′(c(k))) = 1

is an odd number. Then we are in position to apply the Instability Theorem in [23] to deduce 
Theorem 1.
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Appendix A

In this appendix we will talk about some concepts used so far without further explanation. In 
accordance with [7], we started setting the normal elliptic integral of the first kind

F(φ, k) = Fk(φ) =
y∫

0

dt√
(1 − t2)(1 − k2t2)

=
φ∫

0

dϕ√
(1 − k2 sin2 ϕ)

, (34)

where y = sinφ and the normal elliptic integral of the second kind

E(φ, k) = Ek(φ) =
y∫

0

√
(1 − k2t2)√
(1 − t2)

dt =
φ∫

0

√
1 − k2sen2ϕ dϕ.

The parameter k is called the modulus of elliptic integral and k′ 2 = 1 − k2 its complementary 
modulus, both may take any real or imaginary value. Here we wish to take 0 < k2 < 1. Moreover, 
the variable φ is called argument and it is usually taken belonging to 

[−π
2 , π

2

]
.

The elliptic integral above in their algebraic forms possess the following properties: the first 
is finite for all real (or complex) values of y, including infinity; the second has a simple pole of 



1964 A. Darós, L.K. Arruda / J. Differential Equations 266 (2019) 1946–1968
order 1 for y = +∞. When φ = π
2 , the integrals F

(
π
2 , k

)
and E

(
π
2 , k

)
are said to be complete

and in this case we write

K ≡ K(k) ≡ F
(
k,

π

2

)
and E ≡ E(k) ≡ E

(
k,

π

2

)
.

Also, some important values of K and E are: K(0) = E(0) = π
2 , E(1) = 1 and K(1) = +∞. For 

k ∈ (0, 1), one has K ′(k) > 0, K ′′(k) > 0, E′(k) < 0, E′′(k) < 0 and E(k) < K(k). Moreover, 
E(k) + K(k) and E(k) · K(k) are strictly increasing function on (0, 1) and,

dK(k)

dk
= E(k) − k′ 2K(k)

kk′ 2 and
dE(k)

dk
= E(k) − K(k)

k
.

We define the Jacobi Elliptic Functions using the inverse function of the elliptic integral of 
the first kind. This inverse function exists because that

u(y1, k) ≡ u =
y1∫

0

dt√
(1 − t2)(1 − k2t2)

=
φ∫

0

dϕ√
1 − k2 sin2 ϕ

= F(k,φ),

is a strictly increasing function of the real variable y1 and, in its algebraic form, this integral 
has the property of being finite for all values of y1. This inverse φ = am(u, k) = amu is called 
amplitude function.

There are several Jacobi elliptic functions that can be seen in [7], but here we will only define 
the functions snoidal, cnoidal and dnoidal respectively, by sn, cn and dn as follows

sn(u, k) = sin am(u, k) = sinφ,

cn(u, k) = cos am(u, k) = cosφ,

dn(u, k) = √
1 − k2sn2(u, k).

These functions have a real period, namely 4K , 4K and 2K , respectively. The most important 
properties of the Jacobi elliptic functions which have been used in this work are summarized by 
the formulas given below.

1. Fundamental relations:

sn2u + cn2u = 1,

m2sn2u + dn2u = 1,

m′ 2sn2u + cn2u = dn2u,

−1 � snu � 1, −1 � cnu � 1, m′ 2 � dnu � 1.

2. Special values:

sn(−u) = −sn(u), cn(−u) = cn(u), dn(−u) = dn(u),

sn0 = 0, cn0 = 1, snK = 1, cnK = 0,

sn(u + 4K) = snu, cn(u + 4K) = cn, dn(u + 2K) = dnu,

sn(u + 2K) = −snu, cn(u + 2K) = −cn.
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Finally, we have

sn(u,0) = sinu, cn(u,0) = cosu,

sn(u,1) = tanhu, cn(u,1) = sechu.

3. Differentiation of the Jacobi elliptic functions:

∂

∂u
sn(u) = cnudnu,

∂

∂u
cn(u) = −snudnu,

∂

∂u
dn(u) = −k2snucnu.

Now, based on the concepts presented in [33] and [10], let’s talk a little about the Sturm–
Liouville problem and the Floquet theory. In 1800, due of the work started by Jacques Charles 
François Sturm (1803–1855) and Joseph Liouville (1809–1882) about the linear differential op-
erator of second order

L[y(x)] = 1

ω

[
− d

dx

(
p(x)

dy

dx

)
+ q(x)y(x)

]

with weight peso ω, the differential equation

− d

dx

(
p(x)

dy

dx

)
+ q(x)y(x) = f (x)

to a subset J = (a, b) ⊂ R with −∞ ≤ a < b ≤ +∞ and coefficients satisfying

1

p
,q,ω ∈ L1(J,R), (35)

became known as Sturm–Liouville equation and generalizes the Hill equation

−(py′)′ + qy = λωy em J = (a, b), −∞ ≤ a < b ≤ +∞, (36)

where also to the rest of appendix we denote y′ = dy
dx

, and (y[1])′ = d
dx

(py′). In particular, when 
the coefficient p(x) is periodic we will say that the Hill equation is periodic. By the uniqueness 
of the solution of the Sturm–Liouville equation we can rewrite the Hill equation (36) in the 
equivalent system X(t) = eAt , where

