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Fig. 1. Schematic illustration of the domain in 2D.

1. Introduction

Applications such as contaminant transport in karst aquifer, oil recovery in karst oil reservoir, 
proton exchange membrane fuel cell technology and cardiovascular modelling require the cou-
pling of flows in conduits with those in the surrounding porous media. Geometric configurations 
that contain both conduit (or vug) and porous media are termed karstic geometry. Moreover, 
many flows are naturally multi-phase and hence multi-phase flows in the karstic geometry are 
of interest. Despite the importance of the subject, little work has been done in this area. Our 
main goal here is to analyze a diffuse-interface model for two phase incompressible flows with 
matched densities in the karstic geometry that was recently derived in [1] via Onsager’s ex-
tremum principle.

To fix the notation, let us assume that the two-phase flows are confined in a bounded connected 
domain Ω ⊂ Rd (d = 2, 3) of C2,1 boundary ∂Ω . The unit outer normal at ∂Ω is denoted by n. 
The domain Ω is partitioned into two non-overlapping regions such that Ω = Ωc ∪Ωm and Ωc ∩
Ωm = ∅, where Ωc and Ωm represent the underground conduit (or vug) and the porous matrix 
region, respectively. We denote by ∂Ωc and ∂Ωm the boundaries of the conduit and the matrix 
part, respectively. Both ∂Ωc and ∂Ωm are assumed to be Lipschitz continuous. The interface 
between the two parts (i.e., ∂Ωc ∩ ∂Ωm) is denoted by Γcm, on which ncm denotes the unit 
normal to Γcm pointing from the conduit part to the matrix part. Then we denote Γc = ∂Ωc\Γcm

and Γm = ∂Ωm\Γcm with nc, nm being the unit outer normals to Γc and Γm. We assume that 
both Γm and Γcm have positive measure (namely, |Γm| > 0, |Γcm| > 0) but allow Γc = ∅, i.e. Ωc

can be enclosed completely by Ωm. A two-dimensional geometry is illustrated in Fig. 1. When 
d = 3, we also assume that the surfaces Γc, Γm, Γcm have Lipschitz continuous boundaries. On 
the conduit/matrix interface Γcm, we denote by {τ i} (i = 1, ..., d − 1) a local orthonormal basis 
for the tangent plane to Γcm.

In the sequel, the subscript m (or c) emphasizes that the variables are for the matrix part (or 
the conduit part). We denote by u the mean velocity of the fluid mixture and by ϕ the phase 
function related to the concentration of the fluid (volume fraction). The following convention 
will be assumed throughout the paper

u|Ωm = um, u|Ωc = uc, ϕ|Ωm = ϕm, ϕ|Ωc = ϕc.
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Governing PDE system. To the best of our knowledge, the first diffuse-interface model for in-
compressible two-phase flows in karstic geometry with matched densities was recently derived 
in [1] by utilizing Onsager’s extremal principle (see references therein). Our aim in this paper 
is to study its well-posedness. Indeed, we can perform the analysis for a more general system, 
in which the Stokes equation can also be time-dependent. Thus, we shall consider the follow-
ing Cahn–Hilliard–Stokes–Darcy system (CHSD for brevity) coupled through a set of interface 
boundary conditions (see (1.16)–(1.22) below):

ρ0�∂tuc = ∇ ·T(uc,Pc) + μc∇ϕc, in Ωc, (1.1)

∇ · uc = 0, in Ωc, (1.2)

∂tϕc + uc · ∇ϕc = div
(
M(ϕc)∇μc

)
, in Ωc, (1.3)

um = −ρ0gΠ

ν(ϕm)
(∇Pm − μm∇ϕm), in Ωm, (1.4)

∇ · um = 0, in Ωm, (1.5)

∂tϕm + um · ∇ϕm = div
(
M(ϕm)∇μm

)
, in Ωm, (1.6)

where the chemical potentials μc, μm are given by

μj = γ

(
−ε�ϕj + 1

ε

(
ϕ3

j − ϕj

))
, j ∈ {c,m}. (1.7)

Here, the parameter � in (1.1) is a nonnegative constant. When � = 0, the system (1.1)–(1.6) re-
duces to the CHSD system derived in [1]. ρ0 represents the fluid density, and g is the gravitational 
constant. The parameter γ > 0 is related to the surface tension. We remark that the Stokes equa-
tion (1.1) can be viewed as low Reynolds number approximation of the Navier–Stokes equation, 
while the Darcy equation (1.4) can be viewed as the quasi-static approximation for the saturated 
flow model under the assumption that the porous media pressure adjusts instantly to changes in 
the fluid velocity [2,3].

In the diffuse-interface model of immiscible two phase flows, the chemical potential μ (see 
Eq. (1.7)) is given by the variational derivative of the following free energy functional

E(ϕ) := γ

∫
Ω

(
ε

2
|∇ϕ|2 + 1

ε
F (ϕ)

)
dx, (1.8)

where F(ϕ) is the Helmholtz free energy and usually taken to be a non-convex function of ϕ
for immiscible two phase flows, e.g., a double-well polynomial of Ginzburg–Landau type in our 
present case:

F(ϕ) = 1

4

(
ϕ2 − 1

)2
. (1.9)

Singular potential of Flory–Huggins type can be treated as well, see for instance [4]. The first 
term (i.e., the gradient part) of E is a diffusion term that represents the hydrophilic part of the 
free-energy, while the second term (i.e., the bulk part) expresses the hydrophobic part of the 
free-energy. The small constant ε in (1.8) is the capillary width of the binary mixture. As the 
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constant ε → 0, ϕ will approach 1 and −1 almost everywhere, and the contribution due to the 
induced stress will converge to a measure-valued force term supported only on the interface 
between regions {ϕ = 1} and {ϕ = −1} (cf. [5,6]). The nonlinear terms μc∇ϕc and μm∇ϕm in 
the convective Cahn–Hilliard equations (1.3) and (1.6) can be interpreted as the “elastic” force 
(or Korteweg force) exerted by the diffusive interface of the two phase flow. This “elastic” force 
converges to the surface tension at sharp interface limit ε → 0 at least heuristically (cf. e.g., 
[5,7]). Since the value of γ does not affect the analysis, we simply set γ = 1 throughout the rest 
of the paper. Likewise, we set the fluid density ρ0 and gravitational constant g to be 1 without 
loss of generality.

The two phase flow in the conduit part and matrix part is described by the Stokes equation 
(1.1) and the Darcy equation (1.4), respectively. In (1.1), the Cauchy stress tensor T is given by

T(uc,pc) = 2ν(ϕc)D(uc) − PcI

where D(uc) = 1
2 (∇uc + ∇T uc) is the symmetric rate of deformation tensor and I is the d × d

identity matrix. Besides, Pc and Pm stand for the modified pressures that also absorb the effects 
due to gravitation. The viscosity and the mobility of the CHSD model are denoted by ν and M, 
respectively. They are assumed to be suitable functions that may depend on the phase function ϕ
(see Section 2.3). M(ϕ) is taken to be the same (function of the phase function) for the conduit 
and the matrix for simplicity. In Eq. (1.4), Π is a d × d matrix standing for permeability of the 
porous media. It is related to the hydraulic conductivity tensor of the porous medium K through 
the relation Π = νK

ρ0g
. In the literature, K is usually assumed to be a bounded, symmetric and 

uniformly positive definite matrix but could be heterogeneous [8].
Next, we describe the initial boundary (or interface) conditions of the CHSD system 

(1.1)–(1.6).

Initial conditions. The CHSD system (1.1)–(1.6) is subject to the initial conditions

uc|t=0 = u0(x), in Ωc, (1.10)

ϕ|t=0 = ϕ0(x), in Ω. (1.11)

In particular, when � = 0, we do not need the initial condition (1.10) for uc .

Boundary conditions on Γc and Γm. The boundary conditions on Γc and Γm take the following 
form:

uc = 0, on Γc, (1.12)

um · nm = 0, on Γm, (1.13)

∂ϕc

∂nc

= ∂μc

∂nc

= 0, on Γc, (1.14)

∂ϕm

∂nm

= ∂μm

∂nm

= 0, on Γm. (1.15)

Interface conditions on Γcm. The CHSD system (1.1)–(1.6) is coupled through the following 
set of interface conditions:
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ϕm = ϕc, on Γcm, (1.16)

μm = μc, on Γcm, (1.17)

∂ϕm

∂ncm
= ∂ϕc

∂ncm
, on Γcm, (1.18)

∂μm

∂ncm
= ∂μc

∂ncm
, on Γcm, (1.19)

um · ncm = uc · ncm, on Γcm, (1.20)

−ncm · (T(uc,Pc)ncm
)= Pm, on Γcm, (1.21)

−τ i · (T(uc,Pc)ncm
)= αBJSJ

ν(ϕm)√
trace(Π)

τ i · uc, on Γcm, (1.22)

for i = 1, ..., d − 1.
The first four interface conditions (1.16)–(1.19) are simply the continuity conditions for the 

phase function, the chemical potential and their normal derivatives, respectively. Condition (1.20)
indicates the continuity in normal velocity that guarantees the conservation of mass, i.e., the 
exchange of fluid between the two sub-domains is conservative. Condition (1.21) represents the 
balance of two driving forces, the pressure in the matrix and the normal component of the normal 
stress of the free flow in the conduit, in the normal direction along the interface. The last interface 
condition (1.22) is the so-called Beavers–Joseph–Saffman–Jones (BJSJ) condition (cf. [9,10]), 
where αBJSJ ≥ 0 is an empirical constant determined by the geometry and the porous material. 
The BJSJ condition is a simplified variant of the well-known Beavers–Joseph (BJ) condition 
(cf. [11]) that addresses the important issue of how the porous media affects the conduit flow at 
the interface:

−τ i · (2νD(uc)
)
ncm = αBJ

ν√
trace(Π)

τ i · (uc − um), on Γcm, i = 1, ..., d − 1.

This empirical condition essentially claims that the tangential component of the normal stress 
that the free flow incurs along the interface is proportional to the jump in the tangential velocity 
over the interface. To get the BJSJ condition, the term −τ i · um on the right-hand side is sim-
ply dropped from the corresponding BJ condition. Mathematically rigorous justification of this 
simplification under appropriate assumptions can be found in [12].

There is an abundant literature on mathematical studies of single component flows in karstic 
geometry [2,13–24]. Those aforementioned mathematical works on the flows in karst aquifers 
treat the case of confined saturated aquifer where only one type of fluid (e.g., water) occupies 
the whole region exclusively. The mathematical analysis is already a challenge due to the com-
plicated coupling of the flows in the conduits and the surrounding matrix, which are governed 
by different physical processes, the complex geometry of the network of conduits as well as the 
strong heterogeneity.

The current work contributes to, to the authors’ best knowledge, a first rigorous mathemat-
ical analysis of the diffuse-interface model for two phase incompressible flows in the karstic 
geometry. In particular, we prove the existence of global finite energy solutions in the sense of 
Definition 2.1 to the CHSD system (1.1)–(1.22) (see Theorem 2.1). The proof is based on a 
novel semi-implicit discretization in time numerical scheme (3.1)–(3.5) that satisfies a discrete 
version of the dissipative energy law (2.2) (see Proposition 3.2 below). One can thus establish 



3892 D. Han et al. / J. Differential Equations 257 (2014) 3887–3933
the existence of weak solutions to the resulting nonlinear elliptic system via the Leray–Schauder 
degree theory (cf. [25,26]). Then the existence of global finite energy solutions to the original 
CHSD system follows from a suitable compactness argument. We point out that our numerical 
scheme (3.1)–(3.5) differs from the one proposed and studied by Feng and Wise [27] (for the 
Cahn–Hilliard–Darcy system in simple domain) in the sense that, among others, both the elastic 
forcing term μ∇ϕ in the Stokes/Darcy equations and the convection term u · ∇ϕ in the Cahn–
Hilliard equation are treated in a fully implicit way. As a consequence, we are able to prove the 
existence of finite energy solutions by only imposing the initial data ϕ0 ∈ H 1(Ω), whereas in 
[27] the authors have to assume ϕ0 ∈ H 2(Ω) (or at least H 1(Ω) ∩ L∞(Ω)), which is not natural 
in view of the basic energy law (2.2). On the other hand, this choice of discretization brings extra 
difficulties such that neither the variational approach in [28,27] nor the monotonicity method 
devised in [29] can be applied. Besides, the complexity of the domain geometry also motivates 
us to introduce an equivalent norm for the velocity field (Eq. (3.73)), which is necessary for the 
analysis in the case of stationary Stokes equation (� = 0). After the existence result is obtained, 
a weak–strong uniqueness property of the weak solutions is shown via the energy method (cf. 
Theorem 2.2 for the precise statement). We note that existence and uniqueness of strong solu-
tions to the coupled CHSD system (1.1)–(1.22) is beyond the scope of this manuscript and will 
be addressed in a forthcoming work.

It is worth mentioning that there are a lot of works on diffuse-interface models for immiscible 
two phase incompressible flow with matched densities in a single domain setting. For instance, 
concerning the Cahn–Hilliard–Navier–Stokes system (Model H), existence of weak solutions, 
existence and uniqueness of strong solutions and long time dynamics are established in [4,30–32]
and references therein. As for the Cahn–Hilliard–Darcy (also referred to as Cahn–Hilliard–Hele–
Shaw) system in porous media or in the Hele–Shaw cell, the readers are referred to [27,33–36]
for latest results.

The rest of this paper is organized as follows. In Section 2, we first introduce the appro-
priate functional spaces and derive a dissipative energy law associated with the CHSD system 
(1.1)–(1.22). After that, we present the definition of suitable weak solutions and state the main re-
sults of this paper. Section 3 is devoted to the existence of global finite energy weak solutions. We 
first obtain the existence of weak solutions to an implicit time-discretized system by the Leray–
Schauder degree theory. Then the existence of finite energy weak solutions to the original CHSD 
system follows from a compactness argument. Finally, in Section 4 we prove the weak–strong 
uniqueness property of the weak solutions.

