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Abstract

We study the best decay rate of the solutions of a damped Euler–Bernoulli beam equation with a ho-
mogeneous Dirichlet boundary conditions. We show that the fastest decay rate is given by the supremum 
of the real part of the spectrum of the infinitesimal generator of the underlying semigroup, if the damping 
coefficient is in L∞(0, 1).
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1. Introduction and main result

We consider the following damped Euler–Bernoulli equation:

∂2
t u(x, t) + ∂4

xu(x, t) + 2a(x)∂tu(x, t) = 0, 0 < x < 1, t > 0, (1.1)

u(0, t) = u(1, t) = 0, ∂2
xu(0, t) = ∂2

xu(1, t) = 0, t > 0, (1.2)

u(x,0) = u0(x), ∂tu(x,0) = u1(x), 0 < x < 1, (1.3)

where a ∈ L∞(0, 1) is non-negative satisfying the following condition:

∃c > 0 s.t., a(x) ≥ c, a.e., in a non-empty open subset I of (0,1). (1.4)

In order to formulate our results we consider the Hilbert space

[
H 2(0,1) ∩ H 1

0 (0,1)
]× L2(0,1) =: V × L2(0,1),

where we denote by Hs(0, 1), s ∈ R, the usual Sobolev spaces. We endow this space with the 
inner product:

〈[f,g], [u,v]〉 := 1∫
0

(
f (2)(x)u(2)(x) + g(x)v(x)

)
dx, for all [f,g], [u,v] in V × L2(0,1).

From now on, we shall represent a pair of functions by [f, g] rather than (f, g) to avoid confusion 
with classical inner product on L2(0, 1).

We define the energy of a solution u of (1.1)–(1.3), at time t , as

E
(
u(t)

)= 1

2

1∫ (∣∣∂tu(x, t)
∣∣2 + ∣∣∂2

xu(x, t)
∣∣2)dx. (1.5)
0
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To prove the decay of the energy, we multiply (1.1) by ∂tu and integrate on [0, 1] by using the 
boundary condition. We can easily check that every sufficiently smooth solution of (1.1)–(1.3)
satisfies

d

dt
E
(
u(t)

)= −2

1∫
0

a(x)
∣∣∂tu(x, t)

∣∣2 dx,

which in particular implies the energy identity

E
(
u(0)

)− E
(
u(t)

)= 2

t∫
0

1∫
0

a(x)
∣∣∂su(x, s)

∣∣2 dx ds, ∀t ≥ 0.

In our case, i.e., when the damping term a is non-negative, and positive on an open subset, it 
is known that the energy of a solution will decay exponentially in time. More precisely, the 
following result follows from [14] (see also [3]).

Proposition 1.1. Let a ∈ L∞(0, 1), be non-negative satisfying (1.4).
For all (u0, u1) ∈ V × L2(0, 1), the problem (1.1)–(1.3) admits a unique solution u in 

C([0, +∞[; V ) ∩ C1([0, +∞[; L2(0, 1)). Moreover, there exist constants C > 0 and ω0 < 0
depending only on a(x) such that

E
(
u(t)

)≤ Ce2ω0tE
(
u(0)

)
, ∀ t > 0. (1.6)

The system (1.1)–(1.3) can be written as an abstract evolution equation on V × L2(0, 1):{
∂tU = AaU

U(x,0) = U0(x) := (
u0(x), u1(x)

)
,

(1.7)

where U = [u, ∂tu] and the operator Aa is given by

Aa :=
(

0 Id

− d4

dx4 −2a(x)

)
from D to V × L2(0,1), (1.8)

with D = {[u, v] ∈ V × L2(0, 1); v ∈ V, u ∈ H 4(0, 1), d2u

dx2 (0) = 0, d2u

dx2 (1) = 0}. Here Id de-
notes the identity on V . Note that the domain of the operator Aa is independent of a, since 
a ∈ L∞(0, 1).

The eigenvalue problem for the non-self-adjoint, quadratic operator pencil generated by 
(1.1)–(1.3) is obtained by replacing u in (1.1) by

u(x, t) = eλtφ(x).

We obtain from (1.7) the standard form

(Aa − λId)Φ = 0, Φ = [φ,λφ] := φ[1, λ].
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The condition for the existence of non-trivial solutions is that λ ∈ σ(Aa) (the spectrum of 
Aa). Since D is compactly embedded in the energy space V ×L2(0, 1) then the spectrum σ(Aa)

is discrete and the eigenvalues of Aa have a finite algebraic multiplicity. On the other hand, since 
Aa is a bounded monotone perturbation of a skew-adjoint operator (undamped A0), it follows 
from the Hill–Yosida theorem that Aa generates a C0-semigroup of contractions on the energy 
space V × L2(0, 1) (see [26]).

In this work, we give the value of the best decay rate ω0 (see (1.6)) in terms of the spectral 
abscissa of the generator Aa . More precisely, let us define:

ω(a) = inf
{
ω; there exists C = C(ω) > 0 such that E

(
u(t)

)≤ C(ω)e2ωtE
(
u(0)

)
,

for every solution u of (1.1)–(1.3) with initial data in V × L2(0,1)
}
, (1.9)

and

μ(a) = sup
{
Re(λ); λ ∈ σ(Aa)

}
. (1.10)

It follows easily from the above observations that

μ(a) ≤ ω(a). (1.11)

Our main result establishes the reverse inequality under the assumption that a(x) is 
in L∞(0, 1).

Theorem 1.2. Let a ∈ L∞(0, 1), be non-negative satisfying (1.4). Then

μ(a) = ω(a). (1.12)

Although the literature on the decay estimates of the energy of the wave equation with locally 
distributed damping is quite impressive (see [3,7,13,17,20,19,22–24,30–33]), little is known on 
the decay estimate of the energy plate equations with locally distributed damping (see [3,11,14,
16,20,29,30]). The determination of optimal decay rates was performed mostly for the damped 
wave operator in the 1-d case (a vibrating string), see [1,2,4,6,8–10]. For higher dimension, 
G. Lebeau gives in [18] the explicit (and optimal) value of the best decay rate in terms of the 
spectral abscissa of the generator of the semigroup and the mean value of the function a along 
the rays of geometrical optics. It is not our intention to do a complete review on this subject here. 
We refer the readers to the references in the mentioned above for more information.

