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Abstract:This paper is devoted to the following fully parabolic chemotaxis system with Lotka-
Volterra competitive kinetics

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ut = Δu − χ1∇ · (u∇w) + μ1u(1 − u − a1v), x ∈ Ω, t > 0,

vt = Δv − χ2∇ · (v∇w) + μ2v(1 − v − a2u), x ∈ Ω, t > 0,

wt = Δw − λw + b1u + b2v, x ∈ Ω, t > 0,

under homogeneous Neumann boundary conditions, where Ω ⊂ Rn is a bounded domain with smooth
boundary. We mainly consider the global existence and boundedness of classical solutions in the
three dimensional case, which extends and partially improves the results of Bai-Winkler(Indiana Univ.
Math. J., 2016), Xiang(J. Math. Anal. Appl.,2018), as well as Lin-Mu-Wang(Math. Meth. Appl. Sci.
2015),etc.

Keywords: chemotaxis; global existence; boundedness; Lotka-Volterra competitive kinetics
AMS (2000) Subject Classifications: 35K55; 35Q92; 35Q35; 92C17

1 Introduction and main results
In this paper, we study the following chemotaxis system with Lotka-Volterra competitive kinetics:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu − χ1∇ · (u∇w) + μ1u(1 − u − a1v), x ∈ Ω, t > 0,

vt = Δv − χ2∇ · (v∇w) + μ2v(1 − v − a2u), x ∈ Ω, t > 0,

wt = Δw − λw + b1u + b2v, x ∈ Ω, t > 0.

∂νu = ∂νv = ∂νw = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary ∂Ω; ∂ν denotes the differentiation
with respect to the outward normal on ∂Ω; χ1, χ2, μ1, μ2, a1, a2, b1, b2 and λ are positive constants;
the initial data u0(x), v0(x), and w0(x) are given nonnegative functions satisfying:

u0(x) ∈ C(Ω), v0(x) ∈ C(Ω), w0(x) ∈ W1,q(Ω)(q > n), u0 � 0, v0 � 0, w0 � 0 in Ω. (1.2)

∗E-mail: xieli-520@163.com
†E-mail: wangelongelone@163.com

1



System (1.1) models the spatio-temporal evolution of two populations with densities u and v,
respectively, and in which, besides random diffusion, both species are able to move toward the gradient
of a chemical signal with concentration w, jointly produced by themselves. In fact, system (1.1) with
v = 0 becomes: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu − χ∇ · (u∇w) + μu(1 − u), x ∈ Ω, t > 0,

wt = Δw − λw + bu, x ∈ Ω, t > 0,

∂νu = ∂νw = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω.

(1.3)

The outstanding feature of (1.3) with μ = 0 is that solutions may blow up in finite time or infinite
time if n ≥ 2 (see, e.g., [6, 7, 4, 5, 22]). However, the blowup phenomena may be prevented for
arbitrarily small μ > 0 in one or two dimensional space (see [14, 13, 15], etc.); and for sufficiently
large μ in bounded convex domains in higher dimensional space [23], which was improved in [12],
[25], [21], etc. In particular, if n = 3, certain global weak solutions exist for any μ > 0 (see [24]). We
remark that there are some recent works investing system (1.3) coupled with fluids(see for instance
[3, 10, 17, 18, 19] and references therein.

As for two-species chemotaxis model, the global existence and uniformly boundedness of solution
were established in [26] for a variant model of (1.1), which allowed the chemotactic sensitivities
depending on the chemical concentration w and decaying fast to zero as w goes to infinity. And,
for system (1.1) with b1 = b2 = 1, the unique global bounded classical solution was established in
[11], for any n ≥ 3 and for a range of parameters (e.g., λ ≥ 1

2 ), by a comparison principle which
heavily relies on the assumption that the domain is convex. In [1], the unique global bounded solution
was established for n ≤ 2, and the large time behavior for any n ≥ 1 was obtained by means of the
construction of suitable energy functionals. As we know, in the two dimensional case, the Gagliardo-
Nirenberg inequality plays a great role for the derivation of the L2 estimates on u and v in [1, Lemma
2.5]; however, in the higher dimensional case, it does not work well.

The goal of this work is to establish the global existence and boundedness of solutions to system
(1.1) in the physical relevant domain Ω ⊂ R3. To this end, we shall explore the restrictions on param-
eters as that in [25], and extend the corresponding statements on global existence in [1] and [25] to the
two-species systems in the three dimensional case.