2. Preliminaries and main results

2.1. Functional spaces

We first introduce some notations. If X is a Banach space and X′ is its dual, then 〈u, v〉 ≡
〈u, v〉X′,X for u ∈ X′, v ∈ X denotes the duality product. The inner product on a Hilbert space 
H is denoted by (·,·)H . Let Ω ⊂ Rd be a bounded domain, then Lq(Ω), 1 ≤ q ≤ ∞ denotes 
the usual Lebesgue space and ‖ · ‖Lq(Ω) denotes its norm. Similarly, Wm,q(Ω), m ∈ N, 1 ≤
q ≤ ∞, denotes the usual Sobolev space with norm ‖ · ‖Wm,p(Ω). When q = 2, we simply denote 
Wm,2(Ω) by Hm(Ω). Besides, the fractional order Sobolev spaces Hs(Ω) (s ∈ R) are defined as 
in [37, Section 4.2.1]. If I is an interval of R+ and X a Banach space, we use the function space 
Lp(I ; X), 1 ≤ p ≤ +∞, which consists of p-integrable functions with values in X. Moreover, 
Cw(I ; X) denotes the topological vector space of all bounded and weakly continuous functions 
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from I to X, while W 1,p(I, X) (1 ≤ q < +∞) stands for the space of all functions u such 
that u, du

dt
∈ Lp(I ; X), where du

dt
denotes the vector-valued distributional derivative of u. Bold 

characters are used to denote vector spaces.
Given v ∈ L1(Ω), we denote by v = |Ω|−1

∫
Ω

v(x)dx its mean value. Then we define the 
space L̇2(Ω) := {v ∈ L2(Ω) : v = 0} and v̇ = P0v := v − v the orthogonal projection onto 
L̇2(Ω). Furthermore, we denote Ḣ 1(Ω) = H 1(Ω) ∩ L̇2(Ω), which is a Hilbert space with inner 
product (u, v)Ḣ 1 = ∫

Ω
∇u ·∇vdx due to the classical Poincaré inequality for functions with zero 

mean. Its dual space is simply denoted by Ḣ−1(Ω).
For our CHSD problem with domain decomposition, we introduce the following spaces

H(div;Ωj) := {
w ∈ L2(Ωj )

∣∣∇ · w ∈ L2(Ωj )
}
, j ∈ {c,m},

Hc,0 := {
w ∈ H1(Ωc)

∣∣w = 0 on Γc

}
,

Hc,div := {w ∈ Hc,0 | ∇ · w = 0},
Hm,0 := {

w ∈ H(div;Ωm)
∣∣w · nm = 0 on Γm

}
,

Hm,div := {w ∈ Hm,0 | ∇ · w = 0},
Xm := Ḣ 1(Ωm).

We denote by (·,·)c, (·,·)m the inner products on the spaces L2(Ωc), L2(Ωm), respectively (also 
for the corresponding vector spaces). The inner product on L2(Ω) is simply denoted by (·,·). 
Then it is clear that

(u, v) = (um, vm)m + (uc, vc)c, ‖u‖2
L2(Ω)

= ‖um‖2
L2(Ωm)

+ ‖uc‖2
L2(Ωc)

,

where um := u|Ωm and uc := u|Ωc .

On the interface Γcm, we consider the fractional Sobolev spaces H
1
2

00(Γcm) and H
1
2 (Γcm) for 

(Lipschitz) surface Γcm when d = 3 or curve when d = 2 with the following equivalent norms 
(see [38, p. 66], or [39]):

‖u‖2

H
1
2 (Γcm)

=
∫

Γcm

|u|2dS +
∫

Γcm

∫
Γcm

|u(x) − u(y)|2
|x − y|d dxdy,

‖u‖2

H
1
2

00 (Γcm)

= ‖u‖2

H
1
2 (Γcm)

+
∫

Γcm

|u(x)|2
ρ(x, ∂Γcm)

dx,

where ρ(x, ∂Γcm) denotes the distance from x to ∂Γcm. The above norms are not equivalent ex-
cept when Γcm is a closed surface or curve (cf. [24]). If Γcm is a subset of ∂Ωc with positive 

measure, then H
1
2

00(Γcm) is a trace space of functions of H 1(Ωc) that vanish on ∂Ωc\Γcm. Simi-

larly in the vectorial case, we have H
1
2
00(Γcm) = Hc,0|Γcm . H

1
2

00(Γcm) is a non-closed subspace of 

H
1
2 (Γcm) and has a continuous zero extension to H

1
2 (∂Ωc). For H

1
2

00(Γcm), we have the follow-

ing continuous embedding result (cf. [17]): H
1
2 (Γcm) � H

1
2 (Γcm) � H− 1

2 (Γcm) � (H
1
2 (Γcm))′. 
00 00
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We note that H− 1
2 (∂Ωc)|Γcm � H− 1

2 (Γcm) and H− 1
2 (∂Ωc)|Γcm ⊂ (H

1
2

00(Γcm))′, where the space 

H− 1
2 (∂Ωc)|Γcm is defined in the following way: for all f ∈ H− 1

2 (∂Ωc)|Γcm and g ∈ H
1
2

00(Γcm), 
〈f, g〉

H
− 1

2 (∂Ωc)|Γcm , H
1
2

00 (Γcm)

:= 〈f, g̃〉
H

− 1
2 (∂Ωc), H

1
2 (∂Ωc)

with g̃ being the zero extension of g to 

∂Ωc .

For any u ∈ H(div, Ωc), its normal component u · ncm is well defined in (H
1
2

00(Γcm))′, and for 
all q ∈ H 1(Ωc) such that q = 0 on ∂Ωc\Γcm, we have

(∇ · u, q)c = (u,∇q)c + 〈u · ncm, q〉
(H

1
2

00 (Γcm))′, H
1
2

00 (Γcm)

.

Similar identity holds on the matrix domain Ωm.

2.2. Basic energy law

An important feature of the CHSD system (1.1)–(1.22) is that it obeys a dissipative energy 
law. To this end, we first note that the total energy of the coupled system is given by:

E(t) =
∫
Ωc

�

2
|uc|2dx +

∫
Ω

[
ε

2
|∇ϕ|2 + 1

ε
F (ϕ)

]
dx. (2.1)

Then we have the following formal result:

Lemma 2.1 (Basic energy law). Let (um, uc, ϕ) be a smooth solution to the initial boundary 
value problem (1.1)–(1.22). Then (um, uc, ϕ) satisfies the following basic energy law:

d

dt
E(t) = −D(t) ≤ 0, ∀t ≥ 0, (2.2)

where the energy dissipation D is given by

D(t) =
∫

Ωm

ν(ϕm)Π−1|um|2dx +
∫
Ωc

2ν(ϕc)
∣∣D(uc)

∣∣2dx

+
∫
Ω

M(ϕ)
∣∣∇μ(ϕ)

∣∣2dx + αBJSJ√
trace(Π)

d−1∑
i=1

∫
Γcm

ν(ϕ)|uc · τ i |2dS. (2.3)

Proof. For the conduit part, multiplying Eqs. (1.1), (1.3) by uc and μ(ϕc), respectively, integrat-
ing over Ωc, and adding the resultants together, we get

d

dt

∫
Ωc

�

2
|uc|2dx +

∫
Ωc

∂tϕcμ(ϕc)dx

=
∫ [∇ ·T(uc,Pc)

] · ucdx +
∫

μ(ϕc)div
(
M(ϕc)∇μ(ϕc)

)
dx.
Ωc Ωc
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After integration by parts and using the boundary conditions, we obtain that

d

dt

∫
Ωc

[
�

2
|uc|2 + ε

2
|∇ϕc|2 + 1

ε
F (ϕc)

]
dx +

∫
Ωc

M(ϕc)
∣∣∇μ(ϕc)

∣∣2dx

=
∫
Ωc

[∇ ·T(uc,Pc)
] · ucdx +

∫
Γcm

M(ϕc)μ(ϕc)
∂μ(ϕc)

∂ncm
dS

+ ε

∫
Γcm

∂tϕc

∂ϕc

∂ncm
dS. (2.4)

Applying the divergence theorem to the first term on the right-hand side of (2.4), we infer from 
the boundary conditions (1.12), (1.21), (1.22) and the incompressibility condition (1.2) that∫

Ωc

[∇ ·T(uc,Pc)
] · ucdx

=
∫

Γcm

(
T(uc,Pc)ncm

) · ucdS −
∫
Ωc

T(uc,Pc) : ∇ucdx

=
2∑

i=1

∫
Γcm

(
τT

i T(uc,Pc)ncm
)
(uc · τ i )dS

+
∫

Γcm

(
nT

cmT(uc,Pc)ncm
)
(uc · ncm)dS

−
∫
Ωc

(
2ν(ϕc)D(uc) − PcI

) : ∇ucdx

= − αBJSJ√
trace(Π)

d−1∑
i=1

∫
Γcm

ν(ϕm)|uc · τ i |2dS −
∫

Γcm

Pm(uc · ncm)dS

−
∫
Ωc

2ν(ϕc)
∣∣D(uc)

∣∣2dx. (2.5)

Next, we consider the matrix part. Multiplying Eq. (1.6) by μ(ϕm) and integrating over Ωm, 
we get ∫

Ωm

∂tϕmμ(ϕm) + (um · ∇ϕm)μ(ϕm)dx =
∫

Ωm

μ(ϕm)div
(
M(ϕm)∇μ(ϕm)

)
dx. (2.6)

On the other hand, we infer from the Darcy equation (1.1) that

μ(ϕm)∇ϕm = ν(ϕm)Π−1um + ∇Pm.
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Using this fact and integration by parts, we infer from the boundary condition (1.15) that

d

dt

∫
Ωm

[
ε

2
|∇ϕm|2 + 1

ε
F (ϕm)

]
dx

+ ε

∫
Γcm

∂tϕm

∂ϕm

∂ncm
dS +

∫
Ωm

(
ν(ϕm)Π−1|um|2 + um · ∇Pm

)
dx

= −
∫

Γcm

M(ϕm)μ(ϕm)
∂μ(ϕm)

∂ncm
dS −

∫
Ωm

M(ϕm)
∣∣∇μ(ϕm)

∣∣2dx, (2.7)

where we recall that ncm denotes the unit normal to interface Γcm pointing from the conduit to 
the matrix. By the divergence theorem and the incompressibility condition (1.5), we get

∫
Ωm

um · ∇Pmdx =
∫

Ωm

[∇ · (Pmum) − Pm(∇ · um)
]
dx

= −
∫

Γcm

Pmum · ncmdS. (2.8)

Then (2.7) becomes

d

dt

∫
Ωm

[
ε

2
|∇ϕm|2 + 1

ε
F (ϕm)

]
dx

+
∫

Ωm

(
ν(ϕm)Π−1|um|2 + M(ϕm)

∣∣∇μ(ϕm)
∣∣2)dx

= −
∫

Γcm

M(ϕm)μ(ϕm)
∂μ(ϕm)

∂ncm
dS − ε

∫
Γcm

∂tϕm

∂ϕm

∂ncm
dS

+
∫

Γcm

Pmum · ncmdS. (2.9)

Finally, combining (2.4), (2.5) and (2.9), using the definition of ϕ as well as the continuity 
conditions (1.16)–(1.17) on interface Γcm, we can cancel the boundary terms and conclude the 
basic energy law (2.2). The proof is complete. �
2.3. Weak formulation and main results

We make the following assumptions on viscosity ν, mobility coefficient M as well as the 
permeability matrix Π :
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(A1) ν ∈ C1(R), ν ≤ ν(s) ≤ ν̄ and |ν′(s)| ≤ ν̃ for s ∈ R, where ν̄, ν and ν̃ are positive constants.
(A2) M ∈ C1(R), m ≤ M(s) ≤ m̄ and |M′(s)| ≤ m̃ for s ∈ R, where m̄, m and m̃ are positive 

constants.
(A3) The permeability Π is isotropic, bounded from above and below (so is the hydraulic 

conductivity tensor K), namely, Π = κ(x)I with I being the d × d identity matrix and 
κ(x) ∈ L∞(Ω) such that there exist κ̄ > κ > 0, κ ≤ κ(x) ≤ κ̄ a.e. in Ω .

Below we introduce the notion of finite energy weak solution to the CHSD system (1.1)–(1.22)
as well as its corresponding weak formulation.

Definition 2.1. Suppose that d = 2, 3 and T > 0 is arbitrary. Let α = 8
5 when d = 3 and α < 2

being arbitrary close to 2 when d = 2.
Case 1: � > 0. We consider the initial data u0(x) ∈ L2(Ωc), ϕ0 ∈ H 1(Ω). The functions 

(uc, um, Pm, ϕ, μ) with the following properties

uc ∈ L∞(0, T ;L2(Ωc)
)∩ L2(0, T ;Hc,div) ∩ W 1,α

(
0, T ; (H1(Ωc)

)′)
, (2.10)

um ∈ L2(0, T ;L2(Ωm)
)
, (2.11)

Pm ∈ Lα(0, T ;Xm), (2.12)

ϕ ∈ L∞(0, T ;H 1(Ω)
)∩ L2(0, T ;H 3(Ω)

)∩ W 1,α
(
0;T ; (H 1(Ω)

)′)
, (2.13)

μ ∈ L2(0, T ;H 1(Ω)
)
, (2.14)

is called a finite energy weak solution of the CHSD system (1.1)–(1.22), if the following condi-
tions are satisfied:

(1) For any vc ∈ C∞
0 ((0, T ); Hc,div) and qm ∈ C([0, T ]; Xm),

−�

T∫
0

(uc, ∂tvc)cdt + 2

T∫
0

(
ν(ϕc)D(uc),D(vc)

)
c
dt

+
T∫

0

(
Π

ν(ϕm)

[∇Pm − μ(ϕm)∇ϕm

]
,∇qm

)
m

dt

+
d−1∑
i=1

αBJSJ√
trace(Π)

T∫
0

∫
Γcm

ν(ϕm)(uc · τ i )(vc · τ i )dSdt

+
T∫

0

∫
Γcm

Pm(vc · ncm)dSdt −
T∫

0

∫
Γcm

(uc · ncm)qmdSdt

=
T∫ (

μ(ϕc)∇ϕc,vc

)
c
dt, (2.15)
0
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moreover, the velocity um in the matrix part satisfies

T∫
0

(um,vm)mdx = −
T∫

0

(
Π

ν(ϕm)

[∇Pm − μ(ϕm)∇ϕm

]
,vm

)
m

dt, (2.16)

for any vm ∈ C([0, T ]; L2(Ωm)).
(2) For any φ ∈ C∞

0 ((0, T ); H 1(Ω)),

−
T∫

0

(ϕ, ∂tφ)dt +
T∫

0

(
M(ϕ)∇μ(ϕ),∇φ

)
dt = −

T∫
0

(u · ∇ϕ,φ)dt, (2.17)

T∫
0

(
μ(ϕ),φ

)
dt =

T∫
0

[
1

ε

(
f (ϕ),φ

)+ ε(∇ϕ,∇φ)

]
dt. (2.18)

(3) uc|t=0 = u0(x), ϕ|t=0 = ϕ0(x).
(4) The finite energy solution satisfies the energy inequality

E(t) +
t∫

s

D(τ )dτ ≤ E(s), (2.19)

for all t ∈ [s, T ) and almost all s ∈ [0, T ) (including s = 0), where the total energy E is given 
by (2.1).

Case 2: � = 0. In this case, we do not need the initial condition for uc. The regularity property 
for uc (cf. (2.10)) is simply replaced by

uc ∈ L2(0, T ;Hc,div). (2.20)

The finite energy weak solution (uc, um, Pm, ϕ, μ) still fulfills the above properties (1)–(4) with 
� = 0 in corresponding formulations.

Remark 2.1. In the above weak formulation (2.15)–(2.16), the reason we do not break the force 
term ∇Pm − μ(ϕm)∇ϕm is that this term (or equivalently, the velocity in the matrix part um) has 
better regularity/integrability than its two components (see (2.11)–(2.12)).