As in [8] we will establish the reverse inequality of (1.11) by proving that the system of 
generalized eigenvectors of the operator Aa constitutes a Riesz basis in the energy space V ×
L2(0, 1), and that all eigenvalues of Aa with sufficiently large modulus are algebraically simple. 
To do this, we require precise knowledge of the spectrum of the non-self-adjoint operator Aa .

In [8], Cox and Zuazua adopt the shooting method based on an ansatz of Horn. This approach 
consists in constructing an explicit approximation of the characteristic equation of the underlying 
system. Under the assumption that the damping is of bounded variation (i.e., a ∈ BV (0, 1)), they 
obtained high frequency asymptotic expansions of the spectrum. The shooting method can be 
used only for one-dimensional boundary value problems.
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In this paper, we follow the main idea in [8]. However, for high frequency we will use a 
perturbation method based on some resolvent estimate for the operator Aa . The advantage of this 
approach is that it works in any dimension and in a very general setting (see [28] and also [15]). 
On the other hand, we only need that a ∈ L∞(0, 1).

In the following, we give an outline of the proof. First, for a = 0, the operator A0 is skew-
adjoint with compact resolvent in V ×L2(0, 1). From general operator theory, all its eigenvalues 
lie on the imaginary axis and the geometric and algebraic multiplicity of each eigenvalue are the 
same. Moreover, there is a sequence of eigenvectors of A0 which forms a Riesz (orthonormal, 
actually) basis for V × L2(0, 1).

For a = a0 = const > 0, we compute explicitly all the eigenvalues and eigenvectors of Aa0 . In 
particular, we prove that the algebraic multiplicity is usually one except for (a0 = k2

0π2, for some 
k0 ∈ N) there is one eigenvalue of multiplicity two. On the other hand, using the explicit expres-
sion of the eigenfunctions of A0 and Aa0 we prove that the systems of eigenvectors of A0 and 
Aa0 are quadratically close in V × L2(0, 1). Thus, it follows from [27, Appendix D, Theorem 3]
that the system of eigenvectors of Aa0 constitutes a Riesz basis. Consequently, by a standard 
argument (see Theorem 2.5), we identify the optimal energy decay rate with the supremum of 
the real part of Aa0 .

In Section 3, we treat the general case, i.e., a ∈ L∞(0, 1) and a(x) is non-negative satisfying 
(1.4). First, we introduce the characteristic determinant of Aa . Recalling that the characteris-
tic determinant 	2,4(1, λ) of Aa is an entire function whose zeros are the eigenvalues of Aa , 
with the order of these zeros determining the algebraic multiplicities. By analyzing the func-
tion 	2,4(1, λ), we give in Proposition 3.1 rough preliminary bounds on the spectrum of Aa . 
Moreover, since Aa is a bounded perturbation of skew-adjoint operator with compact resolvent it 
follows from [12, Chapter 5, Theorem 10.1] that the generalized eigenvectors of Aa are complete 
in V ×L2(0, 1). To prove Theorem 1.2 we also need to study the asymptotic behavior of the high 
frequency of Aa , more precisely, the behavior of the corresponding algebraic multiplicity. In fact, 
since the distance between two consecutive eigenvalues tends to infinity at infinity, as well as the 
fact that the damping is bounded, we give some resolvent estimates of the operators Aa and A0

and then we show that all eigenvalues of Aa with sufficiently large modulus are algebraically 
simple (see Subsection 3.2). Eventually, we complete the proof of Theorem 1.2 as in the constant 
case, see Subsection 3.4.

2. Undamped and constant damping operator

2.1. Spectral analysis

Here are some elementary properties of the skew-adjoint (undamped) operator A0:

A0 :=
(

0 Id

− d4

dx4 0

)
: D ⊂ V × L2(0,1) −→ V × L2(0,1),

where D = {[u, v] ∈ V × L2(0, 1); v ∈ V, u ∈ H 4(0, 1), d2u

dx2 (0) = 0, d2u

dx2 (1) = 0}, with V =
H 2(0, 1) ∩ H 1(0, 1).
0
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Lemma 2.1. The eigenvalues and the corresponding eigenvectors of A0 are given by:

A0V±k = ±ik2π2V±k, for all k ∈N
∗,

where V±k = 1

k2π2
sin(kπx)

[
1,±ik2π2]. (2.1)

Moreover, the family B0 := (V±k)k∈N∗ is an orthonormal basis of the energy space V ×L2(0, 1).

Now, we focus on the spectrum of Aa0 when the damping a(x) is a positive constant denoted 
by a0. Let W = [u, v] ∈ D be an eigenvector of Aa0 associated to the eigenvalue λ. Then

v = λu and − u(4) − 2a0λu = λ2u (2.2)

with u(0) = u(1) = 0 and u(2)(0) = u(2)(1) = 0. (2.3)

It follows that the eigenvalue λ of Aa0 satisfies:

λ2 + 2a0λ = −k4π4, for all integer k ≥ 1. (2.4)

In the rest of the subsection, we characterize the algebraic multiplicity of the eigenvalues 
of Aa0 :

Lemma 2.2. The algebraic multiplicity of the eigenvalue λk , k ∈ Z∗, of Aa0 is its order as a zero 
of Eq. (2.4). In particular, the algebraic multiplicity of λk, k ∈ Z

∗, of Aa0 is at most 2.

Proof. We have two situations:

(i) If a0 ∈ ]0, +∞[\{k2π2; k ∈ Z∗} then there exists k0 ∈ Z such that k2
0π2 < a0 < (k0 +1)2π2. 