Theorem 1.1 Let Ω ⊂ R3 be a bounded domain with smooth boundary, and let χ1, χ2, μ1, μ2, a1, a2,

b1, b2 and λ be some positive constants satisfying

μ1

b1
>

(9χ2
1 + 3χ2

2)(
√

5 +
√

2)

2
√
χ2

1 + χ
2
2

(1.4)

and

μ2

b2
>

(9χ2
2 + 3χ2

1)(
√

5 +
√

2)

2
√
χ2

1 + χ
2
2

. (1.5)

Then for any initial data satisfying (1.2), the problem (1.1) possesses a unique global bounded classi-

cal solution fulfilling

u ∈ C0(Ω̄ × [0,∞)) ∩C2,1(Ω̄ × (0,∞)),

v ∈ C0(Ω̄ × [0,∞)) ∩C2,1(Ω̄ × (0,∞)),

w ∈ C0(Ω̄ × [0,∞)) ∩C2,1(Ω̄ × (0,∞)) ∩ L∞loc([0,∞); W1,q(Ω)),

which is bounded in Ω̄ × (0,∞).
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Remark 1.1 We remark that our results extend the statement on global existence in [1] to the three-

dimensional case; moreover, the convexity of domain, the assumptions of λ ≥ 1
2 , as well as b1 = b2 = 1

required in [11] are all deleted.

Remark 1.2 We emphasize that Theorem 1.1 also holds for the chemo-repulsion case, i.e., χ1, χ2 < 0
is allowed in (1.4) and (1.5), respectively. Furthermore, it is easy to find that, if χ1 = χ2, then both

the lower bounds of
μ1
b1

and
μ2
b2

are equal to 3(
√

10 + 2)|χ|, which is about the same as the one-species

case considered in [25].

2 Preliminaries
The local existence and extensibility criterion of classical solutions is established in [1, Lemma

2.1], which can be proved by applying the standard methods in the local existence theory for chemo-
taxis problems, see [20, Lemma 2.1] or [2, Lemma 3.1], etc.

Lemma 2.1 Let Ω ⊂ Rn(n ≥ 1) be a bounded domain with smooth boundary, and χ1, χ2, μ1, μ2,

a1, a2, b1, b2 and λ be positive constants. Then for any initial data u0(x), v0(x) and w0(x) satisfy-

ing (1.2), the initial-boundary value problem (1.1) has a unique local-in-time nonnegative classical

solution (u, v,w), in the sense that

u ∈ C0(Ω × [0,T ∗)) ∩C2,1(Ω × (0,T ∗)),

v ∈ C0(Ω × [0,T ∗)) ∩C2,1(Ω × (0,T ∗)),

w ∈ C0(Ω × [0,T ∗)) ∩C2,1(Ω × (0,T ∗)) ∩ L∞loc([0, T ∗); W1,q(Ω)).

Here,T ∗ denotes the maximal existence time. Moreover, if T ∗ < ∞, then

lim sup
t→T ∗

{‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)} = ∞. (2.1)

Next we recall some elementary estimates, see [1, Lemma 2.2], [11, Lemma 2.2].

Lemma 2.2 Let the assumptions of Lemma 2.1 hold, then the solution component u of (1.1) satisfies

‖u(·, t)‖L1(Ω) ≤ m1 := max
{
‖u0(x)‖L1(Ω), |Ω|

}
, for all t ∈ [0,T ∗) (2.2)

and

‖v(·, t)‖L1(Ω) ≤ m2 := max
{
‖u0(x)‖L1(Ω), |Ω|

}
, for all t ∈ [0,T ∗) (2.3)

as well as ∫ t+σ

t

∫
Ω

u2dxds ≤ K1 := m1 +
m1

μ1
for all t ∈ (0,T ∗ − σ), (2.4)

and ∫ t+σ

t

∫
Ω

v2dxds ≤ K2 := m2 +
m2

μ2
for all t ∈ (0,T ∗ − σ), (2.5)

where σ := min{1, 1
2 T ∗}.

Based on the spatio-temporal estimate (2.4) and (2.5), one can test the third equation of (1.1)
against −Δw to obtain the uniform bound of

∫
Ω
|∇w|2dx, which is crucial for the L2 estimates of u and

v.