Remark 2.2. We note that the interface boundary conditions (1.13)–(1.22) are enforced as a 
consequence of the weak formulation stated above. Note also that the pressure terms Pc and 
Pm are only uniquely determined up to an additive constant in the strong form (1.1)–(1.22), i.e., 
they satisfy the same set of equations with the same boundary conditions as well as interface 
conditions after being shifted by the same constant. As a consequence, it makes sense to seek 
Pm in the space Ḣ 1(Ωm) (i.e., Xm). The equivalence for smooth solutions between the weak 
formulation and the classical form can be verified in a straightforward way.
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Now we are in a position to state the main results of this paper:

Theorem 2.1 (Existence of finite energy weak solutions). Suppose that d = 2, 3 and the assump-
tions (A1)–(A3) are satisfied.

(i) If � > 0, for any u0 ∈ L2(Ωc), ϕ0 ∈ H 1(Ω) and T > 0 being arbitrary, the CHSD system
(1.1)–(1.22) admits at least one global finite energy weak solution {uc, um, Pm, ϕ, μ} in the 
sense of Definition 2.1.

(ii) If � = 0, for any ϕ0 ∈ H 1(Ω), the CHSD system (1.1)–(1.22) admits at least one global 
finite energy weak solution {uc, um, Pm, ϕ, μ} in the sense of Definition 2.1.

Theorem 2.2 (Weak–strong uniqueness). Let d = 2, 3, � ≥ 0 and the assumptions (A1)–(A3) 
be satisfied. Suppose that {uc, um, Pm, ϕ} is a finite energy weak solution to the CHSD system
(1.1)–(1.22) in (0, T ) × Ω and {ũc, ũm, P̃m, ϕ̃} is a regular solution emanating from the same 
initial data with the following regularity conditions

ũc ∈ L
8
3 (0, T ;Hc,div), ũm ∈ L

8
3 (0, T ;Hm,div), ϕ̃ ∈ L

8
3
(
0, T ;H 3(Ω)

)
,

then it holds

uc = ũc, um = ũm, Pm = P̃m, ϕ = ϕ̃.

3. Existence of weak solutions

We shall apply a semi-discretization approach (finite difference in time, cf. [40,41]) to prove 
the existence result Theorem 2.1. First, a discrete in time, continuous in space numerical scheme 
is proposed and shown to be mass-conservative and energy law preserving. Then, the existence 
of weak solutions to the discretized system is proved by the Leray–Schauder degree theory. Last, 
an approximate solution is constructed and its convergence to the weak solution of the original 
CHSD system (1.1)–(1.22) is established via a compactness argument.

3.1. A time discretization scheme

Here we propose a semi-implicit time discretization scheme to the weak formulation 
(2.15)–(2.18). Recall our convention

ϕ|Ωc = ϕc, ϕ|Ωm = ϕm, μ|Ωc = μc, μ|Ωm = μm.

For arbitrary but fixed T > 0 and positive integer N ∈N, we denote by δ = �t = T
N

the time step 
size. Given (uk

c, ϕ
k
c , P k

m, ϕk
m), k = 0, 1, 2, ..., N − 1, we want to determine (uc, ϕc, Pm, ϕm) =

(uk+1
c , ϕk+1

c , P k+1
m , ϕk+1

m ) as a solution of the following nonlinear elliptic system

�

(
uk+1

c − uk
c

δ
,vc

)
c

+ 2
(
ν
(
ϕk

c

)
D
(
uk+1

c

)
,D(vc)

)
c

+
(

Π

k

[∇P k+1
m − μk+1

m ∇ϕk+1
m

]
,∇qm

)

ν(ϕm) m
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+
d−1∑
i=1

αBJSJ√
trace(Π)

∫
Γcm

ν
(
ϕk

m

)(
uk+1

c · τ i

)
(vc · τ i )dS

+
∫

Γcm

P k+1
m (vc · ncm)dS −

∫
Γcm

(
uk+1

c · ncm
)
qmdS

= (
μk+1

c ∇ϕk+1
c ,vc

)
c
, (3.1)

(
ϕk+1 − ϕk

δ
,φ

)
+ (

uk+1 · ∇ϕk+1, φ
)= −(M(ϕk

)∇μk+1,∇φ
)
, (3.2)

(
μk+1, φ

)= 1

ε

(
f̃
(
ϕk+1, ϕk

)
, φ
)+ ε

(∇ϕk+1,∇φ
)
, (3.3)

for any vc ∈ Hc,div, qm ∈ Xm and φ ∈ H 1(Ω). In the above formulation, the vector uk+1 satisfies 
uk+1|Ωc = uk+1

c and uk+1|Ωm = uk+1
m , where

uk+1
m = − Π

ν(ϕk
m)

(∇P k+1
m − μk+1

m ∇ϕk+1
m

)
. (3.4)

The function f̃ (φ, ψ) in Eq. (3.3) is derived from a convex splitting approximation to the non-
convex function F(ϕ) (see (1.9)) and it takes the following form (cf. e.g., [42,28])

f̃ (φ,ψ) = φ3 − ψ. (3.5)

Remark 3.1. We note that Eqs. (3.1)–(3.4) are strongly coupled, which demands suitable choices 
on discretization schemes in order to prove the existence of weak solutions (see [28,27,29]
for related diffuse-interface models). Here, the advective term in the Cahn–Hilliard equation 
(i.e., the second term u · ∇ϕ in Eq. (3.2)) and accordingly the elastic forcing term μ∇ϕ in 
Eqs. (3.1), (3.4) are discretized fully implicitly. Under this fully implicit discretization, it is 
possible to preserve a discrete energy law (see Lemma 3.2) in analogy to the continuous one 
(2.2), moreover it enables us to obtain the existence of weak solutions under the natural as-
sumption on initial data such that ϕ0 ∈ H 1(Ω). In [28,27], a different semi-implicit treatment 
of the advective term and the elastic forcing term for the Cahn–Hilliard–Darcy system in a sim-
ple domain was proposed. The discretization therein still keeps a discrete energy law while one 
needs to assume ϕ0 ∈ H 2(Ω) (or at least H 1(Ω) ∩ L∞(Ω)) to obtain the existence of weak 
solutions.

In the following content of this subsection, we will temporarily omit the superscript k + 1 for 
uk+1

c , P k+1
m , uk+1

m , ϕk+1, μk+1 for the sake of simplicity. Besides, we just provide the proof for 
the case � > 0, while the argument can be easily adapted to the simpler case � = 0 with minor 
modifications.

A few a priori estimates can be readily derived. First, one can deduce that the above numerical 
scheme keeps the mass conservation property.
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Lemma 3.1. Suppose that uk
c ∈ L2(Ωc), ϕk ∈ H 1(Ω) and {uc, Pm, ϕ, μ} ∈ Hc,div × Xm ×

H 3(Ω) × H 1(Ω) solve the nonlinear system (3.1)–(3.4). Then um (given by (3.4)) satisfies

um ∈ Hm,div, um · ncm = uc · ncm ∈ H
1
2 (Γcm). (3.6)

Moreover, the following mass-conservation holds∫
Ω

ϕ dx =
∫
Ω

ϕk dx. (3.7)

Proof. It is clear from Eq. (3.4) and the Sobolev embedding theorem (d ≤ 3) that um ∈ L2(Ωm). 
Taking the test function vc = 0 in Eq. (3.1) and utilizing Eq. (3.4), one obtains

(um,∇qm)m −
∫

Γcm

(uc · ncm)qmdS = 0, ∀qm ∈ Xm, (3.8)

which easily yields that ∇ · um = 0 in the sense of distribution and then um ∈ H(div; Ωm). Thus, 
the normal component um · n is well-defined in H− 1

2 (∂Ωm) (n denotes the unit outer normal 
on ∂Ωm and it corresponds to nm on Γm and to −ncm on Γcm, respectively). Applying Green’s 
formula to the first term in Eq. (3.8) gives that

um · nm = 0 in H− 1
2 (Γm) and um · ncm = uc · ncm in

(
H

1
2

00(Γcm)
)′
.

Therefore, um ∈ Hm,div. It follows from the trace theorem that uc · ncm ∈ H
1
2 (Γcm), then one 

further gets um · ncm = uc · ncm in H
1
2 (Γcm).

The mass-conservation (3.7) now follows from taking the test function φ = 1 in Eq. (3.2) and 
performing integration by parts. �

The next lemma shows that the numerical scheme (3.1)–(3.5) satisfies a discrete analogue of 
the basic energy law (2.1).

Lemma 3.2. Suppose that uk
c ∈ L2(Ωc), ϕk ∈ H 1(Ω) and {uc, Pm, ϕ, μ} ∈ Hc,div × Xm ×

H 3(Ω) × H 1(Ω) solve the system (3.1)–(3.4). Then the following discrete energy inequality 
holds

E(uc, ϕ) + δ
(
ν
(
ϕk

m

)
Π−1um,um

)
m

+ 2δ
(
ν
(
ϕk

c

)
D(uc),D(uc)

)
c

+ δ

∫
Ω

M
(
ϕk
)|∇μ|2dx + δαBJSJ√

trace(Π)

d−1∑
i=1

∫
Γcm

ν
(
ϕk

m

)|uc · τ i |2dS

+ �

2

(
uc − uk

c,uc − uk
c

)
c
+ ε

2

∥∥∇(ϕ − ϕk
)∥∥2

L2(Ω)
+ 1

2ε

∥∥ϕ − ϕk
∥∥2

L2(Ω)

≤ E
(
uk

c, ϕ
k
)
, (3.9)

where the energy functional E is defined in (2.1).
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Proof. Taking vc = uc , qm = Pm in (3.1), using (3.4) and the elementary identity

a · (a − b) = 1

2

(|a|2 − |b|2 + |a − b|2), ∀a, b ∈R or Rd, (3.10)

we have

�

2δ
(uc,uc)c + �

2δ

(
uc − uk

c,uc − uk
c

)
c
+ 2

(
ν
(
ϕk

c

)
D(uc),D(uc)

)
c

+ (
ν
(
ϕk

m

)
Π−1um,um

)
m

+
d−1∑
i=1

αBJSJ√
trace(Π)

∫
Γcm

ν
(
ϕk

m

)|uc · τ i |2dS

= �

2δ

(
uk

c,uk
c

)
c
+ (μ∇ϕ,u). (3.11)

By a direct calculation, we infer from the definition of the convex splitting function f̃ that

f̃ (φ,ψ)(φ − ψ) = F(φ) − F(ψ) + 1

4

(
φ2 − ψ2)2 + 1

2
(φ − ψ)2 + 1

2
φ2(φ − ψ)2

≥ F(φ) − F(ψ) + 1

2
(φ − ψ)2. (3.12)

Then taking the test functions φ = μ in (3.2) and φ = ϕ − ϕk in (3.3), after integration by parts, 
we infer from (3.10) and (3.12) that

(
ϕ − ϕk

δ
,μ

)
+ (u · ∇ϕ,μ) +

∫
Ω

M
(
ϕk
)|∇μ|2dx = 0, (3.13)

where

(
ϕ − ϕk,μ

)= 1

ε

(
f̃
(
ϕ,ϕk

)
, ϕ − ϕk

)+ ε
(∇ϕ,∇(ϕ − ϕk

))
≥ ε

2
‖∇ϕ‖2

L2(Ω)
+ ε

2

∥∥∇(ϕ − ϕk
)∥∥2

L2(Ω)
− ε

2

∥∥∇ϕk
∥∥2

L2(Ω)

+ 1

ε

(
F(ϕ) − F

(
ϕk
)
,1
)+ 1

2ε

∥∥ϕ − ϕk
∥∥2

L2(Ω)
. (3.14)

Combining the above estimates (3.11)–(3.14) together, we easily conclude the discrete energy 
inequality (3.9). �
3.2. Existence of weak solutions to the discrete problem

In order to prove the existence of solutions to the discrete problem (3.1)–(3.4), we shall adapt 
an argument involving the Leray–Schauder degree theory (cf. e.g., [25]) that has been used in 
[26] to show the existence of weak solutions to a diffuse-interface model in simple domain with 
general densities. The idea is to rewrite the system (3.1)–(3.3) in terms of suitable “good” oper-
ator denoted by Tk and “bad” operator denoted by Gk such that
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Tk(w) = Gk(w), (3.15)

where w := {uc, Pm, ϕ, μ} is the solution. More precisely, in the abstract equation (3.15) the 
operators Tk : X → Y and Gk : X → Y (see (3.34)–(3.35) for their detailed definition and the 
associated spaces X and Y will be specified in (3.33)) basically correspond to, respectively, 
the left-hand side and right-hand side of the following reformulation of the system (3.1)–(3.3)
(dropping the superscript k + 1 for simplicity as mentioned before)

(uc,vc)c + 2
(
ν
(
ϕk

c

)
D(uc),D(vc)

)
c
+
(

Π

ν(ϕk
m)

∇Pm,∇qm

)
m

+
d−1∑
i=1

αBJSJ√
trace(Π)

∫
Γcm

ν
(
ϕk

m

)
(uc · τ i )(vc · τ i )dS

+
∫

Γcm

Pm(vc · ncm)dS −
∫

Γcm

(uc · ncm)qmdS

= (μc∇ϕc,vc)c + (uc,vc)c +
(

Π

ν(ϕk
m)

μm∇ϕm,∇qm

)
m

−
(

�

δ

(
uc − uk

c

)
,vc

)
c

, (3.16)

−(M(ϕk
)∇μ,∇φ

)=
(

ϕ − ϕk

δ
,φ

)
+ (u · ∇ϕ,φ), (3.17)

1

ε

(
ϕ3, φ

)+ ε(∇ϕ,∇φ) =
(

μ + 1

ε
ϕk,φ

)
. (3.18)

As will be shown below, the operator Tk : X → Y is continuous and invertible with T −1
k (0) = 0, 

while the operator Gk : X → Y is compact. Thus the abstract equation (3.15) can be recasted into

(
I − T −1

k Gk

)
(w) = 0,

where I : X → X is the identity operator. Then the existence of solutions can be shown by the
Leray–Schauder degree theory.

Remark 3.2. Note that Eq. (3.16) is derived from an addition of a term (uc, vc)c on both sides 
of Eq. (3.1). This modification is necessary in proving the invertibility of the operator associated 
with the left-hand side of Eq. (3.16), especially under the circumstance |Γc| = 0 where only the 
version (3.21) of Korn’s inequality can be applied.

We shall divide the proof for the existence of weak solutions to the approximate problem 
(3.1)–(3.4) into three steps.