In this case the eigenvalues of Aa0 are

λ±k =
⎧⎨⎩−a0 ±

√
a2

0 − k4π4 for k = 1,2, · · · , k0

−a0 ± i

√
k4π4 − a2

0 for k > k0,
(2.5)

with the corresponding eigenvector

W±k = sin(kπx)[1, λ±k], ∀k ≥ 1. (2.6)

Now, we want to show that the algebraic multiplicity of the eigenvalues λp, p ∈ Z
∗

is exactly 1. If the algebraic multiplicity of λp is to exceed one then one must be 
able to solve (Aa0 − λp)Wp,1 = Wp . With Wp,1 = [up,1, vp,1], this requires vp,1 =
λpup,1 +sin(pπx) and −u

(4)
p,1 +p4π4up,1 = 2(a0 +λp) sin(pπx) with up,1(0) = up,1(1) =

u
(2)
p,1(0) = u

(2)
p,1(1) = 0. Since λp �= −a0 then the previous equation has no solution. There-

fore the eigenvalues of Aa are simple.
0
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(ii) Assume that there exist k0 ∈ Z
∗ such that a0 = k2

0π2. As in [8], we call such a0 defective. 
The spectrum is given by (2.5).
For all k ∈ N

∗ \ {k0}, λ±k is simple with the corresponding eigenvector given by (2.6). 
The only difference to the previous case is that λk0 = λ−k0 = −a0. It remains to prove 
that the algebraic multiplicity of −a0 is two as eigenvalue of Aa0 . As in the previous case 
Wk0 = sin(k0πx)[1, −a0] is the eigenvector associated to the eigenvalue −a0. The gen-
eralized eigenvector Wk0,1 via (Aa0 + a0)Wk0,1 = Wk0 and 〈Wk0 |Wk0,1〉 = 0 is given by 
Wk0,1 = 1

2 sin(k0πx)[ 1
a0

, 1]. Then the algebraic multiplicity of −a0 is at least two. From 
now on, we denote Wk0,1 by W−k0 .
Assume that the algebraic multiplicity of −a0 exceeded two, one must then be able to solve 
(Aa0 + a0)Wk0,2 = W−k0 . With Wk0,2 = [uk0,2, vk0,2], we find vk0,2 = −a0uk0,2 + sin(k0πx)

and

−u
(4)
k0,2

+ k4
0π4uk0,2 = sin(k0πx), uk0,2(0) = uk0,2(1) = u

(2)
k0,2

(0) = u
(2)
k0,2

(1) = 0.

Since this equation does not possess a solution, the algebraic multiplicity of −a0 may not 
exceed two. �

2.2. Generalized eigenvectors

In this subsection, we show that the family of the generalized eigenvectors associated to the 
constant damping is a Riesz basis. Here and for the rest of the paper we will use the following 
notation.

Notation 2.3. We set Ba0 := (W̃p := Wp

‖Wp‖
V ×L2(0,1)

)p∈Z∗ , where

1. when a0 ∈ ]0, +∞[ \ {k2π2; k ∈ Z
∗}, Wp is an eigenvector given by (2.6) for all p ∈ Z

∗,
2. when a0 is defective, i.e., a0 = p2

0π
2 for some p0, then for all p ∈ Z

∗ \ {−p0}, Wp is an 
eigenvector given by (2.6) and W−p0 = 1

2 sin(p0πx)[ 1
a0

, 1] is a generalized eigenvector of 

Aa0 associated to the eigenvalue −a0 = −p2
0π

2.

We have the following result:

Proposition 2.4. The family Ba0 is a Riesz basis.

Proof. The sequence (Wk)k∈Z∗ admits a biorthogonal family (W ∗
k )k∈Z∗ in V × L2(0, 1) given 

by

W ∗±k = sin(kπx)[1,−λ±k], k = 1,2, · · · , (2.7)

if a0 ∈ ]0, +∞[ \ {k2π2; k ∈ Z
∗}. For a0 = p2

0π
2 for some p0 ∈ Z

∗, we define, for all k ∈ Z
∗ \

{−p0}, W ∗
k as above and W ∗−p0

as a generalized eigenvector via (A∗
a + a0Id)W ∗−p0

= W ∗
p0

and 
〈W ∗−p |W ∗

p 〉 = 0. That is, W ∗−p = 1 sin(p0πx)[ 1 , −1].

0 0 0 2 a0
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Note that W ∗±k are the generalized eigenvectors of the adjoint of Aa0 ,

A∗
a0

:=
(

0 −Id
d4

dx4 −2a0

)
from D

(
A∗

a0

)
to V × L2(0,1), (2.8)

with D(A∗
a0

) = D and remark that the eigenvalues of A∗
a0

are precisely those of Aa0 (including 
multiplicities), see (2.5).

If a0 ∈ ]0, +∞[ \ {k2π2; k ∈ Z
∗}, we see that 〈Wn|W ∗

m〉 = −λn(a0 + λm)δn,m and hence 
(Wk)k∈Z∗ is a linearly independent set. Here δn,m is the Kronecker’s delta, i.e. δn,m = 1 if n = m

and 0 if n �= m.
If a0 = p2

0π
2 for some p0 ∈ Z

∗, we have

〈
Wn

∣∣W ∗
m

〉= {−λn(a0 + λn)δn,m if n �= ±p0, m ∈ Z
∗

a0
2 δn,m if n = ±p0, m ∈ Z

∗.