Lemma 2.3 Let the assumptions of Lemma 2.1 hold. Then the solution component w of (1.1) satisfies

∫
Ω

|∇w|2dx ≤ max

⎧⎪⎪⎨⎪⎪⎩
∫
Ω

|∇w0(x)|dx + 2b2
1K1 + 2b2

2K2,
b2

1K1 + b2
2K2

λ
+ 4b2

1K1 + 4b2
2K2

⎫⎪⎪⎬⎪⎪⎭ =: K3. (2.6)
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3 Some a priori estimates
As we know, in view of the extensibility criterion (2.1), the crucial ingredient to obtain the

global existence and boundedness of classical solutions is the uniform boundedness of ‖u(·, t)‖Lp(Ω)
and ‖v(·, t)‖Lp(Ω) for some p > n

2 . Especially, if n = 3, then the uniform bounds of ‖u‖L2(Ω) and
‖v(·, t)‖L2(Ω) are sufficient to ensure the global existence and boundedness of classical solutions. To
this end, we shall establish a series of estimates on

∫
Ω

(b1u + b2v)2dx, and
∫
Ω

(b1u + b2v)|∇w|2dx, as
well as

∫
Ω
|∇w|4dx, in Lemma 3.1, Lemma 3.2, and Lemma 3.3, respectively; and then we combine

these estimates to construct a differential inequality (3.18) with several parameters undetermined; af-
ter a series of delicate analysis on this differential inequality (3.18), we can establish a Gronwall type
inequality, from which the uniform boundedness of ‖u(·, t)‖L2(Ω) and also ‖v(·, t)‖L2(Ω) will be gotten.
The ideas used in this section mainly come from [25] and [23].

Lemma 3.1 Let the assumptions of Lemma 2.1 hold. Then we have

d

dt

∫
Ω

(b1u + b2v)2dx + 2(1 − ε1)
∫
Ω

|∇(b1u + b2v)|2dx + 2μ1b2
1

∫
Ω

u3dx + 2μ2b2
2

∫
Ω

v3dx

≤ 1
ε1

∫
Ω

(χ2
1b2

1u2 + χ2
2b2

2v2)|∇w|2dx + 2μ1b2
1

∫
Ω

u2dx + 2μ2b2
2

∫
Ω

v2dx + c1

(3.1)

with c1 := μ1b1b2m2
2 +

μ2b1b2m1
2 , for all t ∈ (0,T ∗) and for any ε1 ∈ (0, 1).

Proof. In view of the first two equations in (1.1), we have

(b1u+b2v)t = Δ(b1u+b2v)−∇ · ((χ1b1u+χ2b2v)∇w)+μ1b1u(1−u−a1v)+μ2b2v(1− v−a2u). (3.2)

Upon testing against b1u + b2v and applying the Young inequality, we obtain

1
2

d

dt

∫
Ω

(b1u + b2v)2dx +

∫
Ω

|∇(b1u + b2v)|2dx

=

∫
Ω

(χ1b1u + χ2b2v)∇(b1u + b2v) · ∇wdx

+

∫
Ω

[μ1b1u(1 − u − a1v) + μ2b2v(1 − v − a2u)](b1u + b2v)dx

≤ ε1
∫
Ω

|∇(b1u + b2v)|2dx +
1

4ε1

∫
Ω

(χ1b1u + χ2b2v)2|∇w|2dx

+

∫
Ω

[μ1b1u(1 − u) + μ2b2v(1 − v)](b1u + b2v)dx

≤ ε1
∫
Ω

|∇(b1u + b2v)|2dx +
1

2ε1

∫
Ω

(χ2
1b2

1u2 + χ2
2b2

2v2)|∇w|2dx

+

∫
Ω

[μ1b1u(1 − u) + μ2b2v(1 − v)](b1u + b2v)dx

(3.3)

for all t ∈ (0,T ∗). Applying Young’s inequality to the last term, we have∫
Ω

[μ1b1u(1 − u) + μ2b2v(1 − v)](b1u + b2v)dx

=

∫
Ω

(μ1b2
1u2 − μ1b2

1u3 + μ1b1b2uv − μ1b1b2u2v + μ2b2
2v2 + μ2b2b1uv − μ2b2b1uv2 − μ2b2

2v3)dx

≤
∫
Ω

(μ1b2
1u2 − μ1b2

1u3 + μ2b2
2v2 − μ2b2

2v3 +
μ1b1b2v

4
+
μ2b1b2u

4
)dx

Upon combining (3.3), rearranging, and using (2.2) as well as (2.3), then we have (3.1). �
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Lemma 3.2 Let the assumptions of Lemma 2.1 hold. Then we have

d

dt

∫
Ω

(b1u + b2v)|∇w|2dx + 2λ
∫
Ω

(b1u + b2v)|∇w|2dx

+ (μ1b1 −
χ2

1b2
1

2ε3
)
∫
Ω

u2|∇w|2dx + (μ2b2 −
χ2

2b2
2

2ε3
)
∫
Ω

v2|∇w|2dx

≤ 1
ε2

∫
Ω

|∇(b1u + b2v)|2dx + (ε2 + ε3)
∫
Ω

|∇|∇w|2|2dx +

∫
Ω

(μ1b1u + μ2b2v)|∇w|2dx

+
3n

8

∫
Ω

(b3
1u3 + b3

2v3)dx +

∫
∂Ω

(b1u + b2v)∂ν|∇w|2dS

(3.4)

for all t ∈ (0,T ∗), and for any ε2 > 0 and ε3 > 0.

