期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:255
Spreading speeds of a partially degenerate reaction-diffusion system in a periodic habitat
Article
Wu, Chufen1,2  Xiao, Dongmei2  Zhao, Xiao-Qiang3 
[1] Foshan Univ, Dept Math, Foshan 528000, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
关键词: Partially degenerate;    Reaction-diffusion system;    Periodic habitat;    Principal eigenvalue;    Spreading speed;   
DOI  :  10.1016/j.jde.2013.07.058
来源: Elsevier
PDF
【 摘 要 】

This paper is devoted to the study of the spreading speeds of a partially degenerate reaction-diffusion system with monostable nonlinearity in a periodic habitat. We first obtain sufficient conditions for the existence of principal eigenvalues in the case where solution maps of the associated linear systems lack compactness, and prove a threshold type result on the global dynamics for the periodic initial value problem. Then we establish the existence and computational formulae of spreading speeds for the general initial value problem. It turns out that the spreading speed is linearly determinate. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2013_07_058.pdf 467KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次