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Abstract

In this paper we consider the spreading phenomena in the Fisher-KPP equation in a high dimensional 
cone with Dirichlet boundary condition. We show that any solution starting from a nonnegative and compact 
supported initial data spreads and converges to the unique positive steady state. Moreover, the asymptotic 
spreading speeds of the front in all directions pointing to the opening are c0 (which is the minimal speed of 
the traveling wave solutions of the 1-dimensional Fisher-KPP equation). Surprisingly, they do not depend 
on the shape of the cone, the propagating directions and the boundary condition.
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1. Introduction

We consider the Fisher-KPP equation in a cone in RN :⎧⎪⎨⎪⎩
ut = �u + f (u), x ∈ �, t > 0,

u(t, x) = 0, x ∈ ∂�, t > 0,

u(0, x) = u0(x), x ∈ �,

(P)
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where f (u) ∈ C1([0, ∞)) is a Fisher-KPP type of nonlinearity:

f (0) = f (1) = 0, f ′(0) > 0 > f ′(1), f (u)/u is decreasing in u > 0, (F)

and the domain � is a cone in RN which is constructed as follows: let E be a bounded and 
convex domain in the hyperplane {(1, x′) | x′ = (x2, x3, · · · , xN) ∈ RN−1} with C2 boundary 
∂E, and (1, 0, · · · , 0) ∈ E; let �∗ be the cone with vertex 0 and directrix ∂E; � ⊂ �∗ is a 
convex cone-shaped domain obtained by smoothening �∗ near the vertex 0.

We are interested in the spreading phenomena for the solutions of (P). In some applied fields 
like chemistry, ecology, etc., the spreading of a new or invasive species is an important topic. It is 
known that such phenomena can be described by the spreading for solutions of certain reaction 
diffusion equations. For example, in 1937, Fisher [9] used the equation ut = uxx + u(1 − u)

to model the spreading of advantageous genetic trait in a population, and found that there are 
traveling wave solutions u = φ(x − ct) (see also Kolmogorov, et al. [11]). In 1970s, Aronson 
and Weinberger [1,2] studied systematically the spreading phenomena in the Cauchy problems 
of ut = �u +f (u), where f (u) can be a monostable (including the Fisher-KPP case) or bistable 
type of nonlinearity. In the monostable case, they found the so-called hair-trigger effect, that 
is, any solution starting from a nonnegative and compactly supported initial data, will converge 
to a positive steady state (to say, u ≡ 1). Moreover, they showed that the approximate spreading 
speeds of the level set {x | u(t, x) = 1

2 } in any directions are c0, which is the minimal speed of the 
traveling wave solutions of ut = uxx + f (u). In the last decades, many authors also studied the 
spreading phenomena in the Cauchy problems of ut = �u + f (u) with bistable or combustion 
type of nonlinearity (cf. [7,8,10,13–15], etc.). Among others, they gave sufficient conditions for 
spreading and used the traveling wave solutions to characterize the spreading solutions.

On the other hand, it is also interesting to study the spreading phenomena in unbounded 
domains with boundaries, like the half space, cones, cylinders with straight or undulating bound-
aries, etc. For example, Berestycki et al. [3–5] considered the following problem on the half 
plane: ⎧⎪⎨⎪⎩

ut − Duxx = νv(t, x,0) − μu, x ∈ R, t > 0,

vt − d�v = f (v), x > 0, y ∈R, t > 0,

−dvy(t, x,0) = μu(t, x) − νv(t, x,0), x ∈ R, t > 0,

(1.1)

where f is also a Fisher-KPP nonlinearity. This model is used to describe the spreading of a 
species in the field with a fast diffusion on its boundary y = 0 (like a road), and exchanges of pop-
ulations taking place between the road and the field. They gave a function c(θ) ∈ C([−π/2, π/2])
to characterize the approximate spreading speed in each direction (sinθ, cos θ): c(θ) ≥ c0 :=
2
√

f ′(0) and, when D > 2d , there is θ0 ∈ (0, π/2) such that c(θ) > c0 if |θ | > θ0, c(θ) = c0 if 
|θ | ≤ θ0.

In this paper we consider the spreading phenomena for the solutions of (P). First we have the 
following result on the existence and uniqueness of the positive steady state of (P).

Theorem 1.1 (Steady state). Assume (F). Then the problem (P) has a unique steady state V (x)

which is positive in �. Moreover,

V (x) − V ∗(d(x)) → 0, as x1 → ∞, (1.2)
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where d(x) := d(x, ∂�) denotes the distance from x to ∂�, and V ∗ is the unique solution of the 
one dimensional problem

v′′ + f (v) = 0 (x > 0), v(0) = 0, v(∞) = 1. (1.3)

Denote by c0 := 2
√

f ′(0) the minimal speed of traveling wave solutions of ut = uxx + f (u). 
Our next result implies that any solution of (P), starting from a compactly supported nonnegative 
initial data, spreads and approaches the steady state with speed c0.

Theorem 1.2. Let u be the solution of (P) with compactly supported initial data u0 ≥ 0. Then

u(·, t) → V (·) as t → ∞, locally uniformly in x ∈ �. (1.4)

Moreover, for any c > c0 we have

lim
t→∞ sup

|x|>ct, x∈�

u(t, x) = 0; (1.5)

and for any c ∈ (0, c0) we have

lim
t→∞ inf|x|<ct, x∈�

u(t, x) = V (x). (1.6)

The first half of this theorem shows that, like the Cauchy problem, our problem also has the hair-
trigger effect: any nonnegative solution of (P) converges as t → ∞ to the positive steady state. 
Since the domain � is a cone-shaped one, it is natural to ask: how do the shape of � (especially 
the vertex angle), the propagating directions 

−→
Oy (for y ∈ E) and the Dirichlet boundary condi-

tion influence the spreading speeds? Our results show that, surprisingly, the asymptotic spreading 
speeds in all directions pointing to the opening are the same. They do not depend on any of the 
above mentioned factors. This is different from the conclusions for (1.1). The reason seems that, 
in our model (P), there is no exchange of populations between the road and the field.

The rest of the paper is arranged as follows. In Section 2 we present some preliminaries, in-
cluding some positive steady states of ut = �u + f (u) in bounded domains, in the half space 
RN+ , and in �, as well as traveling wave solutions with compact supports. We also prove Theo-
rem 1.1 by using the properties of these solutions. In Section 3 we study the general convergence 
result and the asymptotic spreading speeds of the solution u(t, x).