Proof. By simple computation, we have

d

dt

∫
Ω

(b1u + b2v)|∇w|2dx =

∫
Ω

(b1u + b2v)t|∇w|2dx +

∫
Ω

(b1u + b2v)(|∇w|2)tdx. (3.5)

Using (3.2), the first term on the right hand side of (3.5) can be estimated as
∫
Ω

(b1u + b2v)t|∇w|2dx =

∫
Ω

[Δ(b1u + b2v) − ∇ · ((χ1b1u + χ2b2v)∇w)]|∇w|2dx

+

∫
Ω

[μ1b1u(1 − u − a1v) + μ2b2v(1 − v − a2u)]|∇w|2dx

= −
∫
Ω

∇(b1u + b2v) · ∇|∇w|2dx +

∫
Ω

(χ1b1u + χ2b2v)∇w · ∇|∇w|2dx

+

∫
Ω

[μ1b1u(1 − u − a1v) + μ2b2v(1 − v − a2u)]|∇w|2dx.

(3.6)

Applying Young’s inequality with ε to the first two terms on the right hand side of (3.6), we then have
∫
Ω

(b1u + b2v)t|∇w|2dx ≤ 1
2ε2

∫
Ω

|∇(b1u + b2v)|2dx + (
ε2
2
+ ε3)

∫
Ω

|∇|∇w|2|2dx

+
1

4ε3

∫
Ω

(χ1b1u + χ2b2v)2|∇w|2dx

+

∫
Ω

[μ1b1u(1 − u − a1v) + μ2b2v(1 − v − a2u)]|∇w|2dx

≤ 1
2ε2

∫
Ω

|∇(b1u + b2v)|2dx + (
ε2
2
+ ε3)

∫
Ω

|∇|∇w|2|2dx

+
1

2ε3

∫
Ω

(χ2
1b2

1u2 + χ2
2b2

2v2)|∇w|2dx

+

∫
Ω

[μ1b1u(1 − u) + μ2b2v(1 − v)]|∇w|2dx.

(3.7)

For the last term on the right hand side of (3.5), we first note that

d

dt
|∇w|2 = 2∇w · ∇(Δw − λw + b1u + b2v)

= Δ|∇w|2 − 2|D2w|2 − 2λ|∇w|2 + 2∇w · ∇(b1u + b2v),
(3.8)
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where we have used the point-wise identity 2∇w · ∇(Δw) = Δ|∇w|2 − 2|D2w|2. Thus, we have∫
Ω

(b1u + b2v)(|∇w|2)tdx

=

∫
Ω

(b1u + b2v)[Δ|∇w|2 − 2|D2w|2 − 2λ|∇w|2 + 2∇w · ∇(b1u + b2v)]dx

= −
∫
Ω

∇(b1u + b2v) · ∇|∇w|2dx +

∫
∂Ω

(b1u + b2v)∂ν|∇w|2dS

− 2
∫
Ω

(b1u + b2v)(|D2w|2 + λ|∇w|2)dx −
∫
Ω

(b1u + b2v)2Δwdx.

(3.9)

Applying Young’s inequality with ε to the first and the last terms, and using the fact that |Δv|2 ≤
n|D2w|2, we have

−
∫
Ω

∇(b1u + b2v) · ∇|∇w|2dx ≤ 1
2ε2

∫
Ω

|∇(b1u + b2v)|2dx +
ε2
2

∫
Ω

|∇|∇w|2|2dx, (3.10)

where ε2 is the same as in (3.7), and∫
Ω

(b1u + b2v)2Δwdx ≤ 2
n

∫
Ω

(b1u + b2v)|Δw|2dx +
n

8

∫
Ω

(b1u + b2v)3dx

≤ 2
∫
Ω

(b1u + b2v)|D2w|2dx +
3n

8

∫
Ω

(b3
1u3 + b3

2v3)dx.

(3.11)

Upon combining (3.9), then yields∫
Ω

(b1u + b2v)(|∇w|2)tdx ≤ 1
2ε2

∫
Ω

|∇(b1u + b2v)|2dx +
ε2
2

∫
Ω

|∇|∇w|2|2dx

+
3n

8

∫
Ω

(b3
1u3 + b3

2v3)dx +

∫
∂Ω

(b1u + b2v)∂ν|∇w|2dS

− 2λ
∫
Ω

(b1u + b2v)|∇w|2dx.