Step 1. Invertibility of operators associated with the left-hand sides of the reformulated system 
(3.16)–(3.18).
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First, we deal with the operator associated with the left-hand side of Eq. (3.16). Define the 
product space

V := Hc,div × Xm. (3.19)

Then we introduce the operator Lk : V → V′ that can be associated with the following bilinear 
form a(·,·) : V × V → R:

〈
Lk(uc,Pm), (vc, qm)

〉
V′,V

= a
(
(uc,Pm), (vc, qm)

)
= 2

(
ν
(
ϕk

c

)
D(uc),D(vc)

)
c
+ (uc,vc)c +

(
Π

ν(ϕk
m)

∇Pm,∇qm

)
m

+
d−1∑
i=1

αBJSJ√
trace(Π)

∫
Γcm

ν
(
ϕk

m

)
(uc · τ i )(vc · τ i )dS

+
∫

Γcm

Pm(vc · ncm)dS −
∫

Γcm

(uc · ncm)qmdS, (3.20)

for any (uc, Pm), (vc, qm) ∈ V.
Recall the following Korn’s inequality (cf. e.g., [43]),

‖vc‖H1(Ωc)
≤ C

(‖vc‖L2(Ωc)
+ ∥∥D(vc)

∥∥
L2(Ωc)

)
, ∀vc ∈ Hc,div, (3.21)

where the constant C depends only on Ωc. Moreover, if the boundary Γc has non-zero measure, 
the Korn inequality can be simplified as (cf. e.g., [44])

‖vc‖H1(Ωc)
≤ C

∥∥D(vc)
∥∥

L2(Ωc)
, ∀vc ∈ Hc,div. (3.22)

As a consequence, using the assumptions (A1), (A3) and the Poincaré inequality, we deduce that 
the above bilinear form a(·,·) is coercive on V, namely, for any (uc, Pm) ∈ V,

a
(
(uc,Pm), (uc,Pm)

)
= 2

(
ν
(
ϕk

c

)
D(uc),D(uc)

)
c
+ (uc,uc)c +

(
Π

ν(ϕk
m)

∇Pm,∇Pm

)
m

+
d−1∑
i=1

αBJSJ√
trace(Π)

∫
Γcm

ν
(
ϕk

m

)|uc · τ i |2dS

≥ C1‖uc‖2
H1(Ωc)

+ C2‖Pm‖2
H 1(Ωm)

,

for some constants C1, C2 independent of uc, Pm and ϕk .
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Then by the Lax–Milgram lemma, we can easily deduce that

Lemma 3.3. Assume that the assumptions (A1) and (A3) are satisfied. Then for any given ϕk ∈
H 1(Ω), the operator Lk : V → V′ is invertible and its inverse L−1

k : V′ → V is continuous.

Next, we state the invertibility of the operator induced by the left-hand side of Eq. (3.17). 
To this end, we recall the following simple facts in [26]. Define the operator divN : L2(Ω) →
Ḣ−1(Ω) by

〈divN v, φ〉Ḣ−1(Ω),Ḣ 1(Ω) = −(v,∇φ), ∀φ ∈ Ḣ 1(Ω).

The operator divN acts on vector fields, which do not necessarily vanish on the boundary, and 
involves boundary conditions in a weak sense. Let M ∈ L∞(Ω) such that M(x) ≥ m0 > 0 almost 
every in Ω . We then introduce the operator divN(M(x)∇·) : Ḣ 1(Ω) → Ḣ−1(Ω) defined as

〈
divN

(
M(x)∇ϕ

)
, φ
〉
Ḣ−1(Ω),Ḣ 1(Ω)

= −(M(x)∇ϕ,∇φ
)
, ∀φ ∈ Ḣ 1(Ω).

Then the operator divN(M(x)∇·) is an isomorphism due to an easy application of the Lax–
Milgram lemma.

Hence, under the assumption (A2), it is easy to see that

Lemma 3.4. Assume that the function M satisfies (A2). For any given ϕk ∈ H 1(Ω), the operator

Dk := divN

(
M
(
ϕk
)∇·) : Ḣ 1(Ω) → Ḣ−1(Ω) (3.23)

is invertible and its inverse D−1
k : Ḣ−1(Ω) → Ḣ 1(Ω) is continuous.

We now proceed to the solvability of Eq. (3.18). For any given function ϕk ∈ H 1(Ω), we 
define the nonlinear operator Sk : Ḣ 1(Ω) → Ḣ−1(Ω) as follows

〈
Sk(ψ),φ

〉
Ḣ−1(Ω),Ḣ 1(Ω)

= ε(∇ψ,∇φ) + 1

ε

((
ψ + ϕk

)3
, φ
)
, ∀φ ∈ Ḣ 1(Ω), (3.24)

where ϕk = |Ω|−1
∫
Ω

ϕkdx.
Then we have

Lemma 3.5. Let ϕk ∈ H 1(Ω) be fixed. For any given function μ0 ∈ Ḣ−1(Ω), there exists 
a unique solution ψ ∈ Ḣ 1(Ω) to the equation Sk(ψ) = μ0. The solution operator S−1

k :
Ḣ−1(Ω) → Ḣ 1(Ω) is continuous. Moreover, if μ0 ∈ Ḣ 1(Ω), then the solution satisfies ψ ∈
Ḣ 3(Ω) and S−1

k : Ḣ 1(Ω) → Ḣ 3(Ω) is bounded and continuous.

Proof. The unique solvability of equation Sk(ψ) = μ0 for given source function μ0 can be 
obtained by the theory of monotone operators.

We note that Sk is well defined for any given function ϕk ∈ H 1(Ω). Indeed, using the Sobolev 
embedding H 1(Ω) ↪→ L6(Ω) for d = 2, 3, we can see that for any ψ ∈ Ḣ 1(Ω),

∣∣〈Sk(ψ),φ
〉

˙ −1 ˙ 1

∣∣≤ C(ε)
(‖ψ‖3

1 + ∣∣ϕk
∣∣3 + ‖ψ‖H 1(Ω)

)‖φ‖H 1(Ω),
H (Ω),H (Ω) H (Ω)
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which implies the boundedness of Sk in H 1(Ω). Moreover, if a sequence ψn → ψ in Ḣ 1(Ω) as 
n → ∞, by Hölder’s inequality and the Sobolev embedding, we deduce that for any φ ∈ Ḣ 1(Ω),

∣∣〈Sk(ψn) − Sk(ψ),φ
〉
Ḣ−1(Ω),Ḣ 1(Ω)

∣∣
≤ C(ε)

(∥∥(ψn + ϕk
)3 − (

ψ + ϕk
)3∥∥

L
6
5 (Ω)

+ ∥∥∇(ψn − ψ)
∥∥

L2(Ω)

)‖φ‖H 1(Ω)

≤ C(ε)
(∥∥ψ2

n + ψ2 + (
ϕk
)2∥∥

L2(Ω)
‖ψn − ψ‖L3(Ω) + ∥∥∇(ψn − ψ)

∥∥
L2(Ω)

)‖φ‖H 1(Ω)

→ 0.

Hence, the nonlinear operator Sk : Ḣ 1(Ω) → Ḣ−1(Ω) is continuous. Concerning the coercivity 
of Sk , using the Young inequality, we have for any ψ ∈ Ḣ 1(Ω),

〈
Sk(ψ),ψ

〉
Ḣ−1(Ω),Ḣ 1(Ω)

= 1

ε

∫
Ω

(
ψ + ϕk

)3
ψ dx + ε

∫
Ω

|∇ψ |2 dx

≥ 1

ε

∫
Ω

|ψ |4 dx − 3|ϕk|
ε

∫
Ω

|ψ |3dx − 3|ϕk|2
ε

∫
Ω

|ψ |2dx − |ϕk|3
ε

∫
Ω

|ψ |dx

+ ε

∫
Ω

|∇ψ |2 dx

≥ C(ε)‖ψ‖2
H 1(Ω)

− C
(
ε, |Ω|, ∣∣ϕk

∣∣), (3.25)

which yields that

〈Sk(ψ),ψ〉Ḣ−1(Ω),Ḣ 1(Ω)

‖ψ‖H 1(Ω)

→ +∞, as ‖ψ‖H 1(Ω) → ∞.

Finally, the strict monotonicity of Sk follows from the following identity

〈
Sk(ψ1) − Sk(ψ2),ψ1 − ψ2

〉
Ḣ−1(Ω),Ḣ 1(Ω)

= 1

ε

∫
Ω

(ψ1 − ψ2)
2[(ψ1 + ϕk

)2 + (
ψ2 + ϕk

)2 + (
ψ1 + ϕk

)(
ψ2 + ϕk

)]
dx

+ ε

∫
Ω

∣∣∇(ψ1 − ψ2)
∣∣2 dx

≥ 0, ∀ψ1,ψ2 ∈ Ḣ 1(Ω) (3.26)

and the equal sign holds if and only if ψ1 = ψ2.
Based on the above observations, we can apply the Browder–Minty theorem (cf. e.g., [45, 

p. 39, Theorem 2.2]) to conclude the existence of a unique solution ψ ∈ Ḣ 1(Ω) to the nonlinear 
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equation Sk(ψ) = μ0 for a given source function μ0 ∈ Ḣ−1(Ω). The coercive estimate (3.25)
also implies that

‖ψ‖2
H 1(Ω)

≤ C(ε)
(‖μ0‖2

Ḣ−1(Ω)
+ ∣∣ϕk

∣∣4 + 1
)
. (3.27)

For the continuous dependence of the solution ψ on μ0, i.e., if a sequence μ0n → μ0 strongly in 
Ḣ−1(Ω) and Sk(ψn) = μ0n, Sk(ψ) = μ0, then ψn, ψ ∈ Ḣ 1(Ω) and as n → +∞, it holds

〈
Sk(ψn) − Sk(ψ),ψn − ψ

〉
Ḣ−1(Ω),Ḣ 1(Ω)

= 〈μ0n − μ0,ψn − ψ〉Ḣ−1(Ω),Ḣ 1(Ω) → 0. (3.28)

Then a similar estimate like (3.26) yields that ψn → ψ strongly in Ḣ 1(Ω). As a consequence, 
the solution operator S−1

k : Ḣ−1(Ω) → Ḣ 1(Ω) is continuous.
If we further assume that μ0 ∈ Ḣ 1(Ω), the weak solution ψ indeed has higher regularity. To 

this end, we rewrite the weak form of the equation Sk(ψ) = μ0 as

ε(∇ψ,∇φ) = (
μ0 − G

(
ψ,ϕk

)
, φ
)
, ∀φ ∈ Ḣ 1(Ω),

where G(ψ, ϕk) = ε−1(ψ + ϕk)3 ∈ L2(Ω). Then ψ is a weak solution to the following elliptic 
equation with homogeneous Neumann boundary condition:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ε�ψ = μ0 − G0, in Ω,

∂ψ

∂n
= 0, on ∂Ω,∫

Ω

ψdx = 0,

(3.29)

with G0 = G(ψ, ϕk) − G(ψ, ϕk). Since the source function μ0 − G0 ∈ L̇2(Ω), one deduces 
from the classical elliptic regularity theory (cf. [39]) that ψ ∈ H 2(Ω) if Ω is C1,1 or a convex 
bounded domain. In particular, one can derive from (3.29) that

‖ψ‖H 2(Ω) ≤ C(ε)
(‖μ0‖L2(Ω) + ‖ψ‖3

H 1(Ω)
+ ∣∣ϕk

∣∣3 + ‖ψ‖L2(Ω)

)
. (3.30)

Since H 2(Ω) is an algebra with respect to point-wise multiplication in Rd (d ≤ 3), one has 
μ0 − G0 ∈ Ḣ 1(Ω). Then it follows from (3.29), (3.30) that

‖ψ‖H 3 ≤ C(ε)
(‖μ0‖H 1(Ω) + ∣∣ϕk

∣∣3 + ∥∥ψ3
∥∥

H 1(Ω)
+ ‖ψ‖L2(Ω)

)
≤ C(ε)

(‖μ0‖H 1(Ω) + ∣∣ϕk
∣∣3 + ‖ψ‖L2(Ω)

)
+ C(ε)

(‖ψ‖2
L∞(Ω)‖∇ψ‖L2(Ω) + ‖ψ‖3

L6(Ω)

)
≤ C

(
ε,Ω,‖μ0‖H 1(Ω),

∣∣ϕk
∣∣), (3.31)

which yields that the solution operator ψ = S−1
k (μ0) is bounded from Ḣ 1(Ω) to Ḣ 3(Ω). Con-

sider the difference problem
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{−ε�(ψn − ψ) = (μ0n − μ0) − (G0n − G0),

∂(ψn − ψ)

∂n
= 0, on ∂Ω,

(3.32)

with G0n = G(ψn, ϕk) − G(ψn, ϕk) and G0 = G(ψ, ϕk) − G(ψ, ϕk). Assuming that μ0n → μ0
strongly in Ḣ 1(Ω), similar to (3.30), we can first derive the H 2 estimates for ψn, ψ , and then 
use the elliptic estimates as in (3.31) to get

‖ψn − ψ‖H 3(Ω) ≤ C
(‖μ0n − μ0‖H 1(Ω) + ‖G0n − G0‖H 1(Ω) + ‖ψn − ψ‖L2(Ω)

)
≤ C

(‖ψn‖L∞(Ω),‖ψ‖L∞(Ω),‖∇ψn‖L3(Ω),‖∇ψ‖L3(Ω)

)‖ψn − ψ‖H 1(Ω)

+ C‖μ0n − μ0‖H 1(Ω).

We have already shown that S−1
k : Ḣ−1(Ω) → Ḣ 1(Ω) is continuous, which combining the above 

estimate further yields that S−1
k : Ḣ 1(Ω) → Ḣ 3(Ω) is also (strongly) continuous. The proof is 

complete. �
Step 2. Definition of operators Tk , Gk and their properties.

We introduce the following product spaces

{
X = V × Ḣ 1(Ω) × Ḣ 3−σ (Ω) ×R,

Y = V′ × Ḣ−1(Ω) × L̇2(Ω) ×R,
(3.33)

where σ ∈ (0, 12 ) is a constant.
Owing to the mass-conservation property (3.7) of the approximate scheme and for the conve-

nience of the norm of Ḣ 1(Ω), we will project the unknowns ϕ and μ into L̇2(Ω) such that

ϕ = ψ + ϕk, μ = μ0 + Sk,

where ϕk and Sk are the averages of ϕk and f̃ (ϕ, ϕk) on Ω , respectively.
According to the formulation of the system (3.16)–(3.18), we now introduce the nonlinear 

operators Tk , Gk : X → Y. For any given functions ϕk ∈ H 1(Ω), uk
c ∈ L2(Ωc) and for w =

(uc, Pm, μ0, ψ,Sk) ∈ X, we define

Tk(w) =

⎛
⎜⎜⎝
Lk(uc,Pm)

Dk(μ0)

Sk(ψ)

Sk

⎞
⎟⎟⎠ , (3.34)

and

Gk(w) =

⎛
⎜⎜⎝

Jk(w)

P0(δ
−1(ψ + ϕk − ϕk) + u · ∇ψ)

μ0 + ε−1(ϕk − ϕk)
−1 −1

∫
k 3 k

⎞
⎟⎟⎠ . (3.35)
|Ω| ε
Ω

((ψ + ϕ ) − ϕ )dx
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The operators Lk , Dk , Sk in (3.34) are defined in (3.20), (3.23) and (3.24) (associated with the 
given function ϕk), respectively. In (3.35), the operator Jk : X → V′ is given by

〈
Jk(w), (vc, qm)

〉
V′,V

=
(

−�

δ

(
uc − uk

c

)+ (μ0c + Sk)∇ψc, vc

)
c

+ (uc,vc)c

+
(

Π

ν(ϕk
m)

(μ0m + Sk)∇ψm,∇qm

)
m

, ∀(vc, qm) ∈ V. (3.36)

Here, one recalls that P0 is the projection operator from L2(Ω) into L̇2(Ω) and the facts μ0c =
μ0|Ωc , μ0m = μ0|Ωm . The velocity u in (3.35) fulfills u|Ωc = uc, u|Ωm = um and um is given by 
(3.4).