Hence, even in the defective case, (Wk)k∈Z∗ is a linearly independent set.
For large k the eigenvalue λk is simple and nonreal. The corresponding normalized eigenvec-

tor is given by W̃k = 1
k2π2 Wk = sin(kπx)

k2π2 [1, λk]. Combining this with (2.1), we obtain

‖Vk − W̃k‖2
V ×L2(0,1)

= 1

2

∣∣∣∣i − λk

k2π2

∣∣∣∣2 =O
(

1

k4

)
. (2.9)

Then 
∑

k∈Z∗ ‖Vk − W̃k‖2
V ×L2(0,1)

< ∞, i.e. (W̃k)k∈Z∗ is quadratically close to (Vk)k∈Z∗ .
According to Theorem 3 in [27, Appendix D], a linearly independent set that is quadratically 

close to an orthonormal basis is in fact equivalent to that basis in the sense there exists a linear 
isomorphism Φa0 of V × L2(0, 1) under which W̃±k = Φa0V±k . Thus we have proved Proposi-
tion 2.4. �
2.3. Proof of Theorem 1.2 in the constant damping case

We are in position to prove the main result in the case of a constant damping:

Theorem 2.5. If a(x) = a0 is a positive constant then μ(a0) = ω(a0).

Proof. As (W̃k)k∈Z∗ is a Riesz basis, we may expand the initial data as

[
u0, v0]=

∑
k∈Z∗

ckW̃k.

Then the solution of (1.1)–(1.3) is given by

[u, ∂tu] =

⎧⎪⎨⎪⎩
∑

k∈Z∗ ck exp(λkt)W̃k if a0 is not defective

t exp(λp0 t)c−p0W̃p0 +∑
k∈Z∗ ck exp(λkt)W̃k

if a = p2π2 for some p .

(2.10)
0 0 0
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The spectral abscissa μ(a0) is equal to −a0 + Re(
√

a2
0 − π4) and this allows us to bound the 

energy E(u(t)) by:
(i) If a0 is not defective,

E
(
u(t)

)= ∥∥[u, ∂tu]∥∥2
V ×L2(0,1)

=
∥∥∥∥Φa0

∑
k∈Z∗

exp(λkt)ckΦ
−1
a0

(W̃k)

∥∥∥∥2

V ×L2(0,1)

=
∥∥∥∥Φa0

∑
k∈Z∗

exp(λkt)ckVk

∥∥∥∥2

V ×L2(0,1)

≤ ‖Φa0‖2 sup
k∈Z∗

∣∣exp(λkt)
∣∣2 ∑

k∈Z∗
|ck|2

≤ ‖Φa0‖2 exp
(
2μ(a)t

) ∑
k∈Z∗

|ck|2 = ‖Φa0‖2 exp
(
2μ(a)t

)∥∥∥∥∑
k∈Z∗

ckVk

∥∥∥∥2

V ×L2(0,1)

= ‖Φa0‖2 exp
(
2μ(a)t

)∥∥∥∥Φ−1
a0

∑
k∈Z∗

ckW̃k

∥∥∥∥2

V ×L2(0,1)

≤ ‖Φa0‖2
∥∥Φ−1

a0

∥∥2 exp
(
2μ(a0)t

)
E
(
u(0)

)
. (2.11)

(ii) Now assume that a0 is defective. Repeating the previous argument and using the last 
equality in the right hand side of (2.10) leads to

E
(
u(t)

)≤ ‖Φa0‖2
∥∥Φ−1

a0

∥∥2(1 + t2) exp
(
2μ(a0)t

)
E
(
u(0)

)
.

Summing (i) and (ii), we deduce

ω(a0) ≤ μ(a0),

which together with (1.11) yields Theorem 2.5. �
2.4. Another characterization of the spectrum

In this subsection the damping a(x) is not necessarily constant. As Lemma 2.2 will not survive 
to a non-constant damping we characterized differently the eigenvalues of Aa and their algebraic 
multiplicities. In fact, let u2(x, λ), u4(x, λ) be two solutions of

u(4)(x, λ) + λ
(
2a(x) + λ

)
u(x,λ) = 0, ∀x ∈ [0,1], (2.12)

subject to the corresponding initial conditions:

u2(0, λ) = 0, u
(1)
2 (0, λ) = 1, u

(2)
2 (0, λ) = 0 and u

(3)
2 (0, λ) = 0, (2.13)

u4(0, λ) = u
(1)
4 (0, λ) = u

(2)
4 (0, λ) = 0 and u

(3)
4 (0, λ) = 1. (2.14)

Lemma 2.6. A complex number λ is an eigenvalue of Aa if and only if

	2,4(1, λ) := det

(
u2(1, λ) u4(1, λ)
(2) (2)

)
= 0, (2.15)
u2 (1, λ) u4 (1, λ)
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and the algebraic multiplicity of the eigenvalue λ of Aa is its order as a zero of the equation 
	2,4(1, λ) = 0.

Proof. Let u1(x, λ), u3(x, λ) be two solutions of (2.12) subject to the corresponding initial con-
ditions:

u1(0, λ) = 1, u
(1)
1 (0, λ) = u

(2)
1 (0, λ) = u

(3)
1 (0, λ) = 0,

u3(0, λ) = u
(1)
3 (0, λ) = 0, u

(2)
3 (0, λ) = 1 and u

(3)
3 (0, λ) = 0.

Since (u1, u2, u3, u4) constitutes a basis of solutions of the differential equation (2.12), then all 
solutions of (2.12) are given by:

u(x,λ) = u(0)u1(x,λ) + u(1)(0)u2(x,λ) + u(2)(0)u3(x,λ) + u(3)(0)u4(x,λ), ∀x ∈ [0,1].
(2.16)

Let λ ∈ C. λ is an eigenvalue of Aa if and only if there exists a non-trivial solution 
W = [u,v] ∈D satisfying Eqs. (2.2)–(2.3), i.e. v(x) = λu(x) and

u(x) = u(1)(0)u2(x,λ) + u(3)(0)u4(x,λ) for all x ∈ [0,1], (2.17)

with (u(1)(0), u(3)(0)) �= (0, 0) satisfying the following system:{
u2(1, λ)u(1)(0) + u4(1, λ)u(3)(0) = u(1) = 0

u
(2)
2 (1, λ)u(1)(0) + u

(2)
4 (1, λ)u(3)(0) = u(2)(1) = 0.

