期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:248
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model
Article
Winkler, Michael
关键词: Chemotaxis;    Global existence;    Boundedness;    Blow-up;   
DOI  :  10.1016/j.jde.2010.02.008
来源: Elsevier
PDF
【 摘 要 】

We consider the classical parabolic-parabolic Keller-Segel system {u(t) = Delta u -del . (u del v), x is an element of Omega, t > 0, v(t) = Delta v - v + u, x is an element of , t > 0, under homogeneous Neumann boundary conditions in a smooth bounded domain Omega subset of R-n. It is proved that in space dimension n >= 3, for each q > n/2 and p > n one can find epsilon(0) > 0 Such that if the initial data (u(0), v(0)) satisfy parallel to u(0)parallel to L-q (Omega) < epsilon and parallel to del v(0)parallel to L-q (Omega) < epsilon then the solution is global in time and bounded and asymptotically behaves like the solution of a discoupled system of linear parabolic equations. In particular, (u, v) approaches the steady state (m, m) as t -> infinity, where m is the total mass m := integral Omega u(0) of the population. Moreover, we shall show that if Omega is a ball then for arbitrary prescribed m > 0 there exist unbounded solutions emanating from initial data (u(0), v(0)) having total mass integral Omega u(0) = m. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2010_02_008.pdf 241KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次