(3.12)

Substituting (3.12) and (3.7) into (3.5), then we have

d

dt

∫
Ω

(b1u + b2v)|∇w|2dx ≤ 1
ε2

∫
Ω

|∇(b1u + b2v)|2dx + (ε2 + ε3)
∫
Ω

|∇|∇w|2|2dx

+
1

2ε3

∫
Ω

(χ2
1b2

1u2 + χ2
2b2

2v2)|∇w|2dx − 2λ
∫
Ω

(b1u + b2v)|∇w|2dx

+

∫
Ω

[μ1b1u(1 − u) + μ2b2v(1 − v)]|∇w|2dx

+
3n

8

∫
Ω

(b3
1u3 + b3

2v3)dx +

∫
∂Ω

(b1u + b2v)∂ν|∇w|2dS ,

(3.13)

which immediately implies (3.4). �
Similar to [25, Lemma 3.2], see also [9, Lemma 4.2], we establish the following estimate to control∫

Ω
|∇|∇w|2|2dx in (3.4).

Lemma 3.3 Let the assumptions of Lemma 2.1 hold. Then we have

d

dt

∫
Ω

|∇w|4dx + 2(1 − ε4)
∫
Ω

|∇|∇w|2|2dx + 4λ
∫
Ω

|∇w|4dx

≤ (
4
ε4
+ 2n)

∫
Ω

(b2
1u2 + b2

2v2)|∇w|2dx + 2
∫
∂Ω
|∇w|2∂ν|∇w|2dS

(3.14)

for all t ∈ (0,T ∗) and any ε4 ∈ (0, 1).
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Proof. Using (3.8), simple computation shows that

1
2

d

dt

∫
Ω

|∇w|4dx =

∫
Ω

|∇w|2(|∇w|2)t

=

∫
Ω

|∇w|2[Δ|∇w|2 − 2|D2w|2 − 2λ|∇w|2 + 2∇w · ∇(b1u + b2v)],
(3.15)

for all t ∈ (0,T ∗). By an integration by parts, we further obtain that
∫
Ω

|∇w|2Δ|∇w|2dx = −
∫
Ω

|∇|∇w|2|2dx +

∫
∂Ω
|∇w|2∂ν|∇w|2dS (3.16)

and

2
∫
Ω

|∇w|2∇w · ∇(b1u + b2v)dx = −2
∫
Ω

(b1u + b2v)∇|∇w|2 · ∇wdx − 2
∫
Ω

|∇w|2Δw(b1u + b2v)dx

≤ ε4
∫
Ω

|∇|∇w|2|2dx +
1
ε4

∫
Ω

(b1u + b2v)2|∇w|2dx

+
2
n

∫
Ω

|∇w|2|Δw|2dx +
n

2

∫
Ω

(b1u + b2v)2|∇w|2dx

≤ ε4
∫
Ω

|∇|∇w|2|2dx + (
2
ε4
+ n)
∫
Ω

(b2
1u2 + b2

2v2)|∇w|2dx

+ 2
∫
Ω

|∇w|2|D2w|2dx

(3.17)

where ε4 is an arbitrary positive constant. Combining (3.16) and (3.17) with (3.15), and rearranging
the terms then yields (3.14). �

A linear combination δ1 × (3.1) + δ2 × (3.4) + δ3 × (3.14) with some positive constants δ1, δ2, δ3,
then yields the following inequality.

Corollary 3.1 Let the assumptions of Lemma 2.1 be satisfied, then there holds:

d

dt

{
δ1

∫
Ω

(b1u + b2v)2dx + δ2

∫
Ω

(b1u + b2v)|∇w|2dx + δ3

∫
Ω

|∇w|4dx

}
+ 4λδ3

∫
Ω

|∇w|4dx

+ 2λδ2

∫
Ω

(b1u + b2v)|∇w|2dx + A1

∫
Ω

|∇(b1u + b2v)|2dx + A2

∫
Ω

u3dx

+ A3

∫
Ω

v3dx + A4

∫
Ω

|∇|∇w|2|2dx + A5

∫
Ω

u2|∇w|2dx + A6

∫
Ω

v2|∇w|2dx

≤ 2μ1b2
1δ1

∫
Ω

u2dx + 2μ2b2
2δ1

∫
Ω

v2dx + δ2

∫
Ω

(μ1b1u + μ2b2v)|∇w|2dx + δ1c1

+ δ2

∫
∂Ω

(b1u + b2v)∂ν|∇w|2dS + 2δ3

∫
∂Ω
|∇w|2∂ν|∇w|2dS

(3.18)
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for all t ∈ (0,T ∗), where