2. Steady states and traveling wave solutions

Let D be a connected domain in RN with a smooth boundary. We call a function v ∈ C2(D) ∩
C(D) as a positive steady state of ut = �u + f (u) in D if v solves the following problem⎧⎪⎨⎪⎩

�v + f (v) = 0, x ∈ D,

v(x) > 0, x ∈ D,

v(x) = 0, x ∈ ∂D.

(2.1)

As it was seen in the previous section, we are interested in the positive steady state V (x) in �
(that is, the solution of (2.1) with D = �). However, in our approach, we also need the solutions 
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v(x; D) of (2.1) in bounded domains D, the solution v = V ∗(x) in the half space D = RN+ , and 
the traveling wave solutions wc(x − cet; D) in bounded domains (to be specified below). In this 
section we study these solutions.

2.1. Steady states in bounded domains

For any bounded domain D ⊂RN with a smooth boundary, consider the following eigenvalue 
problem:

{ −�φ = λφ, x ∈ D,

φ(x) = 0, x ∈ ∂D.
(2.2)

It is known that this problem has a principal eigenvalue (denoted by λ1(D)), and the corre-
sponding eigenfunction (denoted by φ1(x; D)) can be chosen positive in D and be normal-
ized by ‖φ1(x; D)‖L∞(D) = 1. Moreover, λ1(D) is strictly decreasing in D in the sense that 
λ1(D1) > λ1(D2) if D1 � D2. For any X ∈ RN and R > 0, denote

BR(X) := {x ∈RN | |x − X| < R}.

When D = BR(X), it is easy to verify that λ1(BR(X)) = λ0
1/R

2, where λ0
1 := λ1(B1(X)) =

λ1(B1(0)). Set

R∗ :=
[ λ0

1

f ′(0)

]1/2
, (2.3)

then λ1(BR(X)) < f ′(0) if and only if R > R∗.
Now we show that, when D is a large bounded domain, the problem (2.1) has a unique solu-

tion, which can be obtained by taking limit in the solution of the initial-boundary value problem⎧⎪⎨⎪⎩
ũt = �ũ + f (ũ), x ∈ D, t > 0,

ũ(t, x) = 0, x ∈ ∂D, t > 0,

ũ(0, x) = ψ(x) ≥, 
≡ 0, x ∈ D.

(2.4)

Lemma 2.1. Let D be a connected bounded domain in RN with a smooth boundary. Assume 
BR∗(X) � D for some X ∈RN . Then

(i) the problem (2.1) has a unique positive solution v(x; D) ≤ 1;
(ii) for any ψ ∈ L∞(D) with ψ(x) ≥, 
≡ 0, the solution ũ(t, x) of (2.4) converges as t → ∞ to 

v(x; D), in C2(D) topology.

Proof. (i). Since BR∗(X) � D we have λ1(D) < λ1(BR∗(X)) = f ′(0). So, for small δ > 0 we 
have

�(δφ1(x;D)) + f (δφ1(x;D)) > δ[�φ1(x;D) + λ1(D)φ1(x;D)] = 0, x ∈ D.
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This means that δφ1(x; D) is a lower solution of (2.1). Clearly, v ≡ 1 is an upper solution of 
(2.1). Hence, the existence of a positive solution v(x; D) of (2.1) can be obtained by the standard 
method of lower and upper solutions.

Now we prove the uniqueness of v(x; D). Suppose by contradiction that (2.1) has two dif-
ferent positive solutions v1(x) and v2(x) (assume, without loss of generality, v1(x̄) < v2(x̄) for 
some x̄ ∈ D). Then, for any sufficiently small ρ ∈ (0, 1) we have v1(x) ≥ ρv2(x) in D. Taking 
ρ∗ the maximum of such ρ, then 0 < ρ∗ ≤ v1(x̄)

v2(x̄)
< 1, and either

v1(x) ≥ ρ∗v2(x) in D and v1(y) = ρ∗v2(y) for some y ∈ D, (2.5)

or,

v1(x) > ρ∗v2(x) in D and
∂

∂ν
v1(z) = ρ∗ · ∂

∂ν
v2(z) for some z ∈ ∂D (2.6)

holds, where ν denotes the outward unit normal vector on ∂D.
We claim that f (ρ∗v2(x)) ≥, 
≡ ρ∗f (v2(x)). By the monotonicity of f (s)/s in (F) we 

have f (ρ∗v2(x)) ≥ ρ∗f (v2(x)). If f (ρ∗v2(x)) ≡ ρ∗f (v2(x)), then f (ρ∗s) = ρ∗f (s) for all 
s ∈ J := [0, supD v2(x)]. This implies that f ′(s) = f ′(0) or f (s) = f ′(0)s for all s ∈ J . Hence, 
the solution v2 of (2.1) is actually an eigenfunction of −� corresponding to the eigenvalue f ′(0). 
Since v2 is positive in D, f ′(0) should be the principal eigenvalue λ1(D), a contradiction. This 
proves the claim. Therefore,

�(ρ∗v2) + f (ρ∗v2) = ρ∗[�v2 + f (v2)] + [f (ρ∗v2) − ρ∗f (v2)] ≥, 
≡ 0.

This implies, by the maximum principle, that the solution ũ(x, t; ρ∗v2) of the parabolic problem 
(2.4) with ψ(x) = ρ∗v2(x) satisfies

ũ(t, x) > ρ∗v2(x) for x ∈ D, t > 0; ∂ũ(t, x)

∂ν
< ρ∗ ∂v2(x)

∂ν
for x ∈ ∂D, t > 0. (2.7)

On the other hand, using the maximum principle to v1(x) − ũ(t, x) we have

v1(x) ≥ ũ(t, x) for x ∈ D, t > 0; ∂v1(x)

∂ν
≤ ∂ũ(t, x)

∂ν
for x ∈ ∂D, t > 0. (2.8)

Therefore, if (2.5) (resp. (2.6)) holds, the first (resp. the second) inequality in (2.7) contradicts 
that in (2.8). This proves the uniqueness of v(x; D).

(ii). By the parabolic theory, the solution ũ(x, t; ψ) of (2.4) exists globally in time and it is 
positive in D. Using Lyapunov functional in a standard way, one can show the convergence of 
ũ(x, t; ψ) to v(x; D). In particular, if we take ψ(x) = δφ1(x; D) for small δ, then ũ(x, t; δφ1)

is monotonically increasing in t > 0 since δφ1 is a lower solution. Hence ũ(x, t; δφ1) increases 
and converges as t → ∞ to v(x; D) from below. �

We now prove the monotonicity of v(x; D) in D.
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Lemma 2.2. Assume that D1 and D2 are two connected domains in RN with smooth bound-
aries, D1 is a bounded one and BR∗(X) � D1 for some X ∈ D1. If D1 ⊂ D2 and if the 
problem (2.1) with D = D2 has a solution v(x; D2) (no matter D2 is bounded or not), then 
v(x; D1) < v(x; D2) in D1.

