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1. Introduction

The spatial dynamics of populations in homogeneous or heterogeneous habitats is a central topic
in biology and ecology, and the spreading speed of populations is a crucial quantity in the study
of biological invasions and disease spread, which has attracted a lot of attentions both theoretically
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and empirically; see [1-5,7,10-13,15-17,19,24,26,31-33], and references therein. Homogeneity and
heterogeneity are concepts referring to qualitatively uniform and varying habitats for populations, re-
spectively. Most real environments exhibit more complex patterns than strict periodicity, but the main
characteristics of many landscapes can be captured well by this assumption. For example, the growth
and spread of an invading species in a forest which consists of trees planted in periodic rows when
the population density does not vary in the direction of the rows [27]. In order to model the growth
and spread of benthic-pelagic population in a river, Lutscher, Lewis and McCauley [20] partitioned the
river into the flowing water (or pelagic) zone and the storage (or benthic) zone, and proposed the
following partially degenerate reaction-diffusion system in a periodic habitat with piecewise constant
coefficient functions, which corresponds to a river with a series of pools and riffles:

oy 10 ) q om _
y(t,X)— (%) ox (d(X)a(X) ax> a0 ox +k(x)(u2 —uy),

d
%(nx) = PO — 1) + [ F(0) — u]ua. (11)

where uq(t,x) and uy(t,x) are the densities of pelagic and benthic individuals, respectively, a(x) is
the cross-sectional areas of flowing zone, d(x) is the diffusion rate, g is the advective flux, k(x) and
p(x) are two exchange rates, f(x) is the growth rate, and

1,1,1,kq, p1, xe(0,l)+17Z,

ax), d), f(x), k), p(x) {az,dz,fz,kz,pz, xe )+ L7,
By analyzing the effects of heterogeneity on the persistence and spread of populations in a riverine
habitat, Lutscher et al. obtained implicit formulae for the persistence boundary and the dispersion
relation of the wave speed for model (1.1). However, the question of the existence of a spreading
speed of system (1.1) remains unresolved.

The purpose of the present work is to study spreading speeds of a more general partially degener-
ate reaction-diffusion system in a periodic habitat:

auq d duq auq

——(t,x)=—D1(x)— | + D2 (x)—

T (t, %) 8x< 1(%) 8x>+ 2(%) P + f(x,u1, uz),

ouy

ﬁ(t, X) = g(x, uy, uz), (1.2)

where uq(t,x) and u;(t, x) are the densities of two species at time t and location x in an L-periodic
habitat for some positive number L. The coefficient functions and reaction functions of system (1.2)
satisfy the following conditions:

(A1) Dy € C*Y(R), Dy € CY(R), Di(x + L) = D;(x), Vi=1,2, x € R, where C”(R) is the space of
Holder continuous functions with exponent v € (0, 1). The differential operator %(Dﬂx)%) +
Dz(x)% is uniformly elliptic, i.e., there exists a positive number By such that D1 (x) > Bo, Vx € R.

(A2) f,g:R x Ri — R?, f(x,u) and g(x,u) are C? in u, Holder continuous and L-periodic in x,
f(x,0)=g(x,0) =0, and the partial derivatives of f, g up to order 2 with respect to uy, u, are
all continuous and L-periodic in x, respectively.

(A3) There exists a positive vector M = (M1, M) such that

fx,M)<0 and gk, M)<0, VxeR.

(A4) fu,(x,uq,u2) >0, gy, (x,ug,u2) >0, VxR, ue[0, M{] x [0, M;], where f; denotes the partial
derivative of f with respect to q.
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(A5) F(x,u) := (f(x,u), g(x,u)) is strictly subhomogeneous on [0, M1] x [0, M3] in the sense that
F(x,vu) > vF(x,u), Vxe R, v € (0, 1), u € [0, M1] x [0, M3] with u; >0 for all i =1, 2.

By the differentiability of D1(x), we can reduce system (1.2) to the following simple form:

our _p (X)32u1 + Do M 4 o uy, ua)

PY: =D 3)(2 0 9% s 41, U42),

ou

a—tzzg(x,ul,uz), t>0, xeR, (13)

where Do(x) = D} (x) + D2(x).

Since there is no diffusion term in the second equation of (1.3), the solution maps Q (t) of sys-
tem (1.3) are not compact with respect to the compact open topology. Therefore, we cannot use the
theory of spreading speeds and traveling waves developed by Weinberger [31]|. More precisely, the
map Q (t) does not satisfy the compactness assumption [31, Hypothesis 2.1vi]. Besides, more restric-
tive conditions on reaction terms are needed to show that Q (t) is an a-contraction with respect to
the Kuratowski measure of non-compactness. So we may not expect to apply the abstract results in
Liang and Zhao [19] to study the spreading speed for the model system (1.3).

The spreading properties in periodic habitats originate from the propagating waves in periodic
media, see, e.g., [10,11,34,2,23,24] and references therein. In terms of ecological applications, there
are numerous publications exploring biological invasions and range expansion in heterogeneous land-
scapes, see, e.g., [27,28,16,17,4] and references therein. Weinberger [31] studied the spreading speed
and traveling waves for a recursion with a periodic order-preserving compact operator, which can
be regarded as a general model of time evolution in population genetics or population ecology in a
periodic habitat (see also [32]). Recently, Shen and Zhang [26] investigated the spreading speed for
a nonlocal dispersal equation in a periodic habitat. Differently from the construction of spreading
speeds in [30,31,19], they developed a new approach to spreading speeds (see also [15]) to overcome
the difficulty induced by the non-compactness of solution operators. We will study the global dynam-
ics and spreading speeds of system (1.3) by combining the theory of monotone dynamical systems
and the ideas in [26]. To characterize the spreading speed for system (1.3), we need to use the princi-
pal eigenvalues of a class of degenerate elliptic eigenvalue problems subject to the periodic boundary
condition. Note that the celebrated Krein-Rutman theorem and its generalization [25] do not apply to
our current case. We will show the existence of such principal eigenvalues by appealing to the theory
recently developed by Wang and Zhao [29].