A1 := 2δ1(1 − ε1) − δ2
ε2

; A2 := 2μ1b2
1δ1 −

3nb3
1δ2

8
;

A3 := 2μ2b2
2δ1 −

3nb3
2δ2

8
; A4 := 2(1 − ε4)δ3 − (ε2 + ε3)δ2;

A5 := μ1b1δ2 −
χ2

1b2
1δ1

ε1
− χ

2
1b2

1δ2

2ε3
− (

4
ε4
+ 2n)b2

1δ3;

A6 := μ2b2δ2 −
χ2

2b2
2δ1

ε1
− χ

2
2b2

2δ2

2ε3
− (

4
ε4
+ 2n)b2

2δ3.

To obtain the boundedeness of ‖(b1u+ b2v)‖L2(Ω), we need to select parameters appropriately such
that z(t) := δ1

∫
Ω

(b1u+b2v)2dx+δ2
∫
Ω

(b1u+b2v)|∇w|2dx+δ3
∫
Ω
|∇w|4dx satisfies a delicate Gronwall’s

inequality. To this end, we need to control the terms on the right of inequality (3.18) by the dissipative
terms on the left. We first note that, using the Young inequality and the uniform boundedness of
‖∇w‖2

L2(Ω), the headmost three terms can be handled. For the remaining two boundary integrals, if Ω

is convex, then ∂|∇w|2
∂ν ≤ 0 ([16]), i.e, the two boundary integrals are nonpositive. In this case, we only

need to choose parameters such that A1 = 0, A2 > 0, A3 > 0, A4 = 0, A5 > 0, A6 > 0, that is to say:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2δ1(1 − ε1) − δ2
ε2
= 0,

2μ1b2
1δ1 −

3nb3
1δ2

8
> 0,

2μ2b2
2δ1 −

3nb3
2δ2

8
> 0,

2(1 − ε4)δ3 − (ε2 + ε3)δ2 = 0,

μ1b1δ2 −
χ2

1b2
1δ1

ε1
− χ

2
1b2

1δ2

2ε3
− (

4
ε4
+ 2n)b2

1δ3 > 0,

μ2b2δ2 −
χ2

2b2
2δ1

ε1
− χ

2
2b2

2δ2

2ε3
− (

4
ε4
+ 2n)b2

2δ3 > 0,

(3.19)

which is equivalent to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1
δ2
=

1
2(1 − ε1)ε2

,

μ1

b1
>

3n

16
δ2
δ1
,

μ2

b2
>

3n

16
δ2
δ1
,

δ3
δ2
=
ε2 + ε3

2(1 − ε4)
,

μ1

b1
>
χ2

1

ε1

δ1
δ2
+
χ2

1

2ε3
+ (

4
ε4
+ 2n)

δ3
δ2
,

μ2

b2
>
χ2

2

ε1

δ1
δ2
+
χ2

2

2ε3
+ (

4
ε4
+ 2n)

δ3
δ2
.

(3.20)

Whereupon, we have
μ1

b1
>

χ2
1

2ε1(1 − ε1)ε2
+
χ2

1

2ε3
+ (

2
ε4
+ n)
ε2 + ε3
1 − ε4 , (3.21)
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and
μ2

b2
>

χ2
2

2ε1(1 − ε1)ε2
+
χ2

2

2ε3
+ (

2
ε4
+ n)
ε2 + ε3
1 − ε4 . (3.22)

To minimize the right hands of (3.21) and (3.22), we first find that

1
2ε1

1
(1 − ε1)

≥ 2, (3.23)

the equality holds if and only if ε1 = 1
2 , and

(
2
ε4
+ n)

1
(1 − ε4)

≥ [
n√

n + 2 − √
2

]2, (3.24)

where the equality holds if and only if ε4 = −2+
√

2n+4
n

. Upon combining (3.21), (3.22), respectively,
we have

μ1

b1
>
χ2

1

2ε3
+

2χ2
1

ε2
+ (

n√
n + 2 − √

2
)2(ε2 + ε3), (3.25)

and
μ2

b2
>
χ2

2

2ε3
+

2χ2
2

ε2
+ (

n√
n + 2 − √

2
)2(ε2 + ε3). (3.26)

Adding (3.25) and (3.26), we have

μ1

b1
+
μ2

b2
>
χ2

1 + χ
2
2

2ε3
+

2χ2
1 + 2χ2

2

ε2
+ 2(

n√
n + 2 − √

2
)2(ε2 + ε3)