From the definition of Tk and Lemmas 3.3–3.5 obtained in the previous step, one can conclude 
that

Lemma 3.6. Tk : X → Y is an invertible mapping and its inverse T −1
k : Y → X is continuous. In 

particular, T −1
k (0) = 0.

Then concerning the operator Gk , one has

Lemma 3.7. Gk : X → Y is a continuous and bounded mapping. Moreover, it is compact.

Proof. For all w = (uc, Pm, μ0, ψ,Sk) ∈ X, using the Sobolev embedding theorems (d ≤ 3)

such that H 1 ↪→ L6 and H 1−σ ↪→ L3, H 2−σ ↪→ L∞ for σ ∈ (0, 12 ), it is straightforward to 
show that

Gk(w) ∈ (L2(Ωc) × (
H 1−σ (Ωm)

)′)× L̇2(Ω) × Ḣ 1(Ω) × K ↪→↪→ Y,

where K is a bounded set in R. Our conclusion easily follows. �
We now interpret the relation between the abstract equation Tk(w) = Gk(w) for w ∈ X and 

the elliptic system (3.1)–(3.3). The following equivalence result can be easily seen from the 
definitions (3.20)–(3.24) and (3.34)–(3.36):

Proposition 3.1. {uc, Pm, ϕ, μ} ∈ Hc,div × Xm × H 3(Ω) × H 1(Ω) is a solution of the system

(3.1)–(3.3) if and only if w = (uc, Pm, μ0, ψ,Sk) ∈ X satisfies Tk(w) = Gk(w) with ϕ = ψ + ϕk , 
μ = μ0 + Sk .

Step 3. Solvability of the nonlinear system (3.1)–(3.4).
We proceed to show that there exists a w ∈ X such that Tk(w) = Gk(w). Since Tk is invertible, 

this abstract equation can be rewritten equivalently as w = T −1
k (Gk(w)), namely,

(I −Nk)(w) = 0, (3.37)

where I is the identity operator on X and the nonlinear operator Nk is defined by
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Nk(w) := T −1
k

(
Gk(w)

) : X → X, ∀w ∈ X (3.38)

and it is a compact operator on X due to Lemmas 3.6 and 3.7. Thus we only have to prove that 
there exists a vector w = (uc, Pm, μ0, ψ,Sk) ∈ X that satisfies Eq. (3.37). This can be done by a 
homotopy argument based on the Leray–Schauder degree (cf. [25,26]).

Lemma 3.8. Assume that assumptions (A1)–(A3) are satisfied. For any uk
c ∈ L2(Ωc) and ϕk ∈

H 1(Ω), the equation Tk(w) = Gk(w) admits a solution w = (uc, Pm, μ0, ψ,Sk) ∈ X.

Proof. For s ∈ [0, 1], we define

uk
c(s) = (1 − s)uk

c, ϕk(s) = (1 − s)ϕk.

Replace uk
c , ϕk in the system (3.16)–(3.18) by uk

c(s), ϕ
k(s), respectively. Then we denote by 

T (s)
k , G(s)

k the corresponding operators under the above transformation. In particular, T (0)
k = Tk , 

G(0)
k = Gk . It is easy to see that T (s)

k , G(s)
k have the same properties as in Lemmas 3.6–3.7. Then 

we denote N (s)
k = (T (s)

k )−1G(s)
k , which is a compact operator. Moreover, N (0)

k = Nk .
In analogy to (3.9), we can derive the following discrete energy law with respect to the pa-

rameter s:

E(uc, ϕ) + δ
(
ν
(
ϕk

m(s)
)
Π−1um,um

)
m

+ 2δ
(
ν
(
ϕk

c (s)
)
D(uc),D(uc)

)
c

+ δ

∫
Ω

M
(
ϕk(s)

)|∇μ|2dx + δαBJSJ√
trace(Π)

d−1∑
i=1

∫
Γcm

ν
(
ϕk

m(s)
)|uc · τ i |2dS

+ �

2

(
uc − uk

c(s),uc − uk
c(s)

)
c
+ ε

2

∥∥∇(ϕ − ϕk(s)
)∥∥2

L2(Ω)

+ 1

2ε

∥∥ϕ − ϕk(s)
∥∥2

L2(Ω)

≤ E
(
uk

c(s), ϕ
k(s)

)
. (3.39)

For any given uk
c ∈ L2(Ωc) and ϕk ∈ H 1(Ω), there exists a constant R > 0 depending only 

on ‖uk
c‖L2(Ωc)

, ‖ϕk‖H 1(Ω), � , ε and Ω such that E(uk
c(s), ϕ

k(s)) ≤ R for all s ∈ [0, 1]. By the 
energy estimate (3.39), there exists C0 > 0 depending on R and coefficients of the system but 
independent of s such that the solution w = w(s) to the equation T (s)

k (w) = G(s)
k (w), if it exists, 

will satisfy

∥∥w(s)
∥∥

X ≤ C0, ∀s ∈ [0,1].
Taking the ball in X centered at 0 with radius 2C0:

B = {
w ∈ X: ‖w‖X ≤ 2C0

}
,

we infer from the above a priori estimate that for all s ∈ [0, 1], (I − N (s)
k )(w) �= 0 for any 

w ∈ ∂B. Therefore, the Leray–Schauder degree of the operator I − N (s)
k at 0 in the ball B, 

denoted by deg(I −N (s)
, B, 0), is well-defined for s ∈ [0, 1].
k
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On the other hand, since N (0)
k =Nk , then by the homotopy invariance of the Leray–Schauder 

degree, we have

deg(I −Nk,B,0) = deg
(
I −N (0)

k ,B,0
)= deg

(
I −N (1)

k ,B,0
)
. (3.40)

Next, we shall prove that deg(I − N (1)
k , B, 0) = 1. For this purpose, we define a further ho-

motopy for s ∈ [1, 2] such that

N (s)
k (w) = (

T (1)
k

)−1[
(2 − s)G(1)

k (w)
]
, ∀w ∈ X. (3.41)

For s ∈ [1, 2), (I − N (s)
k )(w) = 0 if and only if for w = (uc, Pm, μ0, ψ,Sk) ∈ X, the vector 

(uc, Pm, ϕ, μ) with ϕ = ψ , μ = μ0 + Sk(2 − s)−2 is a solution of the following system

�(2 − s)

δ
(uc,vc)c + 2

(
ν(0)D(uc),D(vc)

)
c

+ (s − 1)(uc,vc)c +
(

Π

ν(0)
∇Pm,∇qm

)
m

+
d−1∑
i=1

αBJSJ√
trace(Π)

∫
Γcm

ν(0)(uc · τ i )(vc · τ i )dS

+
∫

Γcm

Pm(vc · ncm)dS −
∫

Γcm

(uc · ncm)qmdS

= (2 − s)(μc∇ϕc,vc)c + (2 − s)

(
Π

ν(0)
μm∇ϕm,∇qm

)
m

, (3.42)

2 − s

δ
(ϕ,φ) + (2 − s)(u · ∇ϕ,φ) = −(M(0)∇μ,∇φ

)
, (3.43)

(2 − s)(μ,φ) = 1

ε

(
ϕ3, φ

)+ ε(∇ϕ,∇φ), (3.44)

for any qm ∈ Xm, vc ∈ Hc,div, φ ∈ H 1(Ω), and um is given by

um = − Π

ν(0)

[∇Pm − μ(ϕm)∇ϕm

]
. (3.45)

Taking the testing functions vc = uc, qm = Pm in (3.42), φ = μ in (3.43) and φ = ϕ in (3.44), 
summing up, we obtain that

�(2 − s)

δ
(uc,uc)c + ε

δ
(∇ϕ,∇ϕ) + 1

δε

∫
Ω

ϕ4dx

+ 2
(
ν(0)D(uc),D(uc)

) + (s − 1)(uc,uc)c
c
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+
(

Π

ν(0)
∇Pm,∇Pm

)
m

+
d−1∑
i=1

αBJSJ√
trace(Π)

∫
Γcm

ν(0)|uc · τ i |2dS

+ (
M(0)∇μ,∇μ

)
= 0. (3.46)

The above estimate implies that for s ∈ (1, 2), (I − N (s)
k )(w) = 0 if and only if w = 0. More-

over, it is straightforward to check that I − N (2)
k = I (cf. Lemmas 3.6, 3.7, in particular, 

(T (1)
k )−1(0) = 0) and thus (I − N (2)

k )(w) = 0 if and only if w = 0. Thus, for s ∈ [1, 2], we 

have (I − N (s)
k )(w) �= 0 for any w ∈ ∂B. As a consequence, the homotopy invariance of the 

Leray–Schauder degree yields that

deg
(
I −N (1)

k ,B,0
)= deg(I,B,0) = 1. (3.47)

In summary, we can conclude from (3.40) and (3.47) that deg(I − Nk, B, 0) = 1, which im-
plies that the abstract equation (3.37) admits a solution w = (uc, Pm, μ0, ψ,Sk) ∈ X that solves 
Tk(w) = Gk(w).

The proof of Lemma 3.8 is complete. �
Finally, we can conclude the existence of weak solutions to the system (3.1)–(3.3) from Lem-

mas 3.1, 3.2, 3.5, 3.8 and Proposition 3.1,

Theorem 3.1 (Existence of solutions to the discrete problem). For every uk
c ∈ L2(Ωc) and 

ϕk ∈ H 1(Ω), there exists a weak solution {uc, um, Pm, ϕ, μ} to the nonlinear discrete problem
(3.1)–(3.4) such that

uc ∈ Hc,div, um ∈ Hm,div, Pm ∈ Xm, ϕ ∈ H 3(Ω), μ ∈ H 1(Ω).

Moreover, the solution satisfies the mass-conservation property (3.7) and the energy-dissipation 
inequality (3.9).

3.3. Construction of approximate solution and passage to limit

The existence of weak solutions to the time-discrete system (3.1)–(3.4) enables us to construct 
approximate solutions to the time-continuous system (2.15)–(2.18). Recall that δ = T

N
, where 

T > 0 and N is a positive integer. We set

tk = kδ, k = 0,1, · · · ,N.

Let {uk+1
c , P k+1

m , ϕk+1, μk+1} (k = 0, 1, · · · , N − 1) be chosen successively as a solution of the 
discretized problem (3.1)–(3.4) with (uk

c, ϕ
k) being the “initial value” (cf. Theorem 3.1). In par-

ticular, (u0
c, ϕ

0) = (u0, ϕ0). Then for k = 0, 1, · · · , N − 1, we define the approximate solutions 
as follows
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ϕδ := tk+1 − t

δ
ϕk + t − tk

δ
ϕk+1, for t ∈ [tk, tk+1],

uδ
c := tk+1 − t

δ
uk

c + t − tk

δ
uk+1

c , for t ∈ [tk, tk+1],

P̂ δ
m := P k+1

m , for t ∈ (tk, tk+1],

ûδ
m := − Π

ν(ϕk
m)

(∇P k+1
m − μk+1∇ϕk+1

m

)
, for t ∈ (tk, tk+1],

ûδ
c := uk+1

c , for t ∈ (tk, tk+1],
ûδ
∣∣
Ωc

= ûδ
c, ûδ

∣∣
Ωm

= ûδ
m, for t ∈ (tk, tk+1],

ϕ̂δ := ϕk+1, for t ∈ (tk, tk+1],
ϕ̃δ := ϕk, for t ∈ [tk, tk+1),

μ̂δ := μk+1, for t ∈ (tk, tk+1].

Remark 3.3. It follows from the above definitions that ϕδ, uδ
c are continuous piecewise linear 

functions in time, while ûδ
c, P̂ δ

m, ϕ̂δ , μ̂δ are piecewise constant (in time) functions being right 
continuous at the nodes {tk+1} and ϕ̃δ is left continuous at the nodes {tk}.

Using the above definition of approximate solutions, one can derive from the discrete problem 
(3.1)–(3.4) that the following identities hold:

�

T∫
0

(
∂tuδ

c,vc

)
c
dt + 2

T∫
0

(
ν
(
ϕ̃δ

c

)
D
(
ûδ

c

)
,D(vc)

)
c
dt

+
T∫

0

(
Π

ν(ϕ̃δ
m)

(∇P̂ δ
m − μ̂δ

m∇ϕ̂δ
m

)
,∇qm

)
m

dt

+
d−1∑
i=1

αBJSJ√
trace(Π)

T∫
0

∫
Γcm

ν
(
ϕ̃δ

m

)(
ûδ

c · τ i

)
(vc · τ i )dSdt

+
T∫

0

∫
Γcm

P̂ δ
m(vc · ncm)dSdt −

T∫
0

∫
Γcm

(
ûδ

c · ncm
)
qmdSdt

=
T∫

0

(
μ̂δ

c∇ϕ̂δ
c ,vc

)
c
dt, (3.48)

T∫ (
∂tϕ

δ,φ
)
dt −

T∫ (
ûδϕ̂δ,∇φ

)
dt = −

T∫ (
M
(
ϕ̃δ
)∇μ̂δ,∇φ

)
dt, (3.49)
0 0 0
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T∫
0

(
μ̂δ, φ

)
dt = 1

ε

T∫
0

(
f̃
(
ϕ̂δ, ϕ̃δ

)
, φ
)
dt + ε

T∫
0

(∇ϕ̂δ,∇φ
)
dt, (3.50)

T∫
0

(
ûδ

m,vm

)
m
dt = −

T∫
0

(
Π

ν(ϕ̃δ
m)

(∇P̂ δ
m − μ̂δ

m∇ϕ̂δ
m

)
,vm

)
m

dt (3.51)

for any vc ∈ C∞
0 ([0, T ]; Hc,div), qm ∈ C∞([0, T ]; Xm), φ ∈ C∞

0 ([0, T ]; H 1(Ω)) and vm ∈
C∞([0, T ]; L2(Ωm)).

Besides, let Eδ(t) be the piecewise linear interpolation of the discrete energy E(uk
c, ϕ

k) at tk
such that

Eδ(t) = tk+1 − t

δ
E
(
uk

c, ϕ
k
)+ t − tk

δ
E
(
uk+1

c , ϕk+1), for t ∈ [tk, tk+1], (3.52)

and Dδ(t) be the interpolated approximate dissipation

Dδ(t) = 2
(
ν
(
ϕk

c

)
D
(
uk+1

c

)
,D
(
uk+1

c

))
c
+ (

ν
(
ϕk

m

)
Π−1uk+1

m ,uk+1
m

)
m

+
∫
Ω

M
(
ϕk
)∣∣∇μk+1

∣∣2dx

+ αBJSJ√
trace(Π)

d−1∑
i=1

∫
Γcm

ν
(
ϕk

m

)∣∣uk+1
c · τ i

∣∣2dS, for t ∈ (tk, tk+1).