Proof. Since v(x; D2) > 0 in D2, there exists a sufficiently small δ > 0 such that δφ1(x; D1) <
v(x; D2) in D1. As in the proof of the previous lemma, δφ1(x; D1) is a strict lower solution. 
Consider the problem (2.4) in D1, with initial data ψ(x) = δφ1(x; D1), we have

ũ(x, t; δφ1) ≤ v(x;D2), x ∈ D1, t > 0

by the comparison principle. Taking limit as t → ∞ in this inequality and using Lemma 2.1
(ii) we conclude v(x; D1) ≤ v(x; D2) in D1. Moreover, the inequality is strict by the strong 
maximum principle. �
Remark 2.3. Since f is a Fisher-KPP type of nonlinearity, it is known that v ≡ 1 is the only 
positive solution of (2.1) in the entire space RN . As a consequence of the previous lemma, for 
any X ∈ RN , v(x; BR(X)) is strictly increasing in R, and v(x; BR(X)) → 1 as R → ∞, in 
C2

loc(R
N) topology.

2.2. Steady states in the half space

Denote by RN+ the half space:

RN+ := {x ∈RN | x1 > 0}.
We consider the problem (2.1) in this domain:⎧⎪⎨⎪⎩

�v + f (v) = 0, x ∈RN+ ,

v(x) > 0, x1 > 0,

v(x) = 0, x1 = 0.

(2.9)

Lemma 2.4. The problem (2.9) admits a unique solution v(x) = V ∗(x1), where V ∗(s) is the 
solution of the following one-dimensional problem

v′′(s) + f (v(s)) = 0 (s > 0), v(0) = 0, v(∞) = 1, v′(s) > 0 (s ≥ 0). (2.10)

Proof. Multiplying the equation in (2.10) by 2v′ and integrating it over (s, ∞), one has

v′(s) =

√√√√√2

1∫
v

f (r)dr.

Its solution V ∗(s) solves the problem (2.10). Clearly, v(x) = V ∗(x1) is a solution of (2.9).
In what follows we prove the uniqueness of the solution of (2.9). First, we present some a 

priori estimates for any given solution V of (2.9).
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Estimate 1. There exist M > m > 0 (depending on V ) such that

m ≤ ∂V

∂x1

∣∣∣∣
∂RN+

≤ M. (2.11)

The second inequality follows from the boundary estimate for elliptic equations. On the other 
hand, for any z ∈ ∂RN+ , denote X = X(z) := (2R∗, z2, · · · , zN), then the ball B2R∗(X) lies in 
RN+ and touches ∂RN+ at exactly one point z. By Lemma 2.2 we have V (x) > v(x; B2R∗(X)) in 
B2R∗(X) and so

∂V (x)

∂x1

∣∣∣
x=z

> m := ∂v(x;B2R∗(X))

∂x1

∣∣∣
x=z

.

Estimate 2. For any l > 0, set Dl := {x ∈ RN | 0 < x1 < l}. For any α ∈ (0, 1) and some 
positive constant C depending on V, α and l, by the boundary estimate we have

‖V ‖C2+α(Dl)
≤ C. (2.12)

Estimate 3. V (x) → 1 as x1 → ∞, uniformly in (0, x2, · · · , xN) ∈ RN−1. For any given small 
ε > 0, by Remark 2.3, there exists Rε > 0 such that v(0; BRε(0)) > 1 −ε. Hence, for any x ∈ RN+
with x1 > Rε , we have BRε(x) ⊂ RN+ and so by Lemma 2.2

V (x) > v(x;BRε(x)) = v(0;BRε(0)) > 1 − ε.

The opposite estimate V (x) < 1 is clear since 1 in an upper solution.

We now prove the uniqueness based on the above estimates. Assume by contradiction that 
(2.9) has two different solutions V1 and V2. Without loss of generality, we assume V1(x̄) <
V2(x̄) for some x̄ ∈ RN+ . By the above estimates we see that ρV2(x) ≤ V1(x) in RN+ provided 
ρ > 0 is sufficiently small (the first two estimates give the comparison near the boundary, and 
third estimate gives the comparison near x1 = ∞). Taking ρ∗ the supremum of such ρ, then 
0 < ρ∗ ≤ V1(x̄)

V2(x̄)
< 1, and one of the following holds:

(a) ρ∗V2(x) ≤ V1(x) for x ∈ RN+ , and ρ∗V2(y) = V1(y) for some y ∈RN+ ;
(b) ρ∗V2(x) < V1(x) for x ∈ RN+ , and ρ∗ ∂V2(z)

∂x1
= ∂V1(z)

∂x1
for some z ∈ ∂RN+ ;

(a)′ ρ∗V2(x) < V1(x) for x ∈ RN+ , and ρ∗V2(y
(k)) − V1(y

(k)) → 0 as k → ∞ for a sequence 
{y(k)} ⊂RN+ with |y(k)| → ∞ (k → ∞);

(b)′ ρ∗V2(x) < V1(x) for x ∈ RN+ , ρ∗ ∂V2(z)
∂x1

<
∂V1(z)
∂x1

for all z ∈ ∂RN+ , and ρ∗ ∂V2(z
(k))

∂x1
−

∂V1(z
(k))

∂x1
→ 0 as k → ∞ for a sequence {z(k)} ⊂ ∂RN+ with |z(k)| → ∞ (k → ∞).

In case (a) or (b) holds, we can derive a contradiction as in the proof of Lemma 2.1. Now we 
derive contradictions in case (a)′ or (b)′ holds.

In case (b)′ holds, we move the origin of the coordinate system to the point z(k) and define

ṽk(x) := ρ∗V2(x + z(k)), v̂k(x) := V1(x + z(k)).
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Then, for each k, ṽk is a lower solution and v̂k is a solution of the problem (2.9),

ṽk(x) − v̂k(x) → ρ∗ − 1 as x1 → ∞, uniformly in k,

and

∂ṽk(0)

∂x1
− v̂k(0)

∂x1
→ 0 as k → ∞.

Using the elliptic estimate (like that in Estimate 2), we conclude that, there exist two C2 functions 
Ṽ and V̂ and a subsequence of {k} (denote it again by {k}) such that

ṽk(x) → Ṽ (x), v̂k(x) → V̂ (x) as k → ∞,

in C2
loc

(
RN+

)
topology, and

Ṽ (x) − V̂ (x) → ρ∗ − 1 as x1 → ∞,
∂Ṽ (0)

∂x1
= ∂V̂ (0)

∂x1
.