Then, the previous system has non-trivial solution (u(1)(0), u(3)(0)) if and only if (2.15) holds. 
In this case the associated eigenvector W = [u, v] = u(x, λ)[1, λ] ∈ D with u(x, λ) is given by:

(i) if (u2(1, λ), u4(1, λ)) �= (0, 0),

u(x,λ) = u4(1, λ)u2(x,λ) − u2(1, λ)u4(x,λ), (2.18)

(ii) if (u2(1, λ), u4(1, λ)) = (0, 0) then (u(2)
2 (1, λ), u(2)

4 (1, λ)) �= (0, 0) and

u(x,λ) = u
(2)
4 (1, λ)u2(x,λ) − u

(2)
2 (1, λ)u4(x,λ). (2.19)

The matrix 
(

u2(1,λ) u4(1,λ)

u
(2)
2 (1,λ) u

(2)
4 (1,λ)

)
is not trivial for all λ ∈ C. Otherwise, u2(·, λ) and u4(·, λ) are 

solutions of problem (2.12) with initial conditions:

u(0, λ) = u(1, λ) = 0 and u(2)(0, λ) = u(2)(1, λ) = 0.

Then u2(·, λ) = u4(·, λ), contradiction (since u(1)
2 (0, λ) = 1 and u(1)

4 (0, λ) = 0).
The zeros of λ �→ 	2,4(1, λ) are the eigenvalues of Aa . Moreover, the corresponding algebraic 

multiplicity is given by its order as a zero of 	2,4(1, λ) (see [25, Theorem on page 343]). This 
may be checked easily when a(x) = a0 is constant. In fact,
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	2,4(1, λ) = sinh((−λ(2a0 + λ))
1
4 ) sin((−λ(2a0 + λ))

1
4 )√−λ(2a0 + λ)

. (2.20)

Then,

∂	2,4

∂λ
(1, λk) = − (−1)k sinh(kπ)

2k5π5
(λk + a0), ∀k ∈ Z

∗.

This vanishes only when λk0 = −a0, i.e. when a0 = k2
0π2 for some k0. The second derivative at 

such a root, ∂
2	2,4

∂λ2 (1, −a0) = − (−1)k0 sinh(k0π)

2a
5
2

0

, is however, nonzero. �

3. General L∞-damping

3.1. Spectral analysis

In this subsection, we assume only that the damping is bounded, i.e. there exist α, β ∈ [0, +∞[
such that

0 ≤ α ≤ a(x) ≤ β < ∞ almost everywhere in [0,1]. (3.1)

Let us introduce the following two solutions w2, w4 of u(4)(x, λ) + λ(2a(x) + λ)u(x, λ) = 0
subject to the corresponding initial conditions:

w2(1, λ) = 0, w
(1)
2 (1, λ) = −1, w

(2)
2 (1, λ) = 0 and w

(3)
2 (1, λ) = 0, (3.2)

w4(1, λ) = w
(1)
4 (1, λ) = w

(2)
4 (1, λ) = 0 and w

(3)
4 (1, λ) = −1. (3.3)

For ξ ∈ [0, 1], we denote by ℘(f, g, h)(ξ) the following determinant:

℘(f,g,h)(ξ) :=
∣∣∣∣∣∣

f (ξ) g(ξ) h(ξ)

f (1)(ξ) g(1)(ξ) h(1)(ξ)

f (2)(ξ) g(2)(ξ) h(2)(ξ)

∣∣∣∣∣∣ , (3.4)

where f, g and h are regular functions.
By definition the eigenvalues of Aa are the poles of the resolvent (Aa − λ)−1.
Solving (Aa − λ)[u, v] = [f, g] is equivalent to find the vector [u, v] such that v = λu + f

and

u(4) + λ
(
2a(x) + λ

)= −g − (
2a(x) + λ

)
f.

Solving the latter via the Green’s operator, u = −G(λ)(g + (2a(x) + λ)f ), we find

(Aa − λ)−1 =
( −G(λ)(2a(x) + λ) −G(λ)

Id − λG(λ)(2a(x) + λ) −λG(λ)

)
. (3.5)

This Green’s operator is [G(λ)ϕ](ξ) = ∫ 1 G(ξ, x; λ)ϕ(x) dx, where
0
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G(ξ, x;λ)

:= 1

	2,4(1, λ)

{
℘(u2, u4,w4)(ξ)w2(x,λ) + ℘(u2,w2, u4)(ξ)w4(x,λ) if 0 ≤ x < ξ

℘(w2, u4,w4)(ξ)u2(x,λ) + ℘(u2,w2,w4)(ξ)u4(x,λ) if ξ < x ≤ 1,

(3.6)

where u2(x, λ), u4(x, λ), w2(x, λ) and w4(x, λ) solve (2.12) subject to (2.13), (2.14), (3.2) and 
(3.3) respectively. Here ℘(·, ·, ·)(ξ) is given by (3.4) and 	2,4(1, λ) was introduced in (2.15). 
This kind of representation is used by Birkhoff for more general boundary value problem of 
ordinary linear differential equations, see [5, p. 377].

Proposition 3.1. The operator Aa and its spectra satisfy the following properties:

(1) The operator Aa possesses a compact inverse and so a discrete spectrum σ(Aa) of eigenval-
ues of finite algebraic multiplicity.

(2) The eigenvalues are the roots of λ �→ 	2,4(1, λ). If λk is such a root then W(x, λk) =
u(x, λk)[1, λk], where u(x, λk) is given by (2.18) or (2.19) at λk . It spans the corresponding 
eigenspace and its algebraic multiplicity is the order to which 	2,4(1, λ) vanishes.

(3) The spectrum of Aa is symmetric about the real axis and is contained in C ∪ I , where C is a 
complex strip given by:

C := {
λ ∈ C; |λ| ≥ π2, −β ≤ Re(λ) ≤ −α

}
(3.7)

and I is the following real interval:

I := [−β − (
β2 − π4) 1

2+,−α + (
β2 − π4) 1

2+
]
. (3.8)

Here (β2 − π4)+ = max(β2 − π4, 0).
(4) The generalized eigenvectors of Aa are complete in V × L2(0, 1).