Then it follows from the discrete energy estimate (3.9) that for k = 0, 1, · · · , N − 1

d

dt
Eδ(t) = 1

δ

(
E
(
uk+1

c , ϕk+1)− E
(
uk

c, ϕ
k
))≤ −Dδ(t), for t ∈ (tk, tk+1). (3.53)

In particular, we have for t ∈ [0, T ],

E
(
ûδ

c(t), ϕ̂
δ(t)

)+
t∫

0

Dδ(t)dt ≤ E(u0, ϕ0), ∀t ∈ [0, T ]. (3.54)

3.4. Proof of Theorem 2.1

We now proceed to prove our main result Theorem 2.1 on the existence of finite energy weak 
solutions to system (2.15)–(2.18). To this end, we shall distinguish the two cases such that � > 0
and � = 0.
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3.4.1. Case � > 0
In order to pass to the limit as δ → 0, we first derive some a priori estimates on the approxi-

mate solutions that are uniform in δ. First, recall the mass-conservation from Lemma 3.1

∫
Ω

(
ϕk+1 − ϕk

)
dx = 0, for k = 0, ...,N − 1,

which immediately yields

∫
Ω

ϕδdx =
∫
Ω

ϕ̂δdx =
∫
Ω

ϕ̃δdx =
∫
Ω

ϕ0dx.

Besides, it follows from the energy estimate (3.54) that

�
∥∥ûδ

c

∥∥
L∞(0,T ;L2(Ωc))

+ ∥∥ϕ̂δ
∥∥

L∞(0,T ;H 1(Ω))
≤ C, (3.55)

∥∥D(ûδ
c

)∥∥
L2(0,T ;L2(Ωc))

+
d−1∑
i=1

∥∥ûδ
c · τ i

∥∥
L2(0,T ;L2(Γcm))

≤ C, (3.56)

∥∥ûδ
m

∥∥
L2(0,T ;L2(Ωm))

≤ C, (3.57)∥∥∇μ̂δ
∥∥

L2(0,T ;L2(Ω))
≤ C, (3.58)

where the constant C depends on E(u0, ϕ0) and Ω but is independent of δ. Taking φ = 1 in (3.3), 
we have for k = 0, 1, ..., N − 1

∣∣∣∣
∫
Ω

μk+1dx

∣∣∣∣≤ ε−1
∫
Ω

(∣∣ϕk+1
∣∣3 + ∣∣ϕk

∣∣)dx ≤ C,

which combined with the Poincaré inequality and (3.58) implies that

∥∥μ̂δ
∥∥

L2(0,T ;H 1(Ω))
≤ CT ,

where the constant CT depends on E(u0, ϕ0), Ω and T . Then similar to the Neumann problem 
(3.29), we can apply the elliptic estimate (similar to (3.31)) to get

∥∥ϕ̂δ
∥∥

L2(0,T ;H 3(Ω))
≤ CT . (3.59)

Using (3.4), the above estimates, the Hölder inequality and the Gagliardo–Nirenberg inequality, 
we can obtain the following estimates for P̂m such that when d = 3
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T∫
0

∥∥∇P̂ δ
m

∥∥ 8
5
L2(Ωm)

dt

≤ C

T∫
0

(∥∥ûδ
m

∥∥ 8
5
L2(Ωm)

+ ∥∥∇ϕ̂δ
m

∥∥ 8
5
L3(Ωm)

∥∥μ̂δ
m

∥∥ 8
5
L6(Ωm)

)
dt

≤ C

T∫
0

(∥∥ûδ
m

∥∥2
L2(Ωm)

+ 1
)
dt + C sup

0≤t≤T

∥∥ϕ̂δ
m

∥∥ 6
5
H 1(Ωm)

T∫
0

∥∥ϕ̂δ
m

∥∥ 2
5
H 3(Ωm)

∥∥μ̂δ
m

∥∥ 8
5
H 1(Ωm)

dt

≤ C

T∫
0

(∥∥ûδ
m

∥∥2
L2(Ωm)

+ 1
)
dt

+ C sup
0≤t≤T

∥∥ϕ̂δ
m

∥∥ 6
5
H 1(Ωm)

( T∫
0

∥∥ϕ̂δ
m

∥∥2
H 3(Ωm)

dt

) 1
5
( T∫

0

∥∥μ̂δ
m

∥∥2
H 1(Ωm)

dt

) 4
5

≤ CT , (3.60)

and when d = 2

T∫
0

∥∥∇P̂ δ
m

∥∥ 2r
1+r

L2(Ωm)
dt

≤ C

T∫
0

(∥∥ûδ
m

∥∥ 2r
1+r

L2(Ωm)
+ ∥∥∇ϕ̂δ

m

∥∥ 2r
1+r

L
2r

r−2 (Ωm)

∥∥μ̂δ
m

∥∥ 2r
1+r

Lr (Ωm)

)
dt

≤ C

T∫
0

(∥∥ûδ
m

∥∥2
L2(Ωm)

+ 1
)
dt + C sup

0≤t≤T

∥∥ϕ̂δ
m

∥∥ 2(r−1)
1+r

H 1(Ωm)

T∫
0

∥∥ϕ̂δ
m

∥∥ 2
1+r

H 3(Ωm)

∥∥μ̂δ
m

∥∥ 2r
1+r

H 1(Ωm)
dt

≤ C

T∫
0

(∥∥ûδ
m

∥∥2
L2(Ωm)

+ 1
)
dt

+ C sup
0≤t≤T

∥∥ϕ̂δ
m

∥∥ 2(r−1)
1+r

H 1(Ωm)

( T∫
0

∥∥ϕ̂δ
m

∥∥2
H 3(Ωm)

dt

) 1
1+r
( T∫

0

∥∥μ̂δ
m

∥∥2
H 1(Ωm)

dt

) r
1+r

≤ CT , for any r ∈ (2,+∞). (3.61)

Based on the above estimates (3.55)–(3.61) which are independent of δ, we can see that there 
exists a subsequence {(ûδ

c, P̂
δ
m, ϕ̂δ, μ̂δ)} (still denoted by the same symbols for simplicity) as 

δ → 0 (or equivalently N → +∞) such that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ûδ
c → uc weakly star in L∞(0, T ;L2(Ωc)

)
,

weakly in L2
(
0, T ;H1(Ωc)

)
,

P̂m → Pm weakly in Lα(0, T ;Xm),

ûδ
m → um weakly in L2

(
0, T ;L2(Ωm)

)
,

ϕ̂δ → ϕ weakly star in L∞(0, T ;H 1(Ω)
)
,

weakly in L2
(
0, T ;H 3(Ω)

)
,

μ̂δ → μ weakly in L2
(
0, T ;H 1(Ω)

)
,

(3.62)

for certain functions (uc, Pm, um, ϕ, μ) satisfying

uc ∈ L∞(0, T ;L2(Ωc)
)∩ L2(0, T ;H1(Ωc)

)
,

Pm ∈ Lα(0, T ;Xm),

um ∈ L2(0, T ;L2(Ωm)
)
,

ϕ ∈ L∞(0, T ;H 1(Ω)
)∩ L2(0, T ;H 3(Ω)

)
,

μ ∈ L2(0, T ;H 1(Ω)
)
,

where α = 8
5 when d = 3 and α ∈ ( 4

3 , 2) that can be arbitrary close to 2 when d = 2.
In order to pass to the limit in nonlinear terms, we need to show the strong convergence of 

ϕ̂δ (up to a subsequence). It follows from Eq. (3.49), the Gagliardo–Nirenberg inequality and the 
Sobolev embedding theorem that

∥∥∂tϕ
δ
∥∥ 8

5

L
8
5 (0,T ;(H 1(Ω))′)

≤ C

T∫
0

(∥∥∇μ̂δ
∥∥ 8

5
L2(Ω)

+ ∥∥ϕ̂δ
∥∥ 8

5
L∞(Ω)

∥∥ûδ
∥∥ 8

5
L2(Ω)

)
dt

≤ C

T∫
0

∥∥∇μ̂δ
∥∥ 8

5
L2(Ω)

dt + C sup
0≤t≤T

∥∥ϕ̂δ
∥∥ 6

5
L6(Ω)

T∫
0

∥∥ϕ̂δ
∥∥ 2

5
H 3(Ω)

∥∥ûδ
∥∥ 8

5
L2(Ω)

dt

≤ C

T∫
0

(∥∥∇μ̂δ
∥∥2

L2(Ω)
+ 1

)
dt + C sup

0≤t≤T

∥∥ϕ̂δ
∥∥ 6

5
H 1(Ω)

T∫
0

(∥∥ϕ̂δ
∥∥2

H 3(Ω)
+ ∥∥ûδ

∥∥2
L2(Ω)

)
dt

≤ CT , when d = 3. (3.63)

For d = 2, we use the Brézis–Gallouet interpolation inequality (cf. [46])

‖g‖L∞(Ω) ≤ C‖g‖H 1(Ω)

√
ln
(
1 + ‖g‖H 2(Ω)

)+ C
(
1 + ‖g‖H 1(Ω)

)
, ∀g ∈ H 2(Ω)

to obtain that for any α ∈ (1, 2), it holds
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∥∥∂tϕ
δ
∥∥α

Lα(0,T ;(H 1(Ω))′)

≤ C

T∫
0

(∥∥∇μ̂δ
∥∥α

L2(Ω)
+ ∥∥ϕ̂δ

∥∥α

L∞(Ω)

∥∥ûδ
∥∥α

L2(Ω)

)
dt

≤ C

T∫
0

∥∥∇μ̂δ
∥∥α

L2(Ω)
dt

+ C
(

1 + sup
0≤t≤T

∥∥ϕ̂δ
∥∥α

H 1(Ω)

) T∫
0

(
1 +

√
ln
(
1 + ‖ϕ‖H 2(Ω)

))α∥∥ûδ
∥∥α

L2(Ω)
dt

≤ C

T∫
0

(∥∥∇μ̂δ
∥∥2

L2(Ω)
+ 1

)
dt

+ C

T∫
0

[(
1 +

√
ln
(
1 + ‖ϕ‖H 2(Ω)

)) 2α
2−α + ∥∥ûδ

∥∥2
L2(Ω)

]
dt

≤ CT , when d = 2. (3.64)

As a result, it follows that

∂tϕ
δ → ∂tϕ weakly in Lα

(
0, T ; (H 1(Ω)

)′)
,

where α = 8
5 when d = 3 and α ∈ (1, 2) that can be arbitrary close to 2 when d = 2.

Since

∥∥ϕ̂δ − ϕδ
∥∥

(H 1)′ =
∥∥∥∥(tk+1 − t)

(ϕk+1 − ϕk)

δ

∥∥∥∥
(H 1)′

≤ δ
∥∥∂tϕ

δ
∥∥

(H 1)′ , t ∈ (tk, tk+1],

for k = 0, 1, ..., N − 1, we have

T∫
0

∥∥ϕ̂δ − ϕδ
∥∥α

(H 1)′dt ≤ δα

T∫
0

∥∥∂tϕ
δ
∥∥α

(H 1)′dt → 0, as δ → 0, (3.65)

which implies

ϕ̂δ − ϕδ → 0, strongly in Lα
(
0, T ; (H 1)′), as δ → 0.

Similarly, one can show ‖ϕ̃δ − ϕ̂δ‖Lα(0,T ;(H 1)′) → 0, as δ → 0. Thus, the sequences {ϕδ}, {ϕ̂δ}
and {φ̃δ}, if convergent, should converge to the same limit. On the other hand, by the defini-
tion of ϕδ , it satisfies the estimates similar to (3.55), (3.59) for ϕ̂δ . Hence, applying Simon’s
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compactness lemma (cf. e.g., [47]), we deduce that there exists ϕ∗ ∈ L2(0, T ; H 3−β(Ω)) ∩
C([0, T ]; H 1−β(Ω)), for a suitable subsequence,

ϕδ → ϕ∗, strongly in L2(0, T ;Hβ(Ω)
)
, as δ → 0,

for certain 0 < β ≤ 1. In particular, we have ϕ∗ = ϕ and up to a subsequence,

ϕ̂δ, ϕ̃δ → ϕ strongly in L2(0, T ;H 3−β(Ω)
)∩ C

([0, T ];H 1−β(Ω)
)
, as δ → 0. (3.66)

Concerning the initial data, since by definition ϕδ|t=0 = ϕ0, we infer from (3.66) that

ϕ|t=0 = ϕ0.

Indeed, by (3.55), (3.63) and [26, Lemma 4.1], we also have ϕ ∈ Cw([0, T ]; H 1(Ω)).
Using similar arguments for (3.60) and (3.61), we can deduce from (3.48) and (3.60) that 

(taking qm = 0)

∥∥∂tuδ
c

∥∥ 8
5

L
8
5 (0,T ;(H1(Ω))′)

≤ C

T∫
0

(∥∥ûδ
c

∥∥ 8
5
H1(Ωc)

+ ∥∥P̂ δ
m

∥∥ 8
5
H 1(Ωm)

+ ∥∥μ̂δ
c

∥∥ 8
5
L6(Ωc)

∥∥∇ϕ̂δ
c

∥∥ 8
5
L3(Ωc)

)
dt

≤ CT , when d = 3 (3.67)

and

∥∥∂tuδ
c

∥∥ 2r
1+r

L
2r

1+r (0,T ;(H1(Ω))′)

≤ C

T∫
0

(∥∥ûδ
c

∥∥ 2r
1+r

H1(Ωc)
+ ∥∥P̂ δ

m

∥∥ 2r
1+r

H 1(Ωm)
+ ∥∥μ̂δ

c

∥∥ 2r
1+r

Lr (Ωc)

∥∥∇ϕ̂δ
c

∥∥ 2r
1+r

L
2r

r−2 (Ωc)

)
dt

≤ CT , ∀r ∈ (2 + ∞), when d = 2. (3.68)

Parallel to the arguments for ϕδ , ϕ̂δ , the above estimates yield that as δ → 0,

ûδ
c − uδ

c → 0, strongly in Lα
(
0, T ; (H1(Ωc)

)′)
, (3.69)

ûδ
c,uδ

c → uc, strongly in L2(0, T ;Hβ(Ωc)
)∩ C

([0, T ];H−β(Ωc)
)
, (3.70)

for some β ∈ (0, 1), α = 8
5 when d = 3 and α ∈ ( 4

3 , 2) that can be arbitrary close to 2 when 
d = 2. Moreover, we have uc|t=0 = u0 and uc ∈ Cw([0, T ]; L2(Ωc)).

Based on the strong convergence (3.66) and the Sobolev embedding theorem, we can derive 
that

f̃
(
ϕ̂δ, ϕ̃δ

)→ f (ϕ), strongly in L2(0, T ;L2(Ω)
)
. (3.71)
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By the assumptions (A1)–(A2), we get

ν
(
ϕ̃δ
)→ ν(ϕ), strongly in C

([0, T ];H 1−β(Ω)
)
,

M
(
ϕ̃δ
)→ M(ϕ), strongly in C

([0, T ];H 1−β(Ω)
)
.

