期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:471
On a fully parabolic chemotaxis system with Lotka-Volterra competitive kinetics
Article
Li, Xie1,2  Wang, Yilong3 
[1] Univ Elect Sci & Tech China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] China West Normal Univ, Coll Math & Informat, Nanchong 637002, Peoples R China
[3] Southwest Petr Univ, Sch Sci, Chengdu 610500, Sichuan, Peoples R China
关键词: Chemotaxis;    Global existence;    Boundedness;    Lotka-Volterra competitive kinetics;   
DOI  :  10.1016/j.jmaa.2018.10.093
来源: Elsevier
PDF
【 摘 要 】

This paper is devoted to the following fully parabolic chemotaxis system with Lotka-Volterra competitive kinetics {u(t) = Delta u - chi(1)del.(u del w) + mu(1)u(1 - u - a(1)v), x is an element of Omega, t > 0, v(t) = Delta v - chi(2)del.(v del w) + mu(2)v(1 - v - a(2)u), x is an element of Omega, t > 0, w(t) =Delta w - lambda w + b(1)u + b(2)v, x is an element of Omega, t > 0, under homogeneous Neumann boundary conditions, where Omega subset of R-n is a bounded domain with smooth boundary. We mainly consider the global existence and boundedness of classical solutions in the three dimensional case, which extends and partially improves the results of Bai-Winkler (2016) [1], Xiang (2018) [25], as well as Lin-Mu-Wang (2015) [10], etc. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_10_093.pdf 293KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次