The first limit implies that Ṽ (x) 
≡ V̂ (x). Hence they satisfy the conditions in case (b) and so 
lead to a contradiction.

In case (a)′ holds, we first see by Estimate 3 that the sequence {y(k)} satisfies 0 < y
(k)
1 ≤ M

for some M > 0. Hence, a subsequence of {y(k)} (denoted it again by {y(k)}) satisfies y(k)
1 →

ȳ1 (k → ∞) for some ȳ1 ∈ [0, M]. When ȳ1 = 0, a contradiction can be derived as in case (b)′. 
When ȳ1 ∈ (0, M], as in case (b)′ we move the origin of the coordinate system to the point 
Y (k) := (0, y(k)

2 , · · · , y(k)
N ) and define

w̃k(x) := ρ∗V2(x + Y (k)), ŵk(x) := V1(x + Y (k)).

For each k, w̃k is a lower solution and ŵk is a solution of the problem (2.9), and

w̃k((y
(k)
1 ,0, · · · ,0)) − ŵk((y

(k)
1 ,0, · · · ,0)) → 0 as k → ∞.

Using the elliptic estimate (like that in Estimate 2), we see that, there exist two C2 functions 
W̃ and Ŵ and a subsequence of {k} (denote it again by {k}) such that

w̃k(x) → W̃ (x), ŵk(x) → Ŵ (x) as k → ∞,

in C2
loc

(
RN+

)
topology, and W̃((ȳ1, 0, · · · , 0)) = Ŵ ((ȳ1, 0, · · · , 0)). Since

W̃ (x) → ρ∗, Ŵ (x) → 1 as x1 → ∞,

we have W̃ (x) ≤, 
≡ Ŵ (x). Hence they satisfy the conditions in case (a) and so lead to a contra-
diction. �
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Remark 2.5. Note that the uniqueness of the solution of (2.9) has been proved in [6, Proposition 
4.1] for one dimension problem, and in [12, Proposition 6.2] for two dimension problem. Here 
we use a different method to verify the uniqueness for the N -dimension problem. One will see 
that our method remains valid for the problems in general cones (see Theorem 2.8 below).

In the above lemma, the existence of the solution of (2.9) is verified directly. In fact, we 
can also construct the unique solution V ∗(x1) of (2.9) in the following way. For any given z =
(0, z2, · · · , zN) ∈ ∂RN+ and any k > 0, denoting

e1 := (1,0, · · · ,0), Xz(k) := z + ke1 = (k, z2, · · · , zN )

and considering the problem (2.1) in the ball Bk(Xz(k)). By Lemma 2.1, when k is large, 
the unique solution v(x; Bk(Xz(k))) of this problem is positive in Bk(Xz(k)). Moreover, by 
Lemma 2.2, this solution is increasing in k, and so it converges as k → ∞ to the unique solution 
V ∗(x1), in C2

loc

(
RN+

)
topology. Therefore, for any given k0 > 0 and any small ε > 0, there exists 

K = K(ε, k0) > 0 such that, when k ≥ K ,

v(x;Bk(Xz(k))) ≥ V ∗(x1) − ε for x ∈ Bk0(Xz(k0)).

On the other hand, we have V ∗(x1) > v(x; Bk(Xz(k))) by Lemma 2.2. Thus we have the follow-
ing lemma.

Lemma 2.6. For any k0 > 0 and any small ε > 0, there exists K = K(ε, k0) > 0 such that

V ∗(x1) ≥ v(x;BK(Xz(K))) ≥ V ∗(x1) − ε for x ∈ Bk0(Xz(k0)). (2.13)

2.3. Positive steady state in �

Now we study the solution of (2.1) with D = �.

Theorem 2.7. The problem (2.1) with D = � admits at least one solution V , which satisfies

V (x) → 1 as dist(x, ∂�) → ∞, and V (x) ≤ V ∗(d(x)) for x ∈ �. (2.14)

Proof. Let {Dk} be a sequence of bounded subsets of � such that, they have smooth bound-
aries, Bk(Xk) ⊂ Dk ⊂ Dk+1 for some Xk ∈ �, and 

⋃∞
k=1 Dk = �. For any large k, we see by 

Lemma 2.1 that the problem (2.1) with D = Dk has a unique positive solution v(x; Dk) ≤ 1. By 
Lemma 2.2 we have

v(x;Dk) ≤ v(x;Dk+1) ≤ 1, x ∈ Dk.

Therefore, there exists a function V (x) such that

v(x;Dk) ↗ V (x) as k → ∞, in C2
loc(�) topology.

So, V (x) is a solution of (2.1) with 0 < V (x) ≤ 1.



B. Lou, J. Lu / J. Differential Equations 267 (2019) 7064–7084 7073
Moreover, for any small ε > 0, by Remark 2.3 there exists K(ε) > 0 large such that 
v(0; BK(ε)(0)) > 1 − ε. Hence for any x ∈ � with dist(x, ∂�) > K(ε) and BK(ε)(x) ⊂ Dk we 
have

1 − ε < v(0;BK(ε)(0)) = v(x;BK(ε)(x)) < v(x;Dk) < V (x).

Combining with V (x) ≤ 1 we obtain the first limit in (2.14).
For any given z ∈ ∂�, we can take a tangent plane T (z) of ∂� at z such that the whole domain 

� lies on one side of this plane (this is possible since E is convex, so is �). Denote by n(z) the 
unit normal vector of T (z) (or ∂�) pointing into �, and denote

RN+(n(z)) := {x = y + sn(z) | y ∈ T (z), s > 0}

the half space of RN separated by T (z), where � lies. Consider the problem⎧⎪⎨⎪⎩
�v + f (v) = 0, x ∈RN+(n(z)),

v(x) > 0, x ∈RN+(n(z)),

v(x) = 0, x ∈ T (z).

(2.15)

By Lemma 2.4, this problem has a unique positive solution

v = V ∗((x − z) · n(z)
)
.

For any bounded domain Dk ⊂ � ⊂ RN+(n(z)), v(x; Dk) ≤ V ∗((x − z) · n(z)
)

by Lemma 2.2. 
We conclude that

V (x) ≤ V ∗((x − z) · n(z)
)

for x ∈ �.

Note that this inequality holds for any given z ∈ ∂�. In particular, fix an x ∈ �, the inequality 
holds for z = Zx , where Zx is a point on ∂� such that d(x) := dist(x, ∂�) = |x − Zx |. Thus, 
(x−Zx) ·n(Zx) = d(x), and so (2.14) holds at this given x. Since x ∈ � can be chosen arbitrarily, 
we indeed obtain (2.14) for all x ∈ �. �

We now prove the uniqueness of V .

