期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:267
Spreading in a cone for the Fisher-KPP equation
Article
Lou, Bendong1  Lu, Junfan2 
[1] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
[2] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
关键词: Fisher-KPP equation;    Cone;    Spreading phenomena;    Steady state;    Traveling wave solution;   
DOI  :  10.1016/j.jde.2019.07.014
来源: Elsevier
PDF
【 摘 要 】

In this paper we consider the spreading phenomena in the Fisher-KPP equation in a high dimensional cone with Dirichlet boundary condition. We show that any solution starting from a nonnegative and compact supported initial data spreads and converges to the unique positive steady state. Moreover, the asymptotic spreading speeds of the front in all directions pointing to the opening are c(0) (which is the minimal speed of the traveling wave solutions of the 1-dimensional Fisher-KPP equation). Surprisingly, they do not depend on the shape of the cone, the propagating directions and the boundary condition. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2019_07_014.pdf 350KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次