The rest of this paper is organized as follows. In Section 2, we present some preliminary results
on the well-posedness of solutions, the comparison principle, the principal eigenvalue, global dy-
namics for a periodic initial value problem, and linear evolution operators. In Section 3, we prove
the existence of the spreading speed interval by sandwiching the given system (1.3) in between two
appropriate linear systems, which can provide upper and lower bounds for spreading speeds. In Sec-
tion 4, we show that the spreading speed interval is a singleton by employing the linear spectral
theory, squeezing techniques and the arguments modified from [21,30,31,18,26]. At the end of Sec-
tion 4, we also apply our analytic results to model (1.1) to give computational formulae of spreading
speeds.

2. Preliminaries

In this section, we introduce some notations and present preliminary results which will be used
in later sections.

Let C = BC(R,R?) be the set of all bounded and continuous functions from R to R2. Clearly, any
vectors in R? can be regarded as an element in C. For u = (u, up), v= (vi, v3) € C, we write u > v
(u > v) provided u;j(x) > vi(x) (uj(x) > vi(x)), Vi=1,2, x€ R, and u > v provided u > v but u # v.
For a constant r > 0, we define [0,7]:={ueR% 0<u<r} and [0,r]c:={ueC: 0<u® <r,
Vx € R}. It is easy to see that Cy ={u €C: u(x) >0, Vx € R} is a positive cone of C.
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We equip C with the compact open topology. Moreover, we define a norm |- |¢ by

o0

1
lulc = Z — max|u(x)

p , Yuecl,
2% x|k
k=1

where | - | denotes the usual norm in R2. It follows that (C, |- |¢) is a normed space.

Let d.(-,-) be the distance induced by the norm |- |¢. Then the topology in the metric space
(C,d.) is the same as the compact open topology in C. Besides, ([0,r]c,dc) is a complete metric

space.
For any given ¢ = (¢1, ¢2) € C, we consider the following initial value problem:

our _p, (x)azu] + D0 M 1 Fx,ur, ua)
o = D10 0= JU1, U2),
ouy

¥=g(x,u1,u2), t>0, xeR,

ui(0,x) =¢i(x), i=1,2, xeR.
Let G(t, x, y) be the Green function associated with the linear equation

our _p (x)—azu1 Do o0, xeR
= _—, > U, .
ot B %2 0%

Then Eq. (2.2) generates a linear semigroup £1(t) on BC(R, R), which is defined by

[El(t)¢1](x)=/c(t,x, N1 (y)dy, Vo1 € BCR,R), t>0, xeR.
R

It follows that Eq. (2.1) can be written as the following integral form:

t

uy(t, 5 ¢) = L1t +/€1(t — ) f (- u1(s, -5 @), uz(s, s ¢)) ds,
0
t

ux(t, ;) =2 +/g(~, ui(s, - @), ua(s, - @) ds,

0
or equivalently,

t

uct, - @) =L(t)¢ +/£(t —S)F (- u1(s, -; @), uz(s, -; ¢)) ds,

0

where [ is an identity operator and

[F@®)]®) =F(x.¢x)= ( 2. $1(%). g2 (X)) 0 1

f(X,¢1(X),¢>2(X))>’ o) = (Z](t) O>.

21)

(2.2)

(2.3)
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2.1. The well-posedness of solutions

We consider the existence, uniqueness, invariance of solutions of (2.1) in [0, M]c.

Theorem 2.1. For any initial data ¢ € [0, M]c, system (2.1) admits a unique mild solution u(t, -; ¢) defined
on [0, oo) with u(0, -; ¢) = ¢, and u(t, -; ¢) € [0, M]¢ forall t > 0.

Proof. By the mean value theorem, there exist constants «;, 8; >0, i =1, 2 such that

fGup,up) — f(x, vy, v2) = —aq (U1 —vi) + Ba(uz — va),
gx,uy,u2) — g(x, vi,v2) = B1(u1 — vi) —aa(ux — va), (2.4)

for all u, v € [0, M] with u > v. According to (2.4), for any ¢ € [0, M]¢ and any small h > 0, we have

60+ h[F($)] 0 = <¢1(X) +hf(x, ¢1(X),</>2(X))> > ((1 —ha1)¢1(x)> >0

¢2(%) +hg(x, p1(0), P2(%)) (1 —haz)g2(x)

and

— M1+ M1 +h[f(x,¢1,¢2) — f(x, My, .My,
¢(x)+h[F(¢)](x)=<¢l LM RO 9, @2) = o My, @2) 4 T (x 1"’2)]>

¢2 — Mo + Mz + h[g(x, ¢1, ¢2) — g%, ¢1, M2) + g(x, p1, M2)]
<((l—ha1)(q>1—M1)+M1+hf(x,M1,¢2))<M
S\ (1 = hao) (@2 — M) + My +hg(x, 1, M2) ) ~

Therefore, ¢ + hF(¢) € [0, M]¢c, which in turn implies that
1
hlim+ = dist(¢ + hF(¢); [0, M]c) =0, V¢ €[0, Mlc.
—0

By [22, Corollary 4] with K = [0, M]¢, S(t,s) = £(t — ), B(t,¢) = F(¢), it follows that system (2.1)
admits a unique mild solution u(t, -; ¢) on [0, co) with u(0, -; ¢) = ¢, and u(t, -; ¢) € [0, M]¢ for all
t>0. O

To establish the comparison principle for system (2.1), we recall the concept of upper and lower
solutions.

Definition 2.1. A function v(t, -) is called an upper solution (a lower solution) of (2.1) on [0, b) with
b>0if

t

v(t,-) = (<)€(t)¢+/ﬁ(t—S)F(-,V1(S, ), va(s,-))ds, Vtel0,b).
0
Lemma2.1. Let w(t, ), v(t, -) € [0, M]¢ be a pair of upper and lower solutions of (2.1) on [0, 00), respectively.
Ifw(0,-) > v(0, ), then w(t,-) > v(t,-) forall t > 0. Furthermore, if w(0, -) > v(0, -), then w(t, -) > v(t, -)
forallt > 0.