Proof.

(1) Since the domain D of the operator Aa is compactly embedded in the energy space V ×
L2(0, 1) then the spectrum σ(Aa) is discrete and the eigenvalues of Aa have a finite algebraic 
multiplicity. Much relevant information can be obtained directly from the kernel of G(0).

(2) Let λk be an eigenvalue of Aa , and let W(·, λk) be the corresponding eigenvector. We recall 
that W(·, λk) = u(x, λk)[1, λk], where u(x, λk) is given by (2.18) or (2.19) at λk . As the ini-
tial value problem (2.12)–(2.13) (resp. (2.12)–(2.14)) possesses the unique solution u2(·, λk)

(resp. u4(·, λk)). Hence, the geometric multiplicity of each eigenvalue is one. Its algebraic 
multiplicity is its order as a pole of the resolvent, which is equal to its order as a zero of 
λ �→ 	2,4(1, λ). As in [25] (see also Theorem 4.1 in [21]), this follows from (3.5) and (3.6).

(3) Since Aa is a matrix-valued differential operator with real coefficients, it follows that 
W(x,λk) = W(x,λk) = u(x,λk)[1, λk] is an eigenvector of Aa corresponding to the eigen-
value λk .
Multiplying (2.12) by u(x,λ) = u(x, −λ), integrating on [0, 1] and using the boundary con-
ditions (2.13), (2.14), (2.15), we check by solving a quadratic equation that
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λ±k = − ∫ 1
0 a(x)|u(x,λk)|2dx ± (

∫ 1
0 a(x)|u(x,λk)|2dx − ‖u(2)(·, λk)‖2

L2‖u(·, λk)‖2
L2)

1
2

‖u(·, λk)‖2
L2

.

Hence, if λk is a nonreal eigenvalue, we find

λ±k = −
∫ 1

0 a(x)|u(x,λk)|2 dx

‖u(·, λk)‖2
L2

± i

√√√√(‖u(2)(·, λk)‖L2

‖u(·, λk)‖L2

)2

−
(∫ 1

0 a(x)|u(x,λk)|2 dx

‖u(·, λk)‖2
L2

)2

,

which together with (3.1) yields,

0 < −β ≤ Re(λ±k) = −
∫ 1

0 a(x)|u(x,λk)|2 dx

‖u(·, λk)‖2
L2

≤ −α,

and

|λ±k|2 =
(‖u(2)(·, λk)‖L2

‖u(·, λk)‖L2

)2

≥ π4.

If λk is real we observe that√√√√(∫ 1
0 a(x)|u(x,λk)|2 dx

‖u(·, λk)‖2
L2

)2

−
(‖u(2)(·, λk)‖L2

‖u(·, λk)‖L2

)2

≤ (
β2 − π4) 1

2+.

(4) The operator Aa is a bounded perturbation of a skew-adjoint (undamped) operator with com-
pact resolvent. It follows from Theorem 10.1 in [12, Chapter 5] that the system of generalized 
eigenvectors is complete in V × L2(0, 1). �

3.2. Results on high frequencies

In this subsection, we will prove that all eigenvalues of Aa with sufficiently large modulus 
are algebraically simple and that the system of generalized eigenvectors of the operator Aa con-
stitutes a Riesz basis in the energy space V × L2(0, 1). For this end, since the distance between 
two consecutive eigenvalues tends to infinity at infinity, as well as the fact that the damping is 
bounded, we construct a closed curves (Γ (k))|k|>N0 (for some integer N0 sufficiently large) in 
the complex plane such that:

(i) For all n ∈N
∗, Γ (±n) is centered in ±in2π2.

(ii) Inside each Γ (±n) there exits exactly one simple eigenvalue of Aa.
(iii) The operator Aa has exactly 2N0 eigenvalues including multiplicity in C \ (

⋃
|k|>N0

Γ (k)).

(iv)
∑

|k|>N0
‖P a

Γ (k) −P 0
Γ (k)‖2

L(V ×L2(0,1))
< ∞, where P a

Γ (k) (resp. P 0
Γ (k) ) denotes the Riesz pro-

jection associated to Aa (resp. A0) corresponding to Γ (k).

The proof of the above statements is based on some resolvent estimates of the operators Aa

and A0. Moreover, since the generalized eigenvectors of Aa are complete it follows from (iv) 



JID:YJDEQ AID:7554 /FLA [m1+; v 1.194; Prn:17/07/2014; 14:10] P.14 (1-20)

14 K. Ammari et al. / J. Differential Equations ••• (••••) •••–•••
that the system of generalized eigenvectors of Aa constitutes a Riesz basis in V × L2(0, 1). 
Notice that one can deduce (ii) and (iv) from Theorem 4.15a in [15]. For completeness we give 
a self-contained proof.

Let us introduce some notations. For n ∈N
∗, we let δn := |i(n +1)2π2 − in2π2| = (2n +1)π2

be the distance between two consecutive eigenvalues of A0. We define the four complex numbers:

an = i

[
(n − 1)2π2 + 1

2
δn−1

]
, bn = 1

2
δn + in2π2,

cn = i

[
n2π2 + 1

2
δn

]
= an+1 and dn = −1

2
δn + in2π2. (3.9)

Let Int(Γ (n)) denote the rectangle with sides γ (n)
1 , γ (n)

2 , γ (n)
3 and γ (n)

4 (see Fig. 1), where

γ
(n)
1 :=

{
λ ∈C; Im(λ) = Im(an) and

∣∣Re(λ)
∣∣< δn

2

}
,

γ
(n)
2 :=

{
λ ∈C;Re(λ) = δn

2
and Im(an) ≤ Im(λ) ≤ Im(cn)

}
,

γ
(n)
3 :=

{
λ ∈C; Im(λ) = Im(cn) and Re(λ) goes from

δn

2
to −δn

2

}
,

and

γ
(n)
4 :=

{
λ ∈ C;Re(λ) = −δn

2
and Im(λ) goes from Im(cn) to Im(an)

}
.