Similar to the argument in (3.60), we have μ̂δ∇ϕ̂δ ∈ Lα(0, T ; L2(Ω)) with α being the parameter 
specified above. Moreover, we infer from the strong convergence of ϕ̂δ (see (3.66)) and the weak 
convergence of μ̂δ (see (3.62)) that

μ̂δ∇ϕ̂δ → μ∇ϕ

in the distribution sense. At last, we note that in (3.48)–(3.49), after integration by parts, we get

T∫
0

(
∂tuδ

c,vc

)
c
dt = −

T∫
0

(
uδ

c, ∂tvc

)
c
dt,

T∫
0

(
∂tϕ

δ,φ
)
dt = −

T∫
0

(
ϕδ, ∂tφ

)
dt.

Using the above convergence results, we are able to pass to the limit in Eqs. (3.48)–(3.51) to 
see that the limit functions (uc, Pm, um, ϕ, μ) satisfy the weak formulation (2.15)–(2.18) (see 
Definition 2.1).

Finally, we show that (uc, um, ϕ, μ) also fulfills the energy inequality (2.19). The energy 
estimate (3.53) yields that

E(u0, ϕ0)h(0) +
T∫

0

Eδ(t)h′(t)dt ≥
T∫

0

Dδ(t)h(t)dt, (3.72)

for all h(t) ∈ W 1,1(0, T ) with h ≥ 0 and h(T ) = 0. On the other hand, it follows from the strong 
convergence results (3.66) and (3.70) that as δ → 0, for almost every t ∈ (0, T ), we have (up to 
a subsequence),

ûδ
c(t) → uc(t), strongly in L2(Ωc),

ϕ̂δ(t) → ϕ(t), strongly in H 1(Ω),

which imply that

Eδ(t) → E
(
uc(t), ϕ(t)

)
, for almost every t ∈ (0, T ).

By the lower semi-continuity of norms and the almost everywhere convergence of ν(ϕ̃δ), M(ϕ̃δ), 
we have
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lim inf
δ→0

t∫
s

Dδ(τ )h(τ )dτ ≥
t∫

s

D(τ )h(τ )dτ, for 0 ≤ s < t ≤ T ,

where D(t) is defined as in (2.3). Passing to the limit in (3.72), we get

E(u0, ϕ0)h(0) +
T∫

0

E
(
uc(t), ϕ(t)

)
h′(t)dt ≥

T∫
0

D(t)h(t)dt.

Then we can conclude from [26, Lemma 4.3] that the energy inequality (2.19) holds for all 
s ≤ t < T and almost all 0 ≤ s < T including s = 0.

3.4.2. Case � = 0
If � = 0, one does not have a direct estimate on ‖ûδ

c‖L2(Ωc)
(compare to (3.55)). Recall also 

that in our domain setting, the boundary Γc = ∅ is allowed, i.e., Ωc can be enclosed completely 
by Ωm. As a consequence, the classical Korn’s inequality (3.22) does not apply. To overcome 
this difficulty, we shall derive an equivalent norm on the following space

Z = {u | uc = u|Ωc ∈ Hc,div, um = u|Ωm ∈ Hm,div, uc · ncm = um · ncm on Γcm}.

Lemma 3.9. The norm given by

‖u‖2
Z := ∥∥D(uc)

∥∥2
L2(Ωc)

+
d−1∑
i=1

‖uc · τ i‖2
L2(Γcm)

+ ‖um‖2
L2(Ωm)

, (3.73)

is an equivalent norm on Z.

Proof. The case that Γc has positive measure is trivial in view of Korn’s inequality (3.22). Below 
we focus on the situation where Ωm encloses completely Ωc. It is clear from Korn’s inequality 
(3.21) and the trace theorem that the following quantity defines an equivalent norm on Z

‖|u‖|2 := ∥∥D(uc)
∥∥2

L2(Ωc)
+ ‖uc‖2

L2(Ωc)
+

d−1∑
i=1

‖uc · τ i‖2
L2(Γcm)

+ ‖um‖2
L2(Ωm)

. (3.74)

One only needs to prove that there exists a constant C independent of the function u such that

‖|u‖| ≤ C‖u‖Z, ∀u ∈ Z.

Suppose by contradiction that for a sequence {un} in Z it holds

‖|un‖| ≥ n‖un‖Z. (3.75)
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By homogeneity, we may normalize ‖ |un‖ | = 1. Then {un} is a bounded sequence in Z. There 
exists a subsequence, still denoted by {un}, such that un converges to u∞ weakly in Z. In partic-
ular, one has by Sobolev compact embedding ucn := un|Ωc converges to uc∞ strongly in L2(Ωc). 
On the other hand, due to (3.75),

‖un‖Z → 0. (3.76)

It follows from the definitions (3.73) and (3.74) that ‖ucn‖L2(Ωc)
converges to 1, which implies

‖uc∞‖L2(Ωc)
= 1. (3.77)

Using the facts that umn := un|Ωm ∈ Hm,div, (3.76) and the trace theorem, we see that

umn · ncm|Γcm → 0, in H− 1
2 (Γcm).

Since un ∈ Z, by the continuity condition on the interface Γcm, one concludes

ucn · ncm|Γcm = umn · ncm|Γcm → 0, in H
1
2 (Γcm).

On the other hand, (3.76) implies ‖ucn · τ i‖L2(Γcm) → 0 (i = 1, ..., d − 1). As a consequence of 
the above estimates and the fact that uc∞ is the weak limit of ucn in H1(Ωc), we obtain

uc∞|Γcm = 0. (3.78)

Finally, by the weak lower semi-continuity of norm, one has

∥∥D(uc∞)
∥∥

L2(Ωc)
≤ lim inf

n→∞
∥∥D(ucn)

∥∥
L2(Ωc)

= 0. (3.79)

By virtue of (3.78) and (3.79), we infer from the Korn inequality (3.22) that

‖uc∞‖L2(Ωc)
= 0.

This leads to a contradiction with (3.77). The proof is complete. �
Now we return to the proof of Theorem 2.1. It follows easily from Lemma 3.1 and the defini-

tion of ûδ
c, û

δ
m that

ûδ
m ∈ Hm,div, ûδ

m · ncm = ûδ
c · ncm in H

1
2 (Γcm).

Thus, the equivalent norm (3.73) in Lemma 3.9 is applicable, and one can derive estimate on 
‖ûδ

c‖L2(0,T ;H1(Ωc))
from the energy estimate (3.54). Then one can conclude the proof as in the 

case of � > 0.
The proof of Theorem 2.1 is complete.
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4. Weak–strong uniqueness

In this section, we prove the uniqueness result Theorem 2.2. Below we just give the proof for 
d = 3, while the proof for d = 2 can be obtained with minor modifications under certain weaker 
regularity assumptions.

First, we recall that the finite energy weak solutions (uc, Pm, um, ϕ, μ) to CHSD system 
(1.1)–(1.22) satisfy the energy inequality (2.19), i.e.,

∫
Ωc

�

2

∣∣uc(t)
∣∣2dx +

∫
Ω

[
ε

2
|∇ϕ|2 + 1

ε
F (ϕ)

]
dx

+
t∫

0

∫
Ωm

ν(ϕm)Π−1|um|2dxdτ +
t∫

0

∫
Ωc

2ν(ϕc)
∣∣D(uc)

∣∣2dxdτ

+
t∫

0

∫
Ω

M(ϕ)
∣∣∇μ(ϕ)

∣∣2dxdτ

+ αBJSJ√
trace(Π)

d−1∑
i=1

t∫
0

∫
Γcm

ν(ϕm)|uc · τ i |2dSdτ

≤
∫
Ωc

�

2
|u0|2dx +

∫
Ω

[
ε

2
|∇ϕ0|2 + 1

ε
F (ϕ0)

]
dx. (4.1)

On the other hand, the regular solutions (ũc, P̃m, ũm, ϕ̃, μ̃) are allowed to be used as the test 
functions for the CHSD system and the following energy equality holds

∫
Ωc

�

2

∣∣ũc(t)
∣∣2dx +

∫
Ω

[
ε

2
|∇ϕ̃|2 + 1

ε
F (ϕ̃)

]
dx

+
t∫

0

∫
Ωm

ν(ϕ̃m)Π−1|ũm|2dxdτ +
t∫

0

∫
Ωc

2ν(ϕ̃c)
∣∣D(ũc)

∣∣2dxdτ

+
t∫

0

∫
Ω

M(ϕ̃)
∣∣∇μ̃(ϕ̃)

∣∣2dxdτ

+ αBJSJ√
trace(Π)

d−1∑
i=1

t∫
0

∫
Γcm

ν(ϕ̃m)|ũc · τ i |2dSdτ

=
∫

�

2
|u0|2dx +

∫ [
ε

2
|∇ϕ0|2 + 1

ε
F (ϕ0)

]
dx. (4.2)
Ωc Ω
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Next, taking ũ and −ε�ϕ̃ as test functions in the weak formulation for the finite energy weak 
solution (uc, Pm, um, ϕ, μ) and using the equations for ũc, ϕ̃, we obtain that

�
(
uc(t), ũc(t)

)
c
− �

∫
Ωc

|u0|2dx

= �

t∫
0

(uc, ∂t ũc)cdτ − αBJSJ√
trace(Π)

d−1∑
i=1

t∫
0

∫
Γcm

ν(ϕm)(uc · τ i )(ũc · τ i )dSdτ

−
t∫

0

∫
Γcm

Pm(ũc · ncm)dSdτ −
t∫

0

∫
Ωc

2ν(ϕc)D(uc) : D(ũc)dxdτ

+
t∫

0

(μc∇ϕc, ũc)cdτ

= − αBJSJ√
trace(Π)

d−1∑
i=1

t∫
0

∫
Γcm

ν(ϕm)(uc · τ i )(ũc · τ i )dSdτ

− αBJSJ√
trace(Π)

d−1∑
i=1

t∫
0

∫
Γcm

ν(ϕ̃m)(uc · τ i )(ũc · τ i )dSdτ

−
t∫

0

∫
Γcm

Pm(ũc · ncm)dSdτ −
t∫

0

∫
Γcm

P̃m(uc · ncm)dSdτ

−
t∫

0

∫
Ωc

2ν(ϕc)D(uc) :D(ũc)dxdτ −
t∫

0

∫
Ωc

2ν(ϕ̃c)D(uc) :D(ũc)dxdτ

+
t∫

0

(μc∇ϕc, ũc)cdτ +
t∫

0

(μ̃c∇ϕ̃c,uc)cdτ, (4.3)

ε

∫
Ω

∇ϕ(t) · ∇ϕ̃(t)dx − ε

∫
Ω

|∇ϕ0|2dx

= ε

t∫
0

∫
Ω

M(ϕ)∇μ · ∇�ϕ̃dxdτ + ε

t∫
0

∫
Ω

M(ϕ̃)∇μ̃ · ∇�ϕdxdτ

+ ε

t∫ ∫
(u · ∇ϕ)�ϕ̃dxdτ + ε

t∫ ∫
(ũ · ∇ϕ̃)�ϕdxdτ, (4.4)
0 Ω 0 Ω
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t∫
0

∫
Ωm

ν(ϕm)Π−1um · ũmdxdτ +
t∫

0

∫
Ωm

ν(ϕ̃m)Π−1um · ũmdxdτ

= −
t∫

0

(
(∇Pm − μm∇ϕm), ũm

)
m
dτ −

t∫
0

(
(∇P̃m − μ̃m∇ϕ̃m),um

)
m
dτ

=
t∫

0

∫
Γcm

Pm(ũc · ncm)dSdτ +
t∫

0

∫
Γcm

P̃m(uc · ncm)dSdτ

+
t∫

0

(μm∇ϕm, ũm)mdτ +
t∫

0

(μ̃m∇ϕ̃m,um)mdτ. (4.5)

Adding (4.1) with (4.2) and subtracting the sum of (4.3)–(4.5) from the resultant, by a direct 
computation we obtain that

�

2

∫
Ωc

∣∣uc(t) − ũc(t)
∣∣2dx + ε

2

∫
Ω

∣∣∇ϕ(t) − ∇ϕ̃(t)
∣∣2dx

+
t∫

0

∫
Ωc

2ν(ϕc)
∣∣D(uc) −D(ũc)

∣∣2dxdτ

+
t∫

0

∫
Ωm

ν(ϕm)Π−1|um − ũm|2dxdτ

+ ε2

t∫
0

∫
Ω

M(ϕ)|∇�ϕ − ∇�ϕ̃|2dxdτ

+ αBJSJ√
trace(Π)

d−1∑
i=1

t∫
0

∫
Γcm

ν(ϕ)
∣∣(uc − ũc) · τ i

∣∣2dSdτ

≤ −
t∫

0

∫
Ωc

2
(
ν(ϕ̃c) − ν(ϕc)

)
D(ũc) : (D(ũc) −D(uc)

)
dxdτ

−
t∫

0

∫
Ωm

(
ν(ϕ̃m) − ν(ϕm)

)
Π−1ũm(ũm − um)dxdτ

− ε2

t∫ ∫ (
M(ϕ̃) − M(ϕ)

)∇�ϕ̃ · (∇�ϕ̃ − ∇�ϕ)dxdτ
0 Ω
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− αBJSJ√
trace(Π)

d−1∑
i=1

t∫
0

∫
Γcm

(
ν(ϕ̃m) − ν(ϕm)

)
(ũc · τ i )

(
(ũc − uc) · τ i

)
dSdτ

+ 2

t∫
0

∫
Ω

(
M(ϕ)∇�ϕ · ∇f (ϕ) + M(ϕ̃)∇�ϕ̃ · ∇f (ϕ̃)

)
dxdτ

−
t∫

0

∫
Ω

(
M(ϕ)∇f (ϕ) · ∇�ϕ̃ + M(ϕ̃)∇f (ϕ̃) · ∇�ϕ

)
dxdτ

− 1

ε2

t∫
0

∫
Ω

(
M(ϕ)

∣∣∇f (ϕ)
∣∣2 + M(ϕ̃)

∣∣∇f (ϕ̃)
∣∣2)dxdτ

+ 1

ε

∫
Ω

(
2F(ϕ0) − F(ϕ) − F(ϕ̃)

)
dx

+ ε

t∫
0

∫
Ω

(�ϕ∇ϕ · ũ + �ϕ̃∇ϕ̃ · u − u · ∇ϕ�ϕ̃ − ũ · ∇ϕ̃�ϕ)dxdτ

:=
9∑

j=1

Ij , (4.6)

where we have used the incompressibility condition and the fact

∫
Ω

(u · ∇ϕ)f (ϕ)dx =
∫
Ω

u · ∇F(ϕ)dx = 0.

Using the mass conservation property 
∫
Ω

(ϕ̃ − ϕ)dx = 0 (due to the choice of initial data), the 
Poincaré inequality, the Sobolev embedding theorem and the Gagliardo–Nirenberg inequality, 
we have the following estimates for φ = ϕ̃ − ϕ

‖φ‖L∞(Ω) ≤ C
(‖∇�φ‖

1
4
L2(Ω)

‖φ‖
3
4
L6(Ω)

+ ‖φ‖L6(Ω)

)
≤ C

(‖∇�φ‖
1
4
L2(Ω)

‖∇φ‖
3
4
L2(Ω)

+ ‖∇φ‖L2(Ω)

)
,

‖�φ‖L3(Ω) ≤ C
(‖∇�φ‖

3
4
L2(Ω)

‖∇φ‖
1
4
L2(Ω)

+ ‖∇φ‖L2(Ω)

)
,

‖∇φ‖L6(Ω) ≤ C
(‖∇�φ‖

1
2

2 ‖∇φ‖
1
2

2 + ‖∇φ‖L2(Ω)

)
.