Proof. We first show that F(¢) is quasi-monotone on [0, M]¢ in the sense that

hlin(r)l+ % dist(¢ — ¢ +h[F(¢) — F(¥)]: C4) =0, (2.5)
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for all ¢, ¢ € [0, M]¢c with ¢ > . In fact, by (2.4), for any small h > 0, we have

~ 3 (1 —ha)(¢1 — ¥1)
¢ — v +h[F(p)—F)] > ((1 —hay)(¢2 — 1//2)) >0

which indicates that (2.5) is valid. Since vq := v (0, x) < w(0, X) =: wq for all x € R, we see from [22,
Corollary 5] that

0O<v(t, ) Su(t, s vo) <u(t,; wo) <w(t, ) <M, Vt=0.
Let m(t, x) = w(t, x) — v(t, x). Substituting m in (2.1) and using (2.4), we get

8m1>D(){)821111~|—D(x)8m1 aimy + Bom 8mz>,3m oom
o = 10— 0X)—~ 1my + pamy, or = Pimi —aams.

If m1(0, x) # 0 on R, by integrating, we obtain
my(t,X) > /e‘“”G(t,x, y)mi(0,y)dy >0, Vt>0,
R
which in turn yields that

t
ma(t, x) = e %2my (0, x) + / e 29 8my(s,x)ds >0, Vt >0, (2.6)
0

where G(t,x, y) is a fundamental solution of (2.3). On the other side, if m;(0, x) # 0, then we see
from (2.6) that m;(t, x) #£0, Vt > 0, x € R. Thus, we also have

t
mi (t, x) >//e"’““’”6(t—s,x, y)Bama(s, y)dyds > 0.
0 R

Again, by using (2.6), we know that my(t,x) >0, Vt>0,xeR. O
Lemma 2.2. [et i, g, h be nonnegative and continuous functions defined on [0, co). If

t t S

ii(t) gg(t)+E(t)[/a(s)ds+/H(s)([ﬁ(a)da) ds:|, vt € [0, 00),

0 0 0

then we have

t s
i(t) < g(t)+ﬁ(t)|: f (g(s)+ﬁ(s) / 28 (0 )elo 2hm dn do) dsi|, vt € [0, 00). (2.7)
0 0
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Proof. Let ¥(t) = [; ii(s)ds + Jy (s)(J; ii(0) do) ds. Then ii(t) < g(t) + h(t)¥(t) and

t
V() = i(t) —i—fl(t)/ﬁ(a)da
0

t
<EM®) +h(t) |:\7(t)+/(§(a)+fl(cr)17(a)) dai|. (2.8)
0

Set W(t) = ¥(t) + [3[8(0) + h(0)¥(0)]do. It then follows from (2.8) that
W(t) > v(t) and V' (t) < &(t) +hO)W(t). (2.9)
On the other hand, by (2.9), we get
W (t) =7 (t) + Z(t) + h(O)T(t) < 28(t) + 2h({E)W(t).

Since W(0) = 7(0) =0, it holds W(t) < f, 28(0)elo 210D 4N dr | Substituting this inequality in (2.9) and
integrating it from 0 to t leads to

t

() < / |:§(s) + h(s) / 28 (0 )els 2hm dn d0i| ds.
0

0
Hence, ii(t) < &(t) + h(t) fot[g(s) +h(s) I 28(0)els MM da1ds. 0
Let Q ()p =u(t,-; ¢) = (u1(t, -; @), uz(t, -; @)), t >0, be the solution maps generated by (2.1). Then
Q) : [0, M]c — [0, M]c satisfies that Q (0) =1 and Q(t) o Q(s) = Q (t + s) for all t,s > 0. The sub-
sequent result shows that {Q (t)}¢>0 is a continuous-time semiflow on [0, M]c.

Lemma 2.3. Q (t)¢ is continuous in (t, ¢) € [0, 00) x [0, M]¢ with respect to the compact open topology.

Proof. By Theorem 2.1, for any given ¢ € [0, M]¢c, Q (t)¢ is continuous in t € [0, co) with respect to
the compact open topology. We first prove the following two claims.

Claim 1. For any € > 0 and to > 0, there exist §(¢, tg), k (€, tg) > 0 such that for any z € R, if u®, w° €
[0, M]¢c with |u°(x) — w°(x)| <4, Vx € [z — K,z + K], then |u(t, z; u®) — u(t, z; w°)| <€, Vvt € [0, to].

By the spatial translation invariance of system (2.1), it suffices to prove the claim for the case of
z = 0. First consider the case where u°® > w°. Let v(t,x) = u(t, x; u®) — u(t, x; w°). Then Lemma 2.1
implies that v(t, x) > 0. Note that

F(x, u(t,x;u®)) — F(x, u(t, x; w°))

1
= / DyF(x,u(t, x; w®) +s[u(t, x; u®) —u(t,x; w®)]) ds - v(t, ). (2.10)
0

Then v(t, x) = (v1(t, X), v(t, X)) satisfies
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vy 9%vq vy

— =D1(X)—- + Do(¥) — +a1(t,x)vy +az(t,x)v2,
at ax2 ax

3V2

T by(t, x)vy + ba(t, x)v2,

where

1
a;(t,x) = / fus (xou(t, x; w®) + s[u(t, x; u®) —u(t, x; w°)]) ds,
0
1

bi(t,x) = / Su (%, u(t, x; wO) +s[u(t, x; u®) —u(t,x; w)])ds, i=1,2.
0

Integrating the above system, one has

t

Vit ) =6 ©v1(0,) + / €1t —9)[ar(s. Ivi(s, ) +ax(s, Hva(s. )] ds,
0
t

Va(t, ) = v2(0, Jelo 21 dn / bi(a, V10, el 220104 4 (2.11)
0

where £1(t) is defined in (2.3). After a substitution, we arrive at

t t
vi(t, ) =£1()v1(0, ~)+/€1(t—5)a1(s, JIvi(s, ) d5+/€1(t—5)az(s, 2)
0 0
x [vz(o, elo b2 dn +/b1(a, I1(a, yels b2 dn dai| ds. (212)
0

Let £2 :=[0,00) x R and define y = max{sup yep @i (t, X)|, Sup yeq bi(t, )|, i =1,2}. In view
of (2.12) and the fact that ||£1(t)|| <1, Vt > 0, we obtain

t
vi(t, ) < €1 ] vi(0, -)+a7/H£1<t—s>Hv1<s, ) ds
0

t s
+)7/||E1(t—s)|| |:V2(0, -)efs+)7/v1(0,~)e77(5“’)d0} ds
0 0

t t

t s
< v1(0, ~)+)7/V1(s, -)dS+)7/V2(0, -)e?Sds+yszw(o,-)eV'Sdads
0 0 00
t

t N

<v1(0, ) +v2(0, -)(e?f—1)+ye?t[/v1(s, ~)ds+/)7e775/v1(a,-)dads:|, vt > 0.