Theorem 2.8. V in the previous lemma is the unique positive solution of (2.1) with D = �.

Proof. The proof is similar to that in Lemma 2.4. Assume by contradiction that V1 and V2 are 
two different solutions of (2.1) with D = �, and that V1(x̄) < V2(x̄) for some x̄ ∈ �. By the 
standard theory of elliptic equations, similar estimates as in Lemma 2.4 hold for both V1 and V2. 
Hence, there exists 0 < ρ∗ ≤ V1(x̄)

V2(x̄)
< 1 such that one of the following holds:

(a) ρ∗V2(x) ≤ V1(x) for x ∈ �, and ρ∗V2(y) = V1(y) for some y ∈ �;
(b) ρ∗V2(x) < V1(x) for x ∈ �, and ρ∗ ∂V2(z)

∂n(z)
= ∂V1(z)

∂n(z)
for some z ∈ ∂�;

(a)′ ρ∗V2(x) < V1(x) for x ∈ �, and ρ∗V2(y
(k)) − V1(y

(k)) → 0 as k → ∞ for a sequence 
{y(k)} ⊂ � with |y(k)| → ∞ (k → ∞);
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(b)′ ρ∗V2(x) < V1(x) for x ∈ �, ρ∗ ∂V2(z)
∂n(z)

<
∂V1(z)
∂n(z)

for all z ∈ ∂�, and ρ∗ ∂V2(z
(k))

∂n(z(k))
− ∂V1(z

(k))

∂n(z(k))
→ 0

as k → ∞ for a sequence {z(k)} ⊂ ∂� with |z(k)| → ∞ (k → ∞).

The rest proof is also similar as that in Lemma 2.4. We consider only the case (b)′. Define

ṽk(x) := ρ∗V2(x + z(k)), v̂k(x) := V1(x + z(k)).

Then, for each k, ṽk is a lower solution and v̂k is a solution of the problem (2.1) in D = �(k) :=
{x = y − z(k) | y ∈ �},

ṽk(x) − v̂k(x) → ρ∗ − 1 as dist(x, ∂�(k)) → ∞

by (2.14), and

∂ṽk(0)

∂n(z(k))
− ∂v̂k(0)

∂n(z(k))
→ 0 as k → ∞.

Since {n(z) | z ∈ ∂�} ⊂ SN−1, we see that a subsequence of {n(z(k))} (denote it again by 
{n(z(k))}) converges to n∗, and so �(k) → RN+(n∗) as k → ∞. Then, using the elliptic estimate 
as in Lemma 2.4, we conclude that, there exist two C2 functions Ṽ and V̂ and a subsequence of 
{k} (denote it again by {k}) such that

ṽk(x) → Ṽ (x), v̂k(x) → V̂ (x) as k → ∞,

in C2
loc(R

N+(n∗)) topology, and

Ṽ (x) − V̂ (x) → ρ∗ − 1 as x · n∗ → ∞,
∂Ṽ (0)

∂n∗
= ∂V̂ (0)

∂n∗
.

The first limit implies that Ṽ (x) 
≡ V̂ (x). Hence we can derive a contradiction as in the proof 
of Lemma 2.4, since Ṽ (x) is a lower solution and V̂ (x) is a solution of (2.9) with RN+ being 
replaced by RN+(n∗). �

To study further properties of V , we give some notation. Denote X∗ := (1, 0, · · · , 0) ∈ E. We 
can find two real numbers θ1, θ2 ∈ (0, π) with θ2 > θ1 such that the cones

Ci := {x ∈ RN | x · X∗ = |x| · |X∗| cos θi} (i = 1,2)

satisfy C1 ⊂ �∗ ⊂ C2, where �∗ is the cone in constructing the domain �. Therefore, for any 
z∗ ∈ ∂E, the angle θ between the ray 

−−→
Oz∗ and 

−−→
OX∗ satisfies θ1 ≤ θ ≤ θ2. Any point z on the ray −−→

Oz∗ is also on ∂� when |z| is large. For any m > 0, denote by

L(z,m) := {z + sn(z) | 0 < s ≤ m} (2.16)
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the line segment with length m on the normal line �(z) := {x | x = z + sn(z), s ∈ R}. For any 
a > 0, denote

�a := {x + aX∗ | x ∈ �}, �c
a(R) := {x ∈ �\�a | |x| > R}. (2.17)

For any given m > 0, if x ∈ �c
a(R) and if R is sufficiently large, there exists a unique Zx ∈ ∂�

such that x ∈ L(Zx, m) ⊂ �(Zx). Hence, for such x,

d(x) := dist(x, ∂�) = (x − Zx) · n(Zx) = |x − Zx |. (2.18)

Lemma 2.9. For any a > 0 and R > a + 1, there exist σ2 > σ1 > 0 (independent of a and R) 
such that the distance function d(x) := dist(x, ∂�) satisfies

d(x) > aσ1 for x ∈ �a, d(x) < aσ2 for x ∈ �c
a(R).

Proof. When a = 1, we see that the domain �1 is separated from ∂� by a distance σ1 > 0. 
Hence the first inequality holds by proportionality.

Now we prove the second inequality. For any za ∈ ∂�a with |za| > R > a + 1, by the defini-
tion of �a , we have z := za − aX∗ ∈ ∂�. Denote by O the original point and Oa := aX∗, then 
the ray 

−−→
Oaza is parallel to 

−→
Oz, which implies that

d(za) ≤ dist(za,
−→
Oz) = dist(Oa,

−→
Oz) = a sin θ ≤ a sin θ2,

where θ denotes the angle between the rays 
−→
Oz and 

−−→
OOa . �

By the above lemma and the first limit in (2.14) we have the following result.

Lemma 2.10. For any small ε > 0, there exists Aε such that when a ≥ Aε , V (x) ≥ 1 − ε in �a .