Ẋ = AX, and A =
[

0 1
p

q − λω 0

]
,

obtaining that all the good properties of the exponential function are still valid in this case. 
Moreover, to insert boundary conditions we impose that

AY(a) + BY(b) = 0, (37)
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where A, B ∈ M2×2(C) and Y =
[

y

y[1]
]

. The dichotomy of the boundary conditions consists 

of data that we say are separated or coupled. The separation condition is classified in the same 
way as sounds its name, that is, we can separate the condition (37), equivalently, in two other 
conditions

A1y(a) + A2y
[1](a) = 0 and B1y(b) + B2y

[1](b) = 0,

with �A = (A1, A2) �= 0 and �B = (B1, B2) �= 0 to exclude the trivial solution. The coupled bound-
ary conditions take the form

Y(a) = eiγ KY(b), with K ∈ SL(2,C), γ ∈ (−π,π],

where SL(2, C) is the special linear group of matrices 2 × 2 with real or complex entries. In 
particular, to the matrix K with real entries, if γ = 0 we say that this is a coupled real condition
and if γ �= 0 it will be a coupled complex condition. In both cases we assume

rank(A|B) ≡ rank

[
a11 a12 b11 b12
a21 a22 b21 b22

]
= 2, (38)

to make sure that there is a nonzero solution to the Sturm–Liouville problem and we define as 
self-adjoint condition and we say that the boundary value problem explained above with the 
additional hypothesis

AEA∗ = BEB∗, where E =
[

0 −1
1 0

]
, (39)

is a self-adjoint Sturm–Liouville problem or, in the periodic case, a self-adjoint periodic Sturm–
Liouville problem.

From [33], considering the boundary condition (37) with matrix A and B satisfying (38) and 
(39) we have that (37) is just one of three ways: separated, real coupled and complex coupled. 
Moreover, if the self-adjoint periodic Sturm–Liouville problem with equation (36), coefficients 
satisfying (35) and boundary conditions (37) satisfying (38) and (39), is such that p is a function 
of the real values in J and ω > 0 a.e. in J , then all eigenvalues λ are real, isolated, without 
accumulation point and there is an infinite but countable number of them.

Now we will enunciate a theorem that was used in this work in the study of spectral theory 
and that can be found with all the details in [10]. This result establishes a relation between the 
coefficients of equation (36), more specifically p(x), and the periodic Sturm–Liouville problem. 
So, establishing the periodic boundary conditions

y(0) = y(1) , y ′(0) = y′(1) (40)

and, semi-periodic,

y(0) = −y(1) , y′(0) = −y′(1), (41)

to periodic problem we have the theorem below.
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Theorem 4. The eigenvalues for (36) with the periodic boundary conditions (40), λn with n ≥ 0, 
and for (36) with the semi-periodic boundary conditions (41), μn with n ≥ 1, form sequences 
such that

−∞ < λ0 < μ1 ≤ μ2 < λ1 ≤ λ2 < μ3 ≤ μ4 < λ3 ≤ λ4 < · · · ,

with λn, μn → +∞, when n → +∞. For λ = λ0 there exists a unique eigenfunction, ϕ0. If 
λ2n+1 < λ2n+2 for some n ≥ 0, then there is a unique eigenfunction ϕ2n+1 at λ = λ2n+1 and a 
unique eigenfunction ϕ2n+2 at λ = λ2n+2. If, however, λ2n+1 = λ2n+2, then there are two inde-
pendent eigenfunctions ϕ2n+1, ϕ2n+2 at λ = λ2n+1 = λ2n+2. Similar results hold for the cases 
μ2n+1 < μ2n+2 and μ2n+1 = μ2n+2, where the eigenfunctions are denoted by ψ2n+1 and ψ2n+2. 
Furthermore, ϕ0 has no zeros in [0, 1]; ϕ2n+1 and ϕ2n+2, n ≥ 0, each have exactly 2n + 2 zeros 
in [0, 1); and ψ2n+1 and ψ2n+2, n ≥ 1, each have exactly 2n + 1 zeros in [0, 1).

In addition to the references already cited, other results of spectral theory to the Sturm–
Liouville problem as well as criterion to multiplicity of eigenvalues, can also be found in [26].

Finally, we consider the following problem of periodic eigenvalues in H 1
per([0, L])

⎧⎨
⎩
Lcu = λu

u(0) = u(L)

u′(0) = u′(L).

(42)

Dubrovin [19] and Novikov [31] studied this problem using the Floquet theory to the general 
operator

Lc = qn(ξ)
d(n)

dξ (n)
+ qn−2(ξ)

d(n−2)

dξ (n−2)
+ · · · + q1(ξ)

d

dξ
+ q0(ξ) (43)

and established that the spectrum of such an operator has n finite intervals (or, for simplicity, n
gaps) and one infinite interval. The endpoints of these intervals are eigenvalues of operator Lc

in increasing order, as shown in Fig. 2. Also, there is an infinite number of isolated eigenvalues 
inside the interval of infinite length which have multiplicity equal to two. Therefore, considering 
the Dirichlet problem

{ −u′′ + qn(ξ)u = υu

u(0) = u(L) = 0,
(44)

whose spectrum is a discrete set, {υk}k∈N, they concluded that all less a quantity n of these 
points belongs to the infinite interval previously established and each one these n remaining 
points belongs to a different gap of the spectrum of operator Lc, Fig. 2.

Fig. 2. Spectrum of operator Lc with two gaps.
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