0 0 0
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Let fi(t) = v1(t,0), &(t) = v1(0,0) 4+ v2(0,0)(e”t — 1), h(t) = ye’t and ty > 0 be given. Using (2.7) in
Lemma 2.2, we have

t

vi(t,0) < &) + E(t)[ / (é(s) +h(s) / 28 (0)elo 2h0n dn do) ds}
0 0

t S
< E(t) + Z(Oh(t) / (1 + 2h(s) f elo 2k dn do) ds
0 0

t S
=§(t)|:1 +h(t) / (1 + 2h(s) f elo 2h(m dn do) dsi|
0 0

< &(to)(1+y0), Vtel0,to], (2.13)

where yp = h(to) fé"[l +2h(s) f; els 2k dn 41 ds. By (2.11) and (2.13), we also have

t
Va(t.0) < v3(0,0)e7 4+ 7 / Vi@, 007 do
0

<e”[v5(0,0) + g(to)(1 + y0)],  Vt €0, tol. (2.14)

So, for any € > 0, there exist (¢, tg) = m and « (e, tg) such that if v(0,x) < d:= (6, 9),
0

Vx € [—k, k], then employing (2.13) and (2.14), we obtain
u(t,0u®) —u(t,0; w°) = v(t,0) < 8e’[1+e’(1+yp)] =€, Vte[0,tol.
Now consider the case where u® % w°. Set
u° (x) = max{u’(x), w’(x)}, u®(x) =min{u’(x), w’(x)}, VxeR.
Then u(t, x; u®) <u(t, x; u°), u(t, x; w°) <u(t, x; u°), vt > 0, x € R. It turns out that
lu(t, x;u®) —u(t,x; wo)| <u(t,x;a°) —u(t,x;u°), V>0, xeR.
Repeating the above steps, we conclude that Claim 1 holds for this case.
Claim 2. For any ty > 0, Q (t)¢ is continuous in ¢ uniformly for t € [0, to].
Fix ¢ € [0, M]¢ and tp > 0. For any € > 0, according to Claim 1, there are §, ¥ such that
lut,z; ¢) —u(t,z;9)| <€/2, Vte[0,to], (2.15)

provided that |¢(x) — ¥ (x)| <8, Vze R, x € [z—k,z+ k]. Choose ki > 0 so large that Z,‘:O:kl 27KM| <
€/2 and let 8 =2~®1+5. For any ¢ € [0, M]c with dc(¢, V) < 81, we have maXy<k,+x [¢(X) —
W (x)| <20+95 = 5. 1t follows from (2.15) that

lut,z; ¢) —u(t,z; )| <€/2, Vte[0,to], z € [—kq,ki].
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Consequently, if d.(¢, V) < &1, then

kl [0.¢]

1 1
d(Q$. QOY) =D o lr)1<1|a<)l§|Lt(t,x; o) —ut. x|+ > 5 mg!u(t, X ) —u(t, x; )|

k=1 k=k1+1
o o0

e 1 1

<3 Z 7 + xMl<e,
k=1 k=k1

which shows that Claim 2 holds true.
For any t,t1 > 0 and ¢, ¢ € [0, M]¢, we have

Q@) — Qo (@) <] Q@) — Q@) + Qe (@) — Qiy ()] -

This, together with the continuity of Q:(¢) in t and Claim 2, implies that Q(¢) is continuous at
(t1,9). O

2.2. A principal eigenvalue problem

Linearizing (2.1) at the zero solution, we obtain

o _p (x)azi” + Do ML 4 £ (k. O)ily + fu, (x, O)il

ot =1 3X2 0 9% uq &, 1 uy Xy 25

3112

T = gu, (X, 0)u1 + gy, (x, 0, t>0, xeR. (2.16)

Since two off-diagonal entries of the matrix

DuF(x,0) = (ful("’ 0 fur(x, 0))

gU1 (X9 O) guz (X» O)

are positive for all x € R, we can fix an « > 0 such that the matrix D, F(x,0) + «I is strictly positive.
Let b = min{minyer{Dy F(x, 0) + al};j: 1< i, j <2}. Note that

F(x,u) = F(x,0) + Dy F(x,0) - u +o(Jul).
It then follows that for any given € € (0, 1), there exists § = (&) > 0 such that
F(x,u) > F(x,0) + DyF(x,0) - u —belu|, Vuel0,4d],
where § = (8,48) and € = (¢, €). Since |u| <u; +uy < %{(D F(x,0) +al)u}i, i=1,2, we obtain
F(x,u) > F(x,0) + D F(x,0) - u — &(DyF(x,0) + l)u, Vue€][0,8],

which is equivalent to

f&xur,uz) > (ff (%, 0) — ea)us + f5 (x,0)uz, Vu [0, 8],

g(x,u1, uz) > g5 (x, 0ug + (g5(x,0) — eaxx)uz, Vu €0, 8], (217)

with f£(x,0) := (1 — &) fu; (X, 0), g (x,0) := (1 — £)gy; (x,0), i =1,2.
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Now we consider the linear system

duy 9%uy CIT

= = D10 —5 + Do) ——+ (ff %, 0) — eat)uy + f5 (x, O)ua,

uy e .

o =& Our + (g5(x,0) — ga)uy. (2.18)