For n = 1, 2, ... , we set

Γ (n) = γ
(n)
1 ∪ γ

(n)
2 ∪ γ

(n)
3 ∪ γ

(n)
4 , Γ (−n) := {

z ∈C; z ∈ Γ (n)
}

(3.10)

and

C(n) =
{
z ∈C; ∣∣Im(z)

∣∣< (
n2 + n + 1

2

)
π2 and

∣∣Re(z)
∣∣< n

}
.

Note that by construction Int(Γ (k)) ∩ Int(Γ (n)) = ∅ for all k, n ∈ Z
∗ such that k �= n. Here we 

denote the interior of Γ (k) by Int(Γ (k)). Moreover, for all N ∈ N
∗ we have C ∪ I ⊂ C(N) ∪

(
⋃

Int(Γ (k))), where C and I are given by (3.7) and (3.8) respectively.
|k|≥N
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Fig. 1. Here D = {z ∈ C; Re(z) = −2 
∫ 1

0 a(s) ds}, 	 = {z ∈ C; Re(z) = −2‖a‖L∞(0,1)} and an, bn, cn, dn given 

by (3.9). The spectrum of Aa is included in the strip −2‖a‖L∞(0,1) ≤ Re(z) ≤ − infa(x) + (‖a‖2
L∞(0,1)

− π4)
1
2+ .

The principal result of this subsection is the following:

Theorem 3.2. Let a(x) be in L∞(0, 1). There exists N0 ∈ N
∗ large enough such that the operator 

Aa has exactly 2N0 eigenvalues, including multiplicity, in CN0 and one simple eigenvalue in 
Int(Γ (k)) for each k with |k| > N0. This exhausts the spectrum of Aa .

We have divided the proof into a sequence of lemmas.

Lemma 3.3. Assume that a ∈ L∞(0, 1). There exist C > 0 and N0 ∈ N (large enough) such that 
for n > N0, the following properties hold:

(i) Γ (±n) ∪ ∂C(n) ⊂C \ (σ (Aa) ∪ σ(A0)).

(ii)

∥∥(λ − Aa)
−1 − (λ − A0)

−1
∥∥
L(V ×L2)

≤ C

n2
, uniformly on λ ∈ Γ (±n) ∪ ∂C(n)

(3.11)

where ∂C(n) is the boundary of the rectangle C(n).
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Proof. Since A0 is skew-adjoint, it follows that

∥∥(λ − A0)
−1
∥∥
L(V ×L2)

≤ 1

dist(λ,σ (A0))
. (3.12)

By construction of Γ (±n) and C(n), we have:

dist
(
Γ (±n), σ (A0)

)= min
(∣∣bn − in2π2

∣∣, ∣∣dn − in2π2
∣∣, ∣∣cn − i(n + 1)2π2

∣∣, ∣∣an − i(n − 1)2π2
∣∣)

= δn−1

2
,

and dist(∂C(n), σ(A0)) ≥ n, which together with (3.12) yields

∥∥(λ − A0)
−1
∥∥
L(V ×L2)

≤ 1

(n − 1
2 )π2

, uniformly on λ ∈ Γ (±n), (3.13)

∥∥(λ − A0)
−1
∥∥
L(V ×L2)

≤ 1

n
, uniformly on λ ∈ ∂C(n). (3.14)

Recalling that A0 − Aa =: Ka where Ka is the bounded linear operator on V × L2(0, 1) defined 

by Ka = 2a(x) 
(

0 0
0 Id

)
. From (3.13) and (3.14), we have

∥∥Ka(λ − A0)
−1
∥∥
L(V ×L2)

≤ 2‖a‖∞
n

, uniformly on λ ∈ Γ (±n) ∪ ∂C(n). (3.15)

Choose N0 such that for n ≥ N0:

2‖a‖∞
n

< 1.

Now the first statement of the lemma follows from (3.13), (3.14), (3.15) and the following 
obvious equality:

λ − Aa = [
Id + Ka(λ − A0)

−1](λ − A0). (3.16)

On the other hand (3.16) yields

(λ − Aa)
−1 = (λ − A0)

−1 + (λ − A0)
−1

∑
p≥1

[−Ka(λ − A0)
−1]p,

which together with (3.13), (3.14) and (3.15) implies (3.11). �
According to Lemma 3.3, for n ≥ N0 the following Riesz projections are well defined:
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P a
Γ (±n) := 1

2πi

∫
Γ (±n)

(λ − Aa)
−1 dλ, P 0

Γ (±n) := 1

2πi

∫
Γ (±n)

(λ − A0)
−1 dλ,

P a
∂C(n) := 1

2πi

∫
∂C(n)

(λ − Aa)
−1 dλ and P 0

∂C(n) := 1

2πi

∫
∂C(n)

(λ − A0)
−1 dλ. (3.17)

The following result is a simple consequence of (3.11) and the fact that long(∂C(n)),
long(Γ (±n)) = O(n).

Lemma 3.4. There exists C > 0 (independent of n) and N0 ∈ N such that for n ≥ N0, we have

∥∥P a
Γ (±n) − P 0

Γ (±n)

∥∥
L(V ×L2)

≤ C

n
< 1, (3.18)∥∥P a

∂C(n) − P 0
∂C(n)

∥∥
L(V ×L2)

≤ C

n
< 1. (3.19)

End of the proof of Theorem 3.2. First, recalling that if P and Q are two projectors with ‖P −
Q‖ < 1, then rank(P ) = rank(Q) (see Lemma 3.1 in [12]). Thus, in the notation of Lemma 3.3, 
we have

rank
(
P a

∂C(n)

)= rank
(
P 0

∂C(n)

)
, rank

(
P a

Γ (±n)

)= rank
(
P 0

Γ (±n)

)
, for n ≥ N0.