Proof of Theorem 1.1. The existence and uniqueness of V have been proved in Theorems 2.7
and 2.8. We now prove (1.2). Using the result in Theorem 2.7 we only need to prove

lim sup
x1→∞

[V ∗(d(x)) − V (x)] = 0. (2.19)

For any small ε > 0, by Lemma 2.10 we have

V ∗(d(x)) − V (x) < 1 − V (x) ≤ ε for x ∈ �a, (2.20)

provided a ≥ Aε . Fix such an a, and take a k0 ≥ aσ2, then by Lemma 2.6, there exists K =
K(ε, k0) > k0 such that

v(x;BK(Xz(K))) ≥ V ∗(x1) − ε, x ∈ Bk0(Xz(k0)). (2.21)

Choose R > 0 sufficiently large such that when z ∈ �1 := {z | z ∈ ∂�, |z| > R}, the ball 
BK(Yz(K)) (where Yz(K) := z + Kn(z)) lies in � and its closure touches ∂� at exactly one 
point z. Moreover, we can take R so large that the line segments L(z, 2K) do not meet each other. 
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This implies that, for any x ∈ �c
a(R+K), there is a unique Zx ∈ �1 such that x ∈ L(Zx, K) (note 

that K > k0 ≥ aσ2 > d(x) for x ∈ �c
a(R + K)), and

d(x) = dist(x, ∂�) = |x − Zx |.
For each z ∈ �1, we identify

RN+ , Bk0(Xz(k0)), BK(Xz(K)), x1

in Lemma 2.6 and (2.21) with

RN+(n(z)), B1(z) := Bk0(Yz(k0)), B2(z) := BK(Yz(K)), d(x) = |x − Zx |,
respectively. Then v(x; BK(Xz(K))) is converted into a function ṽ(x; B2(z)) and (2.21) is con-
verted into

ṽ(x;B2(z)) ≥ V ∗(d(x)) − ε, x ∈ B1(z). (2.22)

Since this inequality holds for all z ∈ �1 and since ṽ(x; B2(z)) ≤ V (x) by Lemma 2.2, we con-
clude that

V (x) ≥ V ∗(d(x)) − ε, x ∈ �c
a(R + K) ⊂

⋃
z∈�1

B1(z).

Combining with (2.20) we obtain (2.19). �
2.4. Traveling wave solutions with compact supports

A special solution of ut = �u + f (u) with the form u = w(x − cet) for some c > 0 and 
e ∈ SN−1 is called a traveling wave solution (with speed c in the direction e). Clearly, the function 
w should be a solution of the following elliptic problem:{

�w + ce · ∇w + f (w) = 0, x ∈ D ⊂RN,

w(x) = 0, x ∈ ∂D.
(2.23)

To study (2.23), we first consider the eigenvalue problem for the operator −� − ce · ∇:{ −�φ − ce · ∇φ = λφ, x ∈ D,

φ(x) = 0, x ∈ ∂D.
(2.24)

Since, with ψ(x) := φ(x)ece·x/2, the equation is equivalent to −�ψ = (λ − c2

4 )ψ , we see that 

the principal eigenvalue of (2.24) λc
1(D) = λ1(D) + c2

4 , where λ1(D) is the principal eigenvalue 

of (2.2) in D. Denote c0 := 2
√

f ′(0) as before. For any c ∈ [0, c0), due to c2

4 < f ′(0) we have 

λc
1(D) = λ1(D) + c2

4 < f ′(0) when λ1(D) is sufficiently small. In particular, if D = BR(X) for 
some X ∈ RN , then there exists a constant Rc∗ such that the principal eigenvalue λc

1(BR(X)) of 
(2.24) in D = BR(X) satisfies λc(BR(X)) < f ′(0) if and only if R > Rc∗.
1
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Lemma 2.11. Assume c ∈ [0, c0) and Rc∗ is the positive real number given above.

(i) If BRc∗(X) � D for some X ∈ RN , then the problem (2.23) has a unique positive solution 
wc(x; D).

(ii) wc(x; D) is strictly increasing in D in the sense that wc(x; D2) > wc(x; D1) in D1 if 
BRc∗(X) � D1 � D2 for some X ∈ D1. In particular, wc(x; BR(0)) → 1 as R → ∞, in 
C2

loc(R
N) topology.

(iii) If D = RN+ := {x ∈ RN | x1 > 0} and e ⊥ e1 = (1, 0, · · · , 0), then the unique solution of 
(2.23) is V ∗(x1). Moreover, for any k0 > 0 and any small ε > 0, there exists K = K(ε, k0) >
0 such that, for any z = (0, z2, · · · , zN) and any k ≥ K ,

V ∗(x1) ≥ wc(x;Bk(Xz(k))) ≥ V ∗(x1) − ε for x ∈ Bk0(Xz(k0)), (2.25)

where Xz(k) := z + ke1.

Proof. This lemma can be proved in a similar way as Lemmas 2.1, 2.2, 2.4 and 2.6. �
To end this section we show wc(x; B1) < v(x; B2) when B1 ⊂ B2 and B2 is sufficiently large.

Lemma 2.12. Assume e ∈ SN−1 and c ∈ (0, c0). Let wc(x; Bm(0)) be a positive solution of (2.23)
in D = Bm(0) and v(x; BM(0)) be a solution of (2.1) in D = BM(0). Assume m is fixed. If M is 
sufficiently large then

wc(x − 2Me + me;Bm(0)) < v(x − Me;BM(0)), x ∈ Bm(2Me − me). (2.26)

Proof. Since w̄ := supx∈Bm(0) w
c(x; Bm(0)) < 1, by Remark 2.3, there exists M > m suffi-

ciently large such that v(x; BM(0)) ≥ w̄ in Bm(0). Hence,

v(x − Me;BM(0)) ≥ wc(x − Me;Bm(0)) for x satisfying |x − Me| ≤ m.

Both u1 := v(x − Me; BM(0)) and u2 := wc(x − Me − cet; Bm(0)) are solutions of ut = �u +
f (u), and so the comparison principle is applied in the time interval t ∈ [0, (M −m)/c] (since in 
this period the domain of u2 lies in that u1). In particular, at t = (M −m)/c, we have (2.26). �
3. Spreading for the solutions of (P)

3.1. Convergence in L∞
loc(�) topology

We show that any solution u of (P) converges, in L∞
loc(�) topology, to the positive steady 

state V .

Theorem 3.1. Let u be the solution of (P) with nonnegative and compactly supported initial data 
u0. Then for any given R > 0 we have

‖u(t, ·) − V (·)‖L∞(�∩BR) → 0 as t → ∞,

where V is the positive steady state constructed in Section 2.
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Proof. For any given small ε > 0, we first prove

lim inf
t→∞ u(t, x) ≥ V (x) − ε, uniformly in x ∈ � ∩ BR. (3.1)

Recall the construction of V in the proof of Theorem 2.7 we see that there exists a large domain 
D with � ∩ BR ⊂ D ⊂ � such that

V (x) > v(x;D) > V (x) − ε, x ∈ � ∩ BR.

On the other hand, by the maximum principle we have u(1, x) > 0 in D. Consider the following 
auxiliary problem

⎧⎪⎨⎪⎩
ũt = �ũ + f (ũ), x ∈ D, t > 0,

ũ(t, x) = 0, x ∈ ∂D, t > 0,

ũ(0, x) = u(1, x), x ∈ D.