For any given u € R, letting u(t, x) = e **v(t,x) in (2.18), we see that v(t,x) = (V1(t, X), V2(t, X))
satisfies

vy 8%y vy

ot = Dl(x)ﬁ + [DO(X) - 2MD1(X)]W + [M2D1(X) — uDo(x) +a§1(x)]U1 +a§2(X)U2,
au

S = 0510V a5 (X)v, (2.19)

where af; () = f{(x,0) — ea, af,(x) = f5 (x,0), a5;(x) = g{(x,0), a5,(x) = g5(x,0) — ea. Letting
u(t, x) = e*£(x), we then have the following periodic eigenvalue problem:

D1 (x)&] (X) + [Do(x) — 2uD1(x) &1 (x) + [M2D1 (x) — Do (x) +af; (%) )& (x)
+af,(0&E(x) =2181(x), xR,

a5, (X)&1(x) + a5, )& (%) =16 (x), X€R,
E(x+L)=¢&x), VxeR,i=1,2. (2.20)

In what follows, we will add some parameters in the bracket of a value or function in order to
emphasize its dependence on these parameters. For example, we write the eigenvalue A of (2.20) as

AL, ).
Let G2 (&) = maxyeR a5, (x). Then there is xg € R such that ay;(¢) = a5, (xo).

Theorem 2.2. Assume that agz(x) = 0ap(€), Vx € Usy(xo), for some 89 > 0, where Us,(xo) := (X0 — b0,
X0 + 80). Then for any u € R, (2.20) has a geometrically simple eigenvalue X.(u, &) with a strongly positive
and L-periodic eigenfunction ¢ (x, i; €).

Proof. Without loss of generality, assume that xo € (0, L). We can further restrict §o so small that
Us, (x0) :=[xo — 80, X0 + 80] C (0, L). Then A := minxea(sfJ *0) a3, (x)a5;(x) > 0. Let u € R be given. Ac-
cording to [29, Section 2], we define a linear operator .%; by

(Z3E1) (%) = D1(0&] () + [Do(X) — 2D 1 (x)]§1 (%)

aj,(0a3; (%)

+ [/ﬂnl (X) = Do) + 0500 + =2 00

]51 (%), VA >axn(e).

Let A1 be the principal eigenvalue of the elliptic eigenvalue problem with the Dirichlet boundary
condition:

D1(0)&] (%) 4+ [Do(x) — 24D1 (%) 1 (%)

+ [P D1(%) — uDo(x) + a5, (W ]E1(X) = AE1(X), X € Usy (Xo),
§1(x0 — d0) =&1(%0 +30) =0
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with a positive eigenfunction gf(x, /; €) on Usy(xp). Set

_ M an(e) + VM — ()2 +44
. :

A

Since A > 0, we have A > w If A1 > axy(g), then

- A+ 022(8) + A1 — a22(8)
2

)\./

= A1 > ax(8);

while if A1 < azy(€), then

Vs M+ a(8) +ax(e) — M

> =a(¢).

Hence, we have 1’ > ay»(¢). It follows that

A
(L) @) = rgf () + i

—ax(e) G = (M MY

— a2 (&)

)(f(X) =1,
for all x € Us, (xo). Define a continuous function &7 (x) on [0, L] by

(), ifxe Usy(xo),

0 _
5100 = { 0, if x € [0, L1\Us, (x0).

Clearly, £7(0) = £7(L), and £7(x) can be extended to a continuous and L-periodic function on R.
It is easy to see that (Z/&7)(x) > V&7 (x), Vx € [0, L]\{xo % 8o}. It then follows that e“éf(x) is a
lower solution of the integral form of u; = .4, u subject to the L-periodic boundary condition. By |29,
Theorem 2.3 and Remark 2.3], (2.20) has a geometrically simply eigenvalue A(u, &) with a nonnegative
eigenfunction ¢(x, i; €). Using the parabolic system associated with (2.20) and the condition that
aj,(x) > 0 and aj, (x) > 0, it easily follows that ¢ (x, j1; &) is strongly positive on R. O

Theorem 2.3. Let A* be the principal eigenvalue of the eigenvalue problem with the Dirichlet boundary condi-
tion:

D1(x)&{ (x) + Do(X)&1 (x) + aj; ()1 (x) = A&1(x), x€(0,L),
£1(0)=&1(L)=0. (2.21)

Assume that A* > ayy(¢). Then for any w € R, (2.20) has a geometrically simple eigenvalue A(u, €) with a
strongly positive and L-periodic eigenfunction ¢ (x, u; €).

Proof. Let ayy(¢) =a5,(xp) for some xq € (0, L). For any given 1 € R, we consider
D1(x)&] (%) + [Do(x) — 21D 1(x)]&1 ()
+ [12D1(x) — uDo(x) + a5, () &1 (x) = 2&1(x),  x € (0, L),
§1(0) =&1(L) =0. (2.22)

Let £ (x) be the eigenfunction of (2.21) corresponding to A*. It is easy to check that e#*£](x) satis-
fies (2.22) with A = A*. The uniqueness of the principal eigenvalue of (2.22) indicates that A* is also
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a principal eigenvalue of (2.22). Let AL be the principal eigenvalue of (2.22) with (0, L) replaced by

(A L= 1), vn> 1. Since limp_ o0 Ay =A* > d22(€), we can fix an ng > 1 such that Ahy > d(e). Let

;10 (x) be the eigenfunction corresponding to A#O, and define

§00), ifxeld, L— ],

= .
0, ifx € [0, L[5 L — 55 )-
Then ¢?(x) satisfies (2.22) with 1 = A, for all x € [0, L]\{n]—o, L— nl—o}. It follows that A}y > Ah > @22 (e),

Whe(rire A’; is the principal eigenvalue of the following eigenvalue problem with periodic boundary
condition:

D1(x)&{ (0 + [Do(®) = 2uD1(0]&1 () + [1?D1(0) — Do) + 4§, (W]61(0 =210, xR,
Ex+L)=&((x), VxeR.