L (Ω) L (Ω)
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Combining the above estimates with the Young inequality, we get

I1 ≤ C

t∫
0

∥∥ν(ϕ̃c) − ν(ϕc)
∥∥

L∞(Ωc)

∥∥D(ũc)
∥∥

L2(Ωc)

∥∥D(ũc) −D(uc)
∥∥

L2(Ωc)
dτ

≤ C

t∫
0

‖ϕ̃ − ϕ‖L∞(Ω)

∥∥D(ũc)
∥∥

L2(Ωc)

∥∥D(ũc) −D(uc)
∥∥

L2(Ωc)
dτ

≤ C

t∫
0

(∥∥∇�(ϕ̃ − ϕ)
∥∥ 1

4
L2(Ω)

∥∥∇(ϕ̃ − ϕ)
∥∥ 3

4
L2(Ω)

+ ∥∥∇(ϕ̃ − ϕ)
∥∥

L2(Ω)

)

× ∥∥D(ũc)
∥∥

L2(Ωc)

∥∥D(ũc) −D(uc)
∥∥

L2(Ωc)
dτ

≤ ζ

t∫
0

∥∥∇�(ϕ̃ − ϕ)
∥∥2

L2(Ω)
dτ + ζ

t∫
0

∥∥D(ũc) −D(uc)
∥∥2

L2(Ωc)
dτ

+ C

t∫
0

(∥∥D(ũc)
∥∥ 8

3
L2(Ωc)

+ 1
)∥∥∇(ϕ̃ − ϕ)

∥∥2
L2(Ω)

dτ,

where ζ > 0 is a small constant to be chosen later. In a similar manner, we have the following 
estimates for I2, I3 and I4:

I2 ≤ ζ

t∫
0

∥∥∇�(ϕ̃ − ϕ)
∥∥2

L2(Ω)
dτ + ζ

t∫
0

‖ũm − um‖2
L2(Ωm)

dτ

+ C

t∫
0

(‖ũm‖
8
3
L2(Ωm)

+ 1
)∥∥∇(ϕ̃ − ϕ)

∥∥2
L2(Ω)

dτ,

I3 ≤ ζ

t∫
0

∥∥∇�(ϕ̃ − ϕ)
∥∥2

L2(Ω)
dτ

+ C

t∫
0

(‖∇�ϕ̃‖
8
3
L2(Ω)

+ 1
)∥∥∇(ϕ̃ − ϕ)

∥∥2
L2(Ω)

dτ,

I4 ≤ ζ

t∫
0

∥∥∇�(ϕ̃ − ϕ)
∥∥2

L2(Ω)
dτ + ζ

d−1∑
i=1

t∫
0

∫
Γcm

∣∣(ũc − uc) · τ i

∣∣2dSdτ

+ C

t∫ (‖ũc‖
8
3
L2(Ωc)

+ 1
)∥∥∇(ϕ̃ − ϕ)

∥∥2
L2(Ω)

dτ .
0
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Since ϕ ∈ L∞(0, T ; H 1(Ω)) ∩L2(0, T ; H 3(Ω)), by the Gagliardo–Nirenberg inequality we de-
duce that

T∫
0

∥∥f (ϕ)
∥∥4

H 1(Ω)
dt ≤ C

T∫
0

(‖ϕ‖4
H 1(Ω)

+ ‖ϕ‖12
L6(Ω)

+ 81
∥∥ϕ2∇ϕ

∥∥4
L2(Ω)

)
dt

≤ CT + C

t∫
0

‖ϕ‖8
L∞(Ω)‖∇ϕ‖4

L2(Ω)
dt

≤ CT + C

T∫
0

(‖∇�ϕ‖
1
4
L2(Ω)

‖ϕ‖
3
4
L6(Ω)

+ ‖ϕ‖L6(Ω)

)8
dt

≤ CT + C

T∫
0

‖∇�ϕ‖2
L2(Ω)

dt

≤ CT ,

which implies f (ϕ) ∈ L4(0, T ; H 1(Ω)) ⊂ L
8
3 (0, T ; H 1(Ω)). Thus we can take f (ϕ) = ϕ3 − ϕ

as a test function in the Cahn–Hilliard equation for ϕ. Since the nonlinear part ϕ3 is 
monotone increasing, similar to [48, Proposition 4.2], we see that the dual product satisfies 
〈ϕt , f (ϕ)〉(H 1)′,H 1 = d

dt

∫
Ω

F(ϕ)dx for a.e. t ∈ (0, T ). Then integrating with respect to t we 
deduce that

∫
Ω

F(ϕ)dx −
∫
Ω

F(ϕ0)dx = ε

t∫
0

∫
Ω

M(ϕ)∇�ϕ · ∇f (ϕ)dxdτ − 1

ε

t∫
0

∫
Ω

M(ϕ)
∣∣∇f (ϕ)

∣∣2dxdτ .

In a similar way, we have the same identity for the regular solution ϕ̃

∫
Ω

F(ϕ̃)dx −
∫
Ω

F(ϕ0)dx = ε

t∫
0

∫
Ω

M(ϕ̃)∇�ϕ̃ · ∇f (ϕ̃)dxdτ − 1

ε

t∫
0

∫
Ω

M(ϕ̃)
∣∣∇f (ϕ̃)

∣∣2dxdτ .

As a consequence, we obtain that

I5 + I6 + I7 + I8

=
t∫

0

∫
Ω

[−M(ϕ)∇�(ϕ̃ − ϕ) · ∇f (ϕ) + M(ϕ̃)∇�(ϕ̃ − ϕ) · ∇f (ϕ̃)
]
dxdτ

=
t∫ ∫ [

M(ϕ̃) − M(ϕ)
]∇�(ϕ̃ − ϕ) · ∇f (ϕ̃)dxdτ
0 Ω



D. Han et al. / J. Differential Equations 257 (2014) 3887–3933 3929
+
t∫

0

∫
Ω

M(ϕ)∇�(ϕ̃ − ϕ) · (∇f (ϕ̃) − ∇f (ϕ)
)
dxdτ

:= J1 + J2. (4.7)

The term J1 can be estimated like I1 such that

J1 ≤ C

t∫
0

∥∥M(ϕ̃) − M(ϕ)
∥∥

L∞(Ω)

∥∥∇�(ϕ̃ − ϕ)
∥∥

L2(Ω)

∥∥∇f (ϕ̃)
∥∥

L2(Ω)
dτ

≤ C

t∫
0

‖ϕ̃ − ϕ‖L∞(Ω)

∥∥∇�(ϕ̃ − ϕ)
∥∥

L2(Ω)

∥∥∇f (ϕ̃)
∥∥

L2(Ω)
dτ

≤ C

t∫
0

(∥∥∇�(ϕ̃ − ϕ)
∥∥ 1

4
L2(Ω)

∥∥∇(ϕ̃ − ϕ)
∥∥ 3

4
L2(Ω)

+ ∥∥∇(ϕ̃ − ϕ)
∥∥

L2(Ω)

)

× ∥∥∇�(ϕ̃ − ϕ)
∥∥

L2(Ω)

(‖ϕ̃‖2
L∞ + 1

)‖∇ϕ̃‖L2(Ω)dτ

≤ ζ

t∫
0

∥∥∇�(ϕ̃ − ϕ)
∥∥2

L2(Ω)
dτ

+ C

t∫
0

(‖ϕ̃‖
16
3

L∞(Ω) + 1
)‖∇ϕ̃‖

8
3
L2(Ω)

∥∥∇(ϕ̃ − ϕ)
∥∥2

L2(Ω)
dτ

+ C

t∫
0

(‖ϕ̃‖4
L∞(Ω) + 1

)‖∇ϕ̃‖2
L2(Ω)

∥∥∇(ϕ̃ − ϕ)
∥∥2

L2(Ω)
dτ

≤ ζ

t∫
0

∥∥∇�(ϕ̃ − ϕ)
∥∥2

L2(Ω)
dτ + C

t∫
0

(‖∇�ϕ̃‖
4
3
L2(Ω)

+ 1
)∥∥∇(ϕ̃ − ϕ)

∥∥2
L2(Ω)

dτ .

For J2, it holds

J2 ≤
t∫

0

∥∥M(ϕ)
∥∥

L∞(Ω)

∥∥∇(f (ϕ̃) − f (ϕ)
)∥∥

L2(Ω)

∥∥∇�(ϕ̃ − ϕ)
∥∥

L2(Ω)
dτ

≤ C

t∫
0

∥∥∇(ϕ̃ − ϕ)
∥∥

L2(Ω)

∥∥∇�(ϕ̃ − ϕ)
∥∥

L2(Ω)
dτ

+ C

t∫ ∥∥ϕ̃2
∥∥

L∞(Ω)

∥∥∇(ϕ̃ − ϕ)
∥∥

L2(Ω)

∥∥∇�(ϕ̃ − ϕ)
∥∥

L2(Ω)
dτ
0
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+ C

t∫
0

‖ϕ̃ + ϕ‖L∞(Ω)‖∇ϕ‖L2(Ω)‖ϕ̃ − ϕ‖L∞(Ω)

∥∥∇�(ϕ̃ − ϕ)
∥∥

L2(Ω)
dτ

≤ C

t∫
0

(
1 + ‖ϕ̃‖2

L∞(Ω)

)∥∥∇(ϕ̃ − ϕ)
∥∥

L2(Ω)

∥∥∇�(ϕ̃ − ϕ)
∥∥

L2(Ω)
dτ

+ C

t∫
0

(‖ϕ̃‖L∞(Ω) + ‖ϕ‖L∞(Ω)

)‖∇ϕ‖L2(Ω)

∥∥∇�(ϕ̃ − ϕ)
∥∥

L2(Ω)

× (∥∥∇�(ϕ̃ − ϕ)
∥∥ 1

4
L2(Ω)

∥∥∇(ϕ̃ − ϕ)
∥∥ 3

4
L2(Ω)

+ ∥∥∇(ϕ̃ − ϕ)
∥∥

L2(Ω)

)
dτ

≤ ζ

t∫
0

∥∥∇�(ϕ̃ − ϕ)
∥∥2

L2(Ω)
dτ

+ C

t∫
0

(‖∇�ϕ̃‖2
L2(Ω)

+ ‖∇�ϕ‖2
L2(Ω)

+ 1
)∥∥∇(ϕ̃ − ϕ)

∥∥2
L2(Ω)

dτ.

Now we estimate the last term I9,

I9 = ε

t∫
0

∫
Ω

ũ · ∇(ϕ − ϕ̃)�(ϕ − ϕ̃)dxdτ + ε

t∫
0

∫
Ω

�ϕ̃(ũ − u) · ∇(ϕ − ϕ̃)dxdτ

≤ C

t∫
0

‖ũ‖L2(Ω)

∥∥∇(ϕ − ϕ̃)
∥∥

L6(Ω)

∥∥�(ϕ − ϕ̃)
∥∥

L3(Ω)
dτ

+ C

t∫
0

‖�ϕ̃‖L6(Ω)‖ũ − u‖L2(Ω)

∥∥∇(ϕ − ϕ̃)
∥∥

L3(Ω)
dτ

≤ C

t∫
0

‖ũ‖L2(Ω)

(∥∥∇�(ϕ − ϕ̃)
∥∥ 1

2
L2(Ω)

∥∥∇(ϕ − ϕ̃)
∥∥ 1

2
L2(Ω)

+ ∥∥∇(ϕ − ϕ̃)
∥∥

L2(Ω)

)

× (∥∥∇�(ϕ − ϕ̃)
∥∥ 3

4
L2(Ω)

∥∥∇(ϕ − ϕ̃)
∥∥ 1

4
L2(Ω)

+ ∥∥∇(ϕ − ϕ̃)
∥∥

L2(Ω)

)
dτ

+ C

t∫
0

(‖∇�ϕ̃‖L2(Ω) + ‖∇ϕ̃‖L2(Ω)

)‖ũ − u‖L2(Ω)

× (∥∥∇�(ϕ − ϕ̃)
∥∥ 1

4
2

∥∥∇(ϕ − ϕ̃)
∥∥ 3

4
2 + ∥∥∇(ϕ − ϕ̃)

∥∥
2

)
dτ
L (Ω) L (Ω) L (Ω)
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≤ ζ

t∫
0

∥∥∇�(ϕ̃ − ϕ)
∥∥2

L2(Ω)
dτ + ζ

t∫
0

‖ũ − u‖2
L2(Ω)

dτ

+ C

t∫
0

(‖ũ‖
8
3
L2(Ω)

+ ‖∇�ϕ̃‖
8
3
L2(Ω)

+ 1
)∥∥∇(ϕ̃ − ϕ)

∥∥2
L2(Ω)

dτ. (4.8)

Combining the above estimates, using the equivalent norm ‖u‖Z given by (3.73) in Lemma 3.9
and the assumptions (A1)–(A3), by taking ζ > 0 sufficiently small, we deduce that

�
∥∥(ũc − uc)(t)

∥∥2
L2(Ωc)

+ ε
∥∥∇(ϕ̃ − ϕ)(t)

∥∥2
L2(Ω)

+ γ1

t∫
0

(∥∥(ũ − u)(τ )
∥∥2

Z + ∥∥∇�(ϕ̃ − ϕ)(τ )
∥∥2

L2(Ω)

)
dτ

≤ γ2

t∫
0

h(τ)
∥∥∇(ϕ̃ − ϕ)(τ )

∥∥2
L2(Ω)

dτ, (4.9)

where

h(t) = ∥∥ũ(t)
∥∥ 8

3
Z + ∥∥∇�ϕ̃(t)

∥∥ 8
3
L2(Ω)

+ ∥∥∇�ϕ(t)
∥∥2

L2(Ω)
+ 1,

and the constants γ1, γ2 > 0 may depend on the initial energy E(0) as well as the coefficients of 
the CHSD system.

Since by our assumption (uc, ϕ)|t=0 = (0, 0) and h(t) ∈ L1(0, T ), then it follows from (4.9)
and the Gronwall inequality that for t ∈ [0, T ],

�
∥∥(ũc − uc)(t)

∥∥2
L2(Ωc)

+ ε
∥∥∇(ϕ̃ − ϕ)(t)

∥∥2
L2(Ω)

= 0 (4.10)

and then

T∫
0

∥∥(ũ − u)(t)
∥∥2

Zdt = 0. (4.11)

Recalling the fact 
∫
Ω

(ϕ̃ − ϕ)dx = 0 for t ∈ [0, T ], by the Poincaré inequality and the definition 
of the norm ‖ · ‖Z (see (3.73)), we infer that

(uc,um,ϕ) = (ũc, ũm, ϕ̃). (4.12)

Finally, we remark that for the case of � = 0, one can proceed as above and conclude (4.10), 
(4.11) with � = 0 in (4.10), which again yield the uniqueness result (4.12).

The proof of Theorem 2.2 is complete.
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