By the comparison principle we have

u(t + 1, x) ≥ ũ(t, x), x ∈ D, t > 0.

Taking limit as t → ∞ and noticing ũ(t, x) → v(x; D) (by Lemma 2.1) we obtain (3.1).
Next we prove

lim sup
t→∞

u(t, x) ≤ V (x) + ε, uniformly in x ∈ � ∩ BR. (3.2)

Choose M > 1 sufficiently large such that MV (x) ≥ u0(x). Denote by u(t, x; MV ) the solution 
of (P) with initial condition MV . By comparison we have

u(t, x;MV ) ≥ u(t, x) for t > 0, x ∈ �; u(t, x;MV ) ≥ V (x) for x ∈ �. (3.3)

Moreover, by (F) we have f (MV ) ≤ Mf (V ), and so ut (t, x; MV ) ≤ 0 due to

�(MV ) + f (MV ) ≤ M[�V + f (V )] = 0.

This implies that

u(t, x;MV ) ↘ ṽ(x) in C2
loc(�), (3.4)

for some ṽ(x) ≥ V (x). By the standard parabolic theory, ṽ is a positive steady state of ut =
�u + f (u), and so ṽ ≡ V . Thus, (3.2) follows from (3.4) and the first inequality of (3.3). �
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3.2. Spreading speed

The limits (1.5) and (1.6) in Theorem 1.2 are given by the following two theorems, respec-
tively.

Theorem 3.2. Let u be the solution of (P) with compactly supported initial data u0. Then, for 
any c1 > c0 := 2

√
f ′(0),

lim
t→∞ sup

|x|>c1t, x∈�

u(t, x) = 0.

Proof. We choose a large constant R > 0 such that the support of initial data spt(u0) ⊂ BR , and 
consider the Cauchy problem{

ũt = �ũ + f (ũ), x ∈RN, t > 0,

ũ(0, x) = ‖u0‖L∞ · χBR
, x ∈RN,

where χD denotes the characteristic function over D. Then the solution ũ(t, x) is a radially 
symmetric one and limt→∞ sup|x|>c1t

ũ(t, x) = 0 (cf. [2]). Clearly, ũ is an upper solution of (P), 
and u(t, x) ≤ ũ(t, x) by the comparison principle. This reduces to the conclusion. �

We now prove the lower estimate for the spreading speed.

Theorem 3.3. Let u, c0 be the same as in the previous theorem, V (x) be the unique positive 
steady state of (P). Then, for any c2 ∈ (0, c0)

lim
t→∞ inf|x|≤c2t, x∈�

u(t, x) = V (x). (3.5)

Remark 3.4. We first state the idea of the proof. The precise values of V depend on the shape of 
� and are not easy to be specified in detail, hence, to prove (3.5) it is convenient to substitute V
by some simpler approximate functions. More precisely, we divide � into three parts �a , �c

a(R)

and � ∩ BR . The convergence in the last bounded domain follows from Theorem 3.1. In the first 
two domains, we use 1 to approximate V in �a (for large a), and use V ∗(d(x)) to approximate 
V (x) in �c

a(R) (for large R). Clearly, both 1 and V ∗ are simpler than V since they do not depend 
on the shape of �. Moreover, they can be estimated from below by the traveling wave solution 
wc(x − cet; BR0) for some R0 > 0. In fact, we will show that, for any small ε > 0,

u(t, x) ≥ wc(x − cet;BR0) ≥ 1 − ε > V (x) − ε, in �a, (3.6)

and

u(t, x) ≥ wc(x − cet;BR0) ≥ V ∗(d(x)) − ε ≈ V (x) − ε, in �c
a(R), (3.7)

provided R0, R and t are sufficiently large. Therefore, besides u and V , the functions V ∗ and 
wc(x − cet; BR0) are also involved in our proof. This point is more complicated than that in 
Theorem 3.2, where only one uniform upper solution ũ is used.
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Proof of Theorem 3.3. We use the notation given in the previous section. Let ε > 0 be any given 
small number, we only need to prove

inf|x|≤c2t, x∈�

[
u(t, x) − V (x)

] ≥ −rε, when t is sufficiently large, (3.8)

for some integer r > 0. We prove it in three domains �a , �c
a(R) and � ∩ BR , respectively.

Step 1. To prove (3.8) in �a := {x + aX∗ | x ∈ �}.
(1). By Lemma 2.10, there exists a1 = a1(ε) such that V (x) > 1 − ε in �a1 .
(2). For any given c ∈ (c2, c0) and any e ∈ SN−1, by Lemma 2.11, the problem{

�w + ce · ∇w + f (w) = 0, x ∈ BR0 := BR0(0),

w(x) = 0, x ∈ ∂BR0

(3.9)

has a unique positive solution provided R0 > 0 is large. We use wc(x; e, BR0) to denote this 
solution. Moreover, one can choose a suitable R0 = R0(ε) such that

1 − 3ε < wc(x̄; e,BR0) := max
x∈BR0

wc(x; e,BR0) < 1 − 2ε, (3.10)

for some x̄ = x̄(e) ∈ BR0 .
(3). Choose x̃ ∈ �a1 such that BR0(x̃) ⊂ �a1 . By Theorem 3.1, u(t, x) → V (x) (t → ∞)

uniformly in BR0(x̃). So, there exists T1 > 0 such that, when t ≥ T1,

u(t, x) > V (x) − ε > 1 − 2ε > wc(x − x̃; e,BR0), x ∈ BR0(x̃). (3.11)

(4). Choose a > a1 sufficiently large such that BR0(x̃) ∩ �a = ∅, dist(�a, ∂�) > R0 and

x − y − x̃ ∈ � for all x ∈ �a and y ∈ BR0 .

Then, for any y∗ ∈ BR0(x̃) and y∗∗ ∈ �a , when the ball BR0(x̃) moves along the line segment 
y∗y∗∗, it remains in �.

(5). Set

T2 := cT1 + R0 + |x̃|
c − c2

.

Now we prove a claim:

Claim 1. For any t > T2 and any x ∈ �a with |x| ≤ c2t , we have u(t, x) ≥ 1 − 3ε.

Otherwise, there exists t̂ > T2 and x̂ ∈ �a with |x̂| < c2 t̂ such that u(t̂, x̂) < 1 − 3ε. Since the 
time moment

T (e) := t̂ − |x̂ − x̄(e) − x̃|
c

≥ t̂ − c2 t̂ + |x̄(e)| + |x̃|
c

>
(c − c2)T2 − R0 − |x̃|

c
= T1,

we have by (3.11),
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u(T (e), x) > 1 − 2ε ≥ wc(x − x̃; e,BR0) for all e ∈ SN−1, x ∈ BR0(x̃). (3.12)

Recall that the set E in the construction of � is a convex domain. Define a map P : E → � :=
SN−1 ∩ � as follows: for any x ∈ E, let Px be the contact point between the line Ox and �. 
Then P is a homeomorphism from E to �. Define another map A : � → � as

Ae := x̂ − x̄(e) − x̃

|x̂ − x̄(e) − x̃| , e ∈ �.