Let s(a5,(x)) be the spectral bound of the multiplication operator a$,, which is defined by
(@, - WX = a5, (Mu(x), Vx € R. Since kg > a2(8) = s(a5,(x)), it follows from [29, Corollary 2.4
and Remark 2.3] that (2.20) has a geometrically simple eigenvalue A(u, ) with a strongly positive
and L-periodic eigenfunction ¢(x, u; €). O

2.3. The periodic initial value problem

Let P = PC(R, R?) be the Banach space of all L-periodic and continuous functions from R to R?
with the maximum norm |- |p. Then Py ={¢ € P: ¢(x) >0, Vx € R} is a positive cone of P, and
(P, P4) is a strongly ordered Banach space. Define [0, M]p ={ueP: 0<u< M}.

Theorem 2.4. Assume that the condition in Theorem 2.2 or 2.3 holds for all small € > 0. Let u(t, x; ¢) be the
unique solution of (2.1) through ¢ and L¢ := A(0, 0). Then the following statements are valid:

(1) If o <O, then for any ¢ € [0, M]p, we have lim;_, o u(t, x; ¢) = 0 uniformly for x € R.
(2) If \o > 0 and gy, (x,u) <0, Y(x,u) € [0, L] x [0, M], then there is a unique positive L-periodic steady
state u™(x) such that for any ¢ € [0, M]p\{0}, we have lim;_, » u(t, x; ¢) = u*(x) uniformly for x € R.

Proof. (1) Since F(-,u) is strictly subhomogeneous in u and F(-,0) =0, it then follows that (see,
e.g., [35, Lemma 2.3.2])

F(x,u) <DyF(x,0)-u, VxeR, uel0, M]. (2.23)

Let ¢(x) = ¢(x,0;0) be the positive and L-periodic eigenfunction corresponding to Ao and choose
po > 0 so0 that 0 < ¢(x) < poz(x). Notice that ppe*ofz(x) is a solution of (2.16). Therefore, if A9 < 0,
we deduce from (2.23) and the comparison principle that

0<u(t,x; ¢) < poe™'¢(x), V&>0, xeR.

This implies that lim;_, o u(t, X; ¢) = 0 uniformly for x € R.

(2) By Lemma 2.1, we see that the solution map Q (t) is strongly monotone on [0, M]p. In view
of assumptions (A4) and (A5), it easily follows from the arguments in [9, Theorem 2.2] that for each
t >0, Q(¢t) is strictly subhomogeneous on [0, M]p in the sense that Q (t)(v¢) > vQ (t)¢ for all v e
(0,1) and ¢ € [0, M]p with ¢ >> 0. Under the additional assumption on g,, we can find rg < 0 such
that gy, (x, u) <ro, Y(x, u) € [0, L] x [0, M]. By similar arguments to those in [13, Lemma 4.1], we see
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that for any ¢ € [0, M]p, the forward orbit ¥ T (¢) := {Q (t)¢: t > 0} is asymptotically compact in the
sense that for any sequence t, — oo, there exists a subsequence t,, such that Q (¢, )¢ converges in P
as k — oo. Let w(¢) be the omega limit set of ¥ T(¢). It then follows that w(¢) is nonempty, compact
and invariant for the semiflow Q (t). Since limg_. o A(0, &) = A¢ > 0, we can fix a small number ¢ > 0
such that 1(0, &) > 0. Let § =38(¢e) > 0 be defined as in Section 2.2 so that (2.17) holds. Now we prove
the following two claims.

Claim 1. limsup;_, o, |Q (t)¢|p = & for all ¢ € [0, M]p\{0}.

Suppose for contradiction that limsup;_, . |Q (t)¢o|p < & for some ¢g € [0, M]p\{0}. Then there
exists tp > 0 such that u(t, x; ¢g) < := (8, 6), Vx € R, t > tg. Since u(tp, -; ¢po) > 0 in P, there exists
small p > 0 such that u(to, x; ¢g) > pe*©@&0s(x; ), ¥x € R. Note that pe*@&is(x;¢) is a solu-
tion of linear system (2.18). In view of (2.17) and the comparison principle, we have u(t, x; ¢o) >
per 08 r(x-g) Vx e R, t > tg. Letting t — oo, we see that u(t,x; ¢g) is unbounded, a contradic-
tion.

Claim 2. w(¢) C Int(Py) for all ¢ € [0, M]p\{O}.

Let ¢ € [0, M]p\{0} be given. By Claim 1, we see that the set A := {0} is an isolated invariant set
for the semiflow Q (t) and w(¢) ¢ A. Thus, the Butler-McGehee lemma (see, e.g., [6, Lemma 2.1]| and
its generalization [35, Lemma 1.2.7]) implies that w(¢) N A =@, and hence, w(¢) C [0, M]p\{0}. By
the strong monotonicity of Q (t) and the invariance of w(¢) for Q (t), it easily follows that w(¢) C
lnt(P+).

Let to > 0 be fixed. Then Q (tp) is strongly monotone and strictly subhomogeneous on [0, M]p.
Note that w(¢) is a compact and invariant set for Q (tp). It then follows from Claim 2 and [35,
Theorem 2.3.2] with K = w(¢) that Q (tp) has a fixed point u* > 0 such that w(¢) = {u*}, V¢ €
[0, M]p\{0}. Since Q (t)w(¢) = w(¢) for all t > 0, we see that u* is a positive equilibrium of the
semiflow Q (t). Consequently, the conclusion in statement (2) holds true. O

Due to the spatial heterogeneity, for any z € R, we consider the space shifted equation of (2.1):

ouq 82uy duq

—=D1(x+2)—— +Do(x +2)—— + f(x +z,u1, uz),

ot ax; X

au

8_t2 =g(X+2z,u,Uup), t>0 xeR. (2.24)

It is once again a consequence of the semigroup theory that (2.24) has a unique mild solution
u(t, x; ¢, z) with u(0, x; ¢, z) = ¢ (x) for every ¢ € [0, M]c.

Remark 2.1. Assume that the conditions in Theorem 2.4(2) hold. Then for any constant vector y €
[0, M]\{0}, we have lim;_, o u(t, x; v, z) = u*(x 4+ z) uniformly in x,z € R.