Next, we conclude from (3.7) and (3.8) that C ∪ I ⊂ C(N0) ∪ (
⋃

|k|≥N0
Int(Γ (k))), hence that 

σ(Aa) is a subset of C(N0) ∪ (
⋃

|k|≥N0
Int(Γ (k))). Now Theorem 3.2 follows from the fact that

rank
(
P 0

∂C(N0)

)= 2N0 and rank
(
P 0

Γ (±n)

)= 1. �
Remark 3.5. In the proofs of Lemmas 3.3–3.4, we have used only the fact that the distance 
between two consecutive eigenvalues of A0 tends to infinity and the fact that A0 is a skew-adjoint 
operator. Similar general results are well-known (see Theorem 4.15a in [15]). Note that this 
approach cannot be applied to the damped wave equation since the spectral gap in this case is 
equal to π (do not tends to infinity at infinity).

3.3. Riesz basis

In this subsection we construct a Riesz basis consisting of generalized eigenvectors of Aa . 
First, since the associated high frequencies are simple, then for all k ∈ N∗, k > N0 (N0 given by 
Theorem 3.2), we define ϕ±k := P a

Γ (±k)V±k where V±k is the eigenvector of A0 associated to the 
eigenvalue ±ik2π2 and P a

Γ (±k) is given by (3.17). We get the following lemma:

Lemma 3.6. For all k ∈ N
∗, k > N0, the vector ϕ±k is an eigenvector of Aa associated to the 

eigenvalue λ±k . Moreover, there exists C > 0 such that

‖ϕn − Vn‖V ×L2 ≤ C

|n| , for all n ∈ Z
∗, |n| > N0. (3.20)

In particular, ‖ϕn‖V ×L2 = 1 +O( 1 ) uniformly for n ∈ Z
∗, |n| > N0.
|n|
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Proof. For all m ∈ Z
∗, |m| > N0, we have Aaϕm = AaP

a
Γ (m)Vm = λmP a

Γ (m)Vm = λmϕm. Using 
Lemma 3.4 and the fact that P 0

Γ (n)Vn = Vn with ‖Vn‖V ×L2 = 1, we get:

‖ϕm − Vm‖V ×L2 = ∥∥(P a
Γ (m) − P 0

Γ (m)

)
Vm

∥∥
V ×L2 ≤ ∥∥P a

Γ (m) − P 0
Γ (m)

∥∥
L(V ×L2)

≤ C

|m| ,

for all m ∈ Z
∗, |m| > N0 (C independent of m). In particular, parallelogram inequality 

and recalling that ‖Vm‖V ×L2 = 1 give that ‖ϕm‖V ×L2 = 1 + O( 1
|m| ) uniformly for m ∈ Z

∗,
|m| > N0. �

Now, we complete the sequence (ϕk)|k|>N0 of the eigenvectors associated to the high frequen-
cies of Aa by considering the generalized eigenvectors associated to the low frequencies of Aa. 
Note that the number of these generalized eigenvectors associated to the low frequencies of Aa

is finite, at most 2N0 by Theorem 3.2. For k ∈ Z
∗ such that |k| ≤ N0, we denote by mk the al-

gebraic multiplicity of λk and we associated to it the Jordan chain of generalized eigenvectors, 
(Wk,p)

mk−1
p=0 ,

Wk,0 = u(x,λk)[1, λk], where u(x,λk) is given by (2.18) (or (2.19)), (3.21)

AaWk,p = λkWk,p + Wk,p−1, 〈Wk,p,Wk,p−1〉 = 0, p = 1, · · · ,mk − 1. (3.22)

The vector Wk,0 is an eigenvector of Aa associated to λk and the chain is a basis for the root 
subspace Ek := {W ∈ V × L2(0, 1); (Aa − λk)

mkW = 0}.
Now, we take the family of generalized eigenvectors of Aa:

Ba := (Wk,p)|k|≤N0,0≤p≤mk−1 ∪ (ϕn)|n|>N0 .

Since Vect(Ba) = V × L2(0, 1) (see Proposition 3.1(4)) and the family Ba is quadratically 
close to the orthonormal basis (Vk)k∈Z∗ of eigenvectors of the undamped operator (see (3.20)), it
now follows from the Fredholm Alternative, see e.g., [27, Appendix D, Theorem 3], the following 
result:

Theorem 3.7. The set Ba is a Riesz basis for the energy space V × L2(0, 1). Moreover, there 
exists a linear isomorphism Φa of V × L2(0, 1) such that for all n ∈ Z

∗, |n| > N0, ΦaVn = ϕn

and Φa(Vect(Vn, |n| ≤ N0)) = Vect(Wk,p, |k| ≤ N0, 0 ≤ p ≤ mk − 1).

3.4. Proof of the main result

For the proof of Theorem 1.2 in the general setting, we follow the same strategy as in the 
constant damping case. Using Theorem 3.7, we may expand the initial data as

[
u0, v0]=

∑
|k|≤N0

mk−1∑
p=0

ck,pWk,p +
∑

|n|>N0

cnϕn.

Then the solution of (1.1)–(1.3) is given by
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[u, ∂tu] =
∑

|k|≤N0

exp(λkt)

mk−1∑
p=0

ck,p

p∑
l=0

tp−l

(p − l)!Wk,l +
∑

|n|>N0

cn exp(λnt)ϕn. (3.23)

Recalling from Theorem 3.2 that at most 2N0 eigenvalues may be of algebraic multi-
plicity greater than one and that 2N0 is the maximum of such multiplicity, and the family 
B0 := (V±k)k∈N∗ is an orthonormal basis of the energy space V × L2(0, 1) (see Lemma 2.1),
by the linear isomorphism Φa , (as in the constant case), we get

E
(
u(t)

)= ∥∥[u, ∂tu]∥∥2
V ×L2(0,1)

≤ ‖Φa‖2
∥∥Φ−1

a

∥∥2(1 + t2N0
)

exp
(
2μ(a)t

)
E
(
u(0)

)
.

Then ω(a) ≤ μ(a), and with inequality (1.11) we have established our main result. �
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