期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:257 |
The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam | |
Article | |
Ammari, Kais1  Dimassi, Mouez2  Zerzeri, Maher3  | |
[1] Univ Monastir, Fac Sci Monastir, Dept Math, UR Anal & Controle Edp,UR13ES64, Monastir 5019, Tunisia | |
[2] Univ Bordeaux 1, CNRS, UMR 5251, IMB, F-33405 Talence, France | |
[3] Univ Paris 13, CNRS, UMR 7539, LAGA, F-93430 Villetaneuse, France | |
关键词: Rate of decay; Euler-Bernoulli beam; Spectral abscissa; Riesz basis; | |
DOI : 10.1016/j.jde.2014.06.020 | |
来源: Elsevier | |
【 摘 要 】
We study the best decay rate of the solutions of a damped Euler Bernoulli beam equation with a homogeneous Dirichlet boundary conditions. We show that the fastest decay rate is given by the supremum of the real part of the spectrum of the infinitesimal generator of the underlying semigroup, if the damping coefficient is in L-infinity(0, 1). (C) 2014 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2014_06_020.pdf | 874KB | download |