2.4. Evolution operators and principal eigenvalues

Note that for each v° € C, linear system (2.19) admits a unique mild solution v(t,-; v°) with
v(0,-) =v°, and v(t, -; v°) € C, Vt > 0. In addition, the comparison principle holds for (2.19).

Let &(t; i, &) be the solution operator of (2.19), ie, @(t; u, &)v° = v(t,; V%, 1, &), and Pp(t;
W, &) P — P be defined by @,(t; u, &) = @(t; 1, &)|p. We will now derive an alternative expression
for @ (t; i, ) when t = 1. For given v° € C and u € R, let u®(x) = e **v°(x). It then follows that

[@(t:0,e)u’](x) =e M D(t; u, &)v°](x), Vt=0, xeR, v°eC.
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Observe that for each x € R, there are bounded nonnegative measures m;;(x; y, dy) such that

2
[<1>(1;0,8)u°]i(><)=Z/g‘,’-(y)mu(x; y.dy), 1<i,j<2.
j=1p

Consequently,
CURETBISNCESS / OV (y)ymy(e y.dy). 1< j<2, (2.25)
=R

To establish the spreading speed of (2.1), certain suitable truncated operators of @(1; u, &) are used.
To see this, let x(s) : R — [0, 1] be a smooth function given by

(1 i<,
X(s)_{o, 1> 2.

So right now, by (2.25) and the compactly supported property of x (s), we can fix a positive number g,
and define #9(1; u,&):C — C as

2
_ |y — x| ..
[20(1; . £)v°];0 =D /e“(" y’vj-’(y)x< 2 )mu(x;y,dy), 1<i,j<2,
j=1p

and @5 (1; i1, €) : P — P by &5 (1: . &) = DO(1; . €)|p.
The space shifted equation of (2.19) is

v _p (x+z)32v1 +[Do(x+2) —2uD (x+z)]av1
at ! 9x2 0 #=1 dx
+ [#?D1(x +2) — uDo(x + 2) + a5 (x + 2) Jur + a5, (x + 2)va,
v,
3_t2 =a5, (X + 2)v1 + a5y (X + 2)Us. (2.26)

Let @(t; u, €, z) be the solution operator of (2.26) and @, (t; i, &,2) = @ (t; i, €, )| p. Similarly, define
®e(1; u,e,2):C—C as

2
—X—Z
[@Q(I;M,s,z)v"]i(x)=§ /el‘(X“*”u;?(y—z)X(i'y 0 l)m,-j(x+z;y,dy), (2.27)
j=1

for 1<i,j<2, and q)f;(l; n,e,2)=®°(1; i, &,z)|p. Then it is easy to check that

H(Df,’(l;u,s,z)—@I,(l;u,s,z)”P —0 asp— 00

uniformly for p in bounded sets and z € [0, L].

Let r(u, &) :=r(@p(1; u,&)) and o (Pp(1; u,€)) be the spectral radius and the spectrum of
@p(1; p, &), respectively. Then the following two results can be derived directly from [14, Theo-
rems 1.5.2 and 1.5.3], [8, Theorems 3.6 and 4.3] and [26, Proposition 3.3].
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Lemma 2.4. The principal eigenvalue A (., €) of (2.20) exists if and only if r(u, ) is a simple eigenvalue of
@, (1; 1, ) with a strongly positive eigenfunction in P, and for each ¥ (i, €) € o (@, (1; , e)\{r(u, &)},
we have |F| < (i, €). Furthermore, if L(1, ) exists, then A(u, €) = Inr(u, €).

Lemma 2.5. For each v° € Int(P),

. Yo S e v (yymij(x; y, dy)
xeR vl (%)
Yoot Jr e v (y)ymyj(x; y, dy)

<r(u, &) <sup , i=1,2.
xeR v (%)

Theorem 2.5. Let A (4, &) be the principal eigenvalue of (2.20). Then the following two statements are valid:

(1) A(u, &) is convex in (L.
(2) IfA(0, &) > O, then there exists ju* > 0 such that inf,,~.o W = ”’I‘L—*"E)

Proof. (1) By Lemma 2.4, r(u, €) is an eigenvalue of @, (1; 1, £) with a strongly positive eigenfunction
Z(x, u), which combine with (2.25) to imply

[@p(1: . £)¢1ix) _ Y R €Ty wymij(x: y, dy)

, i=1,2.
gi(x, ) Gi(x, )

r(u, &) =

Similiarly, r(fl, g) = Z?:l Jr € XNy, wymij(x; y, dy)/¢i(x, w). For given v € [0, 1] and each i, let-
ting ¢ = gi";i]’“ and using Hoélder inequality, we obtain

[re. o] [r(a, o] ™"
B [ZL Je €OV e(y, wymij(x; y,dy)]"[2§=1 Jr e’_‘("‘”fj(y,u)mu(x;y,dy)]l‘”

G 1) Ci(x, L)
2 - L(x—y) 7 1-v
ettt ”Cj(y,u)}”[e’”" ”Cj(y,u)}

g 3 ij(x; y,d
2/[ Gi(x, ) Zi(x, ) mij(x; y, dy)
=R

WA= =) F

=Z/e ; G ) mij(x; y,dy), VxeR.

=1 gi(x, )

By Lemma 2.5, we have

2 vp+A-v)alx—y) 7. (v
e Yi=1Jre iy, wymij(x; y, dy)
[r(w, ] [r(, e)] " = sup =8 _
xeR Gi(x, )
>r(vpu+ (1 =v)ia,e).
This shows that In[r(w, &)1 [r(it, €)]'™" > Inr(v+ (1 —v)ft, €). By Lemma 2.4 again, vA(u, &)+ (1 —

VA, &) =2 (v + (1 —v), €), Yv € [0, 1]. Hence, A(u, €) is convex in .
(2) Since af,(x) > 0 and ¢(x, u) > 0, we see from (2.20) that

Do(x) —2uD1(x)
s1(xu

A, €) - D1(x)Z{ (%)

o C aeop AW

1
+ uD1(x) — Do(x) + ;ail (x).
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Letting u — oo, we get M — 00 due to Dq(x) having the positive lower bound, which, together

with the convexity of A(u, s) in ¢ and lim, o M" &) — 00, leads to the conclusion. O

Let r0(w, &) := r(@f(l; W, ¢e)) and A%(u, &) :=Inr€(u, ). As a straightforward consequence of [26,
Theorem 3.1], we have the following result.