Then B := P −1 ◦ A ◦ P is a continuous map from the bounded, closed and convex domain E
into itself. Using the Brouwer theorem we see that the map B has a fixed point x∗ ∈ E, and so 
e∗ := Px∗ ∈ � is a fixed point of A: Ae∗ = e∗. Using e∗ to replace the direction e in the above 
argument, then wc(x − x̃ − ce∗t; e∗, BR0) is a traveling wave solution of (P) in direction e∗ (with 
compact support). By (3.12) and the comparison principle we have

u(T (e∗) + t, x) > wc(x − x̃ − ce∗t; e∗,BR0) for t > 0 and x with |x − x̃ − ce∗t | ≤ R0.

In particular, at t = t̂ − T (e∗) and x = x̂, we deduce a contradiction:

1 − 3ε > u(t̂, x̂) > wc(x̄(e∗); e∗,BR0) > 1 − 3ε.

(6). The estimate (3.8) with r = 3 follows from Claim 1 directly.

Step 2. To prove (3.8) in �c
a(R) for some large R to be determined.

(1). Once a is fixed, there exists k0 > 0 such that dist(x, ∂�) < k0 for all x ∈ �\�a .
(2). For any given c ∈ (c2, c0) and any z ∈ ∂RN+ , by (2.25) we have

wc(x;BK(Xz(K))) ≥ V ∗(x1) − ε, x ∈ Bk0(Xz(k0)). (3.13)

(3). By taking e = −e1 and m = K in (2.26), we see that for sufficiently large M > K ,

v(x;BM(Xz(M))) > wc(x;BK(Xz(K))), x ∈ BK(Xz(K)). (3.14)

(4). Take R1 sufficiently large such that, the line segments L(z, M) for z ∈ �1 := {z ∈ ∂� |
|z| ≥ R1} do not meet each other, and BM(Yz(M)) ⊂ � for all z ∈ �1, where Yz(k) := z + kn(z)

for k > 0. Thus, for any x ∈ � satisfying |x| ≥ R1 + M and dist(x, ∂�) ≤ M , there is a unique 
Zx ∈ �1 such that x ∈ L(Zx, M) and

d(x) = dist(x, ∂�) = |x − Zx |.

For any given z ∈ �0
1 := {z ∈ ∂� | |z| = R1}, denote by RN+(n(z)) the half space separated by 

the tangent plane T (z) with � ⊂RN+(n(z)). We identify

RN+ , e1, e, Bk0(Xz(k0)), BK(Xz(K)), BM(Xz(M)), x1

in Lemmas 2.11 and 2.12 with
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RN+(n(z)), n(z), r(z) = z
|z| , B1(z) := Bk0(Yz(k0)),

B2(z) := BK(Yz(K)), B3(z) := BM(Yz(M)), d(x) = |x − Zx |,

respectively. Then wc(x; BK(Xz(K))) is also converted into a new function w̃(x; B2(z)) and the 
inequality (3.13) becomes

w̃(x;B2(z)) ≥ V ∗(d(x)) − ε, x ∈ B1(z). (3.15)

v(x; BM(Xz(M))) is converted into a new function ṽ(x; B3(z)) and (3.14) reduces to

ṽ(x;B3(z)) > w̃(x;B2(z)), x ∈ B2(z). (3.16)

Since B3(z) ⊂ � and ṽ(x; B3(z)) is a solution of (2.1) in B3(z), by Lemma 2.2 we have

V (x) > ṽ(x;B3(z)), x ∈ B3(z).

By Theorem 3.1, u(t, x) → V (x) (t → ∞) uniformly in B3(z). Hence, there exists T3(z) > 0
such that, when t ≥ T3(z),

u(t, x) ≥ ṽ(x;B3(z)), x ∈ B3(z).

Combining with (3.16) we have

u(t, x) > w̃(x;B2(z)) for x ∈ B2(z), t ≥ T3(z). (3.17)

Taking T3 := max{T3(z) | z ∈ �0
1}, then (3.17) holds for any z ∈ �0

1, x ∈ B2(z) and t ≥ T3.
(5). Take a R > R1 large such that BM(Yz(M)) ∩ �c

a(R) = ∅ for all z ∈ �0
1. Set

T4 := cT3 + 2k0 + R1

c − c2
.

Then we can prove

Claim 2. For any t > T4 and any x ∈ �c
a(R) with |x| ≤ c2t , we have u(t, x) − V (x) ≥ −ε.

In fact, for any given t̃ > T4 and x̃ ∈ �c
a(R) with |x̃| < c2 t̃ , denote

z̃ := Zx̃, r := r(z̃) = z̃

|z̃| , ž := R1r ∈ �0
1, x̌ := x̃ − z̃ + ž ∈ B1(ž).

Then ž = Zx̌, r = x̃−x̌
|x̃−x̌| and d(x̃) = |x̃ − z̃| = |x̌ − ž| = d(x̌). Since the time moment

τ := t̃ − |x̃ − x̌| ≥ t̃ − |x̃| + 2k0 + R1 ≥ t̃ − c2 t̃ + 2k0 + R1
>

(c − c2)T4 − 2k0 − R1 = T3,

c c c c
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by (3.17) we have

u(τ, x) ≥ w̃(x;B2(ž)), x ∈ B2(ž).

Since w̃(x − crt; B2(ž)) is a traveling wave solution of (P) (with compact support), by compari-
son principle we have

u(τ + t, x) ≥ w̃(x − crt;B2(ž)) for t > 0 and x with x − crt ∈ B2(ž).

In particular, at t = t̃ − τ and x = x̃, we have

u(t̃, x̃) ≥ w̃(x̌;B2(ž)).

Since x̌ ∈ B1(ž), by (3.15) we have

w̃(x̌;B2(ž)) ≥ V ∗(d(x̌)) − ε = V ∗(d(x̃)) − ε ≥ V (x̃) − ε.

The last inequality follows from (2.14). This proves Claim 2, and then the estimate (3.8) holds 
in �c

a(R).

Step 3. The convergence of u(t, x) → V (x) in bounded domain � ∩ BR follows from Theo-
rem 3.1.

Combining the results in these three steps we obtain (3.8). This completes the proof for The-
orem 3.3. �
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