期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:257
Existence and uniqueness of global weak solutions to a Cahn-Hilliard-Stokes-Darcy system for two phase incompressible flows in karstic geometry
Article
Han, Daozhi1  Wang, Xiaoming1  Wu, Hao2,3 
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
关键词: Cahn-Hilliard-Stokes-Darcy system;    Two phase flow;    Karstic geometry;    Interface boundary conditions;    Diffuse-interface model;    Well-posedness;   
DOI  :  10.1016/j.jde.2014.07.013
来源: Elsevier
PDF
【 摘 要 】

We study the well-posedness of a coupled Cahn-Hilliard-Stokes-Darcy system which is a diffuse-interface model for essentially immiscible two phase incompressible flows with matched density in a karstic geometry. Existence of finite energy weak solution that is global in time is established in both 2D and 3D. Weak strong uniqueness property of the weak-solutions is provided as well. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2014_07_013.pdf 611KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次