≥ 6
√
χ2

1 + χ
2
2(
√

n + 2 +
√

2),

(3.27)

where the equality holds if and only if ε3 =
√
χ2

1+χ
2
2(
√

n+2−√2)
2n

and ε2 =
√
χ2

1+χ
2
2(
√

n+2−√2)
n

. Substituting
them into (3.25) and (3.26), we then obtain

μ1

b1
>

(9χ2
1 + 3χ2

2)(
√

n + 2 +
√

2)

2
√
χ2

1 + χ
2
2

(3.28)

and
μ2

b2
>

(9χ2
2 + 3χ2

1)(
√

n + 2 +
√

2)

2
√
χ2

1 + χ
2
2

. (3.29)

All in all, for any μ1, μ2, b1, b2 satisfying (3.28) and (3.29), in order to achieve (3.20), we can first
take ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 =
1
2
,

ε2 =

√
χ2

1 + χ
2
2(
√

n + 2 − √
2)

n
,

ε3 =

√
χ2

1 + χ
2
2(
√

n + 2 − √
2)

2n
,

ε4 =
−2 +

√
2n + 4

n
,

(3.30)
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and then we can choose δi as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1 =

√
n + 2 +

√
2√

χ2
1 + χ

2
2

,

δ2 = 1,

δ3 =
3
√
χ2

1 + χ
2
2

4
√

n + 2
.

(3.31)

In fact, for such εi and δi, the previous discussions have shown that, except for the second and the third
inequalities, the inequalities in (3.20) are valid, which implies that A1 = A4 = 0, A5 > 0, A6 > 0. By
simple computations, one can further find that

3n

16
δ2
δ1
=

3n
√
χ2

1 + χ
2
2

16(
√

n + 2 +
√

2)
<

(9χ2
1 + 3χ2

2)(
√

n + 2 +
√

2)

2
√
χ2

1 + χ
2
2

<
μ1

b1
. (3.32)

Therefore, the second inequality in (3.20) is valid, and similarly, the third inequality in (3.20) holds
too, i.e., A2 and A3 are also positive. Fix the aforementioned εi and δi, then now we can establish the
uniform boundedness of ‖u‖L2(Ω) and ‖v‖L2(Ω).

Lemma 3.4 Let Ω ⊂ Rn(n ≥ 1) be a bounded convex domain with smooth boundary, and assume that

μ1, b1, μ2, b2 satisfy (3.28) and (3.29), respectively. Then there exist a positive constant C such that

‖u‖L2(Ω) + ‖v‖L2(Ω) + ‖∇w‖L4(Ω) ≤ C for all t ∈ [0,T ∗). (3.33)

Proof. In fact, from (3.18) and (3.20), we have

d

dt

{
δ1

∫
Ω

(b1u + b2v)2dx + δ2

∫
Ω

(b1u + b2v)|∇w|2dx + δ3

∫
Ω

|∇w|4dx

}

+ 4λδ3

∫
Ω

|∇w|4dx + 2λδ2

∫
Ω

(b1u + b2v)|∇w|2dx + λδ1

∫
Ω

(b1u + b2v)2dx

+ A2

∫
Ω

u3dx + A3

∫
Ω

v3dx + A5

∫
Ω

u2|∇w|2dx + A6

∫
Ω

v2|∇w|2dx

≤ 2μ1b2
1δ1

∫
Ω

u2dx + 2μ2b2
2δ1

∫
Ω

v2dx + λδ1

∫
Ω

(b1u + b2v)2dx

+ δ2

∫
Ω

(μ1b1u + μ2b2v)|∇w|2dx + δ1c1

≤ 2(μ1 + λ)b2
1δ1

∫
Ω

u2dx + 2(μ2 + λ)b2
2δ1

∫
Ω

v2dx

+ δ2

∫
Ω

(μ1b1u + μ2b2v)|∇w|2dx + δ1c1 for all t ∈ [0,T ∗),

(3.34)

with some positive constants A2, A3, A5, A6 as those in Corollary 3.1, and δ1, δ2, δ3 are defined in
(3.31).

