期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:298
Prodi-Serrin condition for 3D Navier-Stokes equations via one directional derivative of velocity
Article
Chen, Hui1  Le, Wenjun1  Qian, Chenyin2 
[1] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词: Navier-Stokes equations;    Regularity of weak solutions;    Serrin-Prodi condition;   
DOI  :  10.1016/j.jde.2021.07.015
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider the conditional regularity of weak solution to the 3D Navier-Stokes equations. More precisely, we prove that if one directional derivative of velocity, say partial derivative(3)u, satisfies partial derivative(3)u is an element of L-p0,L-1 (0, T; L-q0(R-3)) with 2/p(0) + 3/q(0) = 2 and 3/2 < q(0) < +infinity, then the weak solution is regular on (0, T]. The proof is based on the new local energy estimates introduced by Chae-Wolf (2019) [4] and Wang-Wu-Zhang (2020) [21]. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2021_07_015.pdf 383KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次