By Young’s inequality, we have

2(μ1 + λ)b2
1δ1

∫
Ω

u2dx ≤ 2
3

A2

∫
Ω

u3dx +
8
3

(μ1 + λ)3b6
1δ

3
1A−2

2 |Ω|, (3.35)

10



and
2(μ2 + λ)b2

2δ1

∫
Ω

v2dx ≤ 2
3

A3

∫
Ω

v3dx +
8
3

(μ2 + λ)3b6
2δ

3
1A−2

3 |Ω|, (3.36)

as well as

δ2

∫
Ω

(μ1b1u + μ2b2v)|∇w|2dx ≤ 1
2

A5

∫
Ω

u2|∇w|2dx +
1

2A5
δ22μ

2
1b2

1

∫
Ω

|∇w|2dx

+
1
2

A6

∫
Ω

v2|∇w|2dx +
1

2A6
δ22μ

2
2b2

2

∫
Ω

|∇w|2dx

≤ 1
2

A5

∫
Ω

u2|∇w|2dx +
1
2

A6

∫
Ω

v2|∇w|2dx

+ (
1

2A6
δ22μ

2
2b2

2 +
1

2A5
δ22μ

2
1b2

1)K3

(3.37)

with K3 as in (2.6). Upon substituting into (3.34), then we have the following Gronwall type inequality:

d

dt

{
δ1

∫
Ω

(b1u + b2v)2dx + δ2

∫
Ω

(b1u + b2v)|∇w|2dx + δ3

∫
Ω

|∇w|4dx

}

+ λ

{
δ1

∫
Ω

(b1u + b2v)2dx + δ2

∫
Ω

(b1u + b2v)|∇w|2dx + δ3

∫
Ω

|∇w|4dx

}

≤ (
1

2A6
δ22μ

2
2b2

2 +
1

2A5
δ22μ

2
1b2

1)K3 + δ1c1 for all t ∈ [0,T ∗),

(3.38)

which implies (3.3). �
If Ω is non-convex domain, then the two boundary integrals in (3.18) may be positive. However,

similar to [25, 3.22], see also [8, 9],etc., we can control them as follows:

Lemma 3.5 Let Ω ⊂ Rn(n ≥ 1) be a bounded domain with smooth boundary. Then the solution of

(1.1) satisfies:

δ2

∫
∂Ω

(b1u + b2v)∂ν|∇w|2dS + 2δ3

∫
∂Ω
|∇w|2∂ν|∇w|2dS

≤ ε
∫
Ω

|∇|∇w|2|2dx + ε

∫
Ω

|∇(b1u + b2v)|2dx

+C(ε)
(∫
Ω

|∇w|2dx

)2
+C(ε)

(∫
Ω

(b1u + b2v)dx

)2
(3.39)

for all t ∈ (0,T ∗), where ε > 0 is arbitrary, and C(ε) is some positive constant only depending on ε

and Ω.

In this case, to establish a Gronwall’s inequality through (3.18), we need to take parameters such
that A1, A2, A3, A4, A5, A6 are all positive. In fact, it’s obviously that both the left parts in the fifth and
the sixth inequalities in (3.20) are continuously dependent on δ1 and δ3; moreover, they are equal to the
left sides of (3.28) and (3.29), respectively, once δi satisfy (3.31) and εi satisfy (3.30). Therefore, for
any μ1, b1, μ2, b2 satisfying (3.28) and (3.29), we can also take εi as (3.30), and just select δ1, δ2, δ3
satisfying ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1 >

√
n + 2 +

√
2√

χ2
1 + χ

2
2

,

δ2 = 1,

δ3 >
3
√
χ2

1 + χ
2
2

4
√

n + 2

(3.40)
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such that A1, A2, A3, A4, A5, A6 are all positive. With such δi and εi, we can take ε = min{A1, A4} in
(3.39), and then combine (3.18), (3.39), (3.35)-(3.37) to deduce that

d

dt

{
δ1

∫
Ω

(b1u + b2v)2dx + δ2

∫
Ω

(b1u + b2v)|∇w|2dx + δ3

∫
Ω

|∇w|4dx

}

+ λ

{
δ1

∫
Ω

(b1u + b2v)2dx + δ2

∫
Ω

(b1u + b2v)|∇w|2dx + δ3

∫
Ω

|∇w|4dx

}

≤ (
1

2A6
δ22μ

2
2b2

2 +
1

2A5
δ22μ

2
1b2

1)K3 + δ1c1 +C(ε)K2
3 +C(ε)(b1m1 + b2m2)2 for all t ∈ [0,T ∗),

(3.41)

from which one can also obtain (3.33). �

4 Proof of Theorem 1.1
Proof of Theorem 1.1. In view of [1, Lemma 2.6], the global existence and boundedness of

solutions to system (1.1) can be established once the uniform bound of ‖u‖Lp(Ω) + ‖v‖Lp(Ω) for some
p > n

2 is obtained. In the case of n = 3, the uniform bound of ‖u‖L2(Ω) + ‖v‖L2(Ω) obtained in (3.3) then
implies our statements in Theorem 1.1. �
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