Lemma 2.6. Assume that (2.20) admits a principal eigenvalue A (i, €) for u € R, that (0, &) > 0, and that
Mute) o MWto.o) for some g > 0. Then the following statements are valid:

E w+o 0 g
(1) There exists o, > 0 such that for each ¢ > 0, and || < u* + lo, 1%(1, €) is a simple eigenvalue

of (Dp (1; i, &) with a strongly positive eigenfunction ¢€(x, u; €). Also, A2(0, &) > 0 and % <
P (T )
urtlp -
(2) Foreach o > 0o, A2 (1, €) is convex in w for || < w* + lo.
(3) Foragiven o > 0,, define

20 2.0
ut = inf{ﬂ A, e) inf A, &) }
B pe@ur+ol  H

Then we have . 0
(i) wp >0and%{f"” <2 (“E)for,ue(o ).
(ii) Foreach €, > 0, there exzsts e, > 0 such that for p € (e, , 15),
o o o

(L, A8 (ug, &)
_AfGu.e) e® |
o My

veen q. 28 (uk,e) X
(iii) limg o MZQ - (/;* &)
3. Spreading speed intervals

From now on, we always assume that the principal eigenvalue A(u, &) exists for all 4 € R and
small € > 0, A(0,0) > 0, and the conclusion in Theorem 2.4(2) holds. In this section, we first obtain a
spread speed interval [c¥ mf, SLlp] of system (2.1), and then establish its basic properties.

For convenience, for given u®, u(t,-) € C and c € R, set

liminfu®(x) = lim infu°(x), limsup u®(x) = lim supu®(x),
X——00 r——00x<r X—>00 T=>00 x>r
and
liminf u(t,x) = llmmf inf u(t, x), limsup u(t, x) =limsup sup u(t, x).
t— 00, Xxct —00 xLct t—o00, X>ct t—o00 x>ct
Let u} . := infyer u*(x) and define

Ci= [u e o, u*]C: u < ujg, liminfu(x) > 0, u(x) =0, Vx > x; for some x; € R}.
X——00
Definition 3.1 (Spreading speed interval). Let

= {c: vu® eCy, liminf [u(t, x;u®) —u*®)] = 0}

— 00, X< ct
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and

ck —{c: vu® eCy, limsup u(t,x;u"):O}.

sup —
t— 00, Xx>ct
Define

i =sup{c: ce Cprel, Chup = inf{c: ce C;‘up}.

We call [c}, cgup] as the spread speed interval of (2.1).

Let n(s) be the function defined by

1 S
s)==(1+tanh=), seR.
n(s) 2( + 2)
Note that

n'(s)=n@s)(1-n(s)) >0, seR.

Without loss of generality, we can assume that there exists a vector u~ < 0 in R2 such that f(x, u)
and g(x,u) are defined for all u € [u=,00), f(x,u”) >0 and g(x,u”) >0 for all x € R, and the
condition (A4) holds for all u € [u—, M]. It then follows that [u~, 0]¢ is positively invariant for the
semiflow {Q ()}r>0.

Lemma 3.1. Let o be given constant vectors withu~ <o~ <0<k at < uj . Then there is Co > O such that
forevery C > Cg and z € R, the following statements are valid:

(1) Let vE(t, x; 2) = u(t, x; a™, Z)n(x + Ct) + u(t, x; «F, 2)[1 — n(x + Ct)]. Then v* and v~ are upper and
lower solutions of (2.24) on [0, c0).

(2) Let wE(t, x;2) = u(t, x; a¥, z2)n(x — Ct) + u(t, x; at, 2)[1 — n(x — Ct)]. Then wt and w~ are upper
and lower solutions of (2.24) on [0, 00).

Proof. We only prove v*(t,x; z) with z=0 is an upper solution of (2.24), the proof of other state-
ments is virtually identical. We write vt (t, x) for vT(t, x; 0).

Set s=x+Ct and w(t,x) = u(t,x; ™) —u(t,x; ™). Since v (t,x) = u(t,x;a)n(s) +ut,x; ™) x
[1 —n(s)], we obtain

vy 92vT vt
—L _Dix L _ Do(x)—~ — f(x, v, vF
ot 1(x) 9x2 0(%) 3x f( 1 2)

=1'($){[C — D1(x®)(1 = 21(s)) — Do) w1 (t,X) —2D1 (X)W1} + A, (31)

with A:=nE)[f&x, ut,x;at) — f&ut, x; 0 NI+ fxut,x;a7)) — fx, v,
By using (2.10), we get

2

fxou(t.x o)) = f(xou(t,xa”))= Z fui(xou(t, X 07) +rw(t, 0))wit,x)dr, (3.2)

1
i=1 0

and
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frou(t.x;a”))— f(x.vh) = —[fxu(t.x;a”) +nEw(t,x) — f(xu(t,x;a”))]
, 1
__Z/fuz X u(t,x; o) +rnE)wt, x)nE)wt, x)dr.  (3.3)
i= 10

We obtain from (3.2) and (3.3) that

1

A= ZHWI/ [fu(xou(t.x;07) +rw(t, %) — fu, (x, u(t,x; ™) +rns)w(t, x)]dr
0
1

=n'(9)w1 /r[fu1u1 (Xv ur(t, X))W1 + fuju, (xv ur(t, X))WZ] dr
0
1

+ n’(s)WZ/r[fuzu1 (%, Tr(t, X)W1 + fupuy (x, Ur(t, X)) w2 ] dr, (3.4)
0

where u,(t, x), i;(t, x) are between u(t,x; &™) and u(t, x; ™).
Combining (3.1) with (3.4), we derive that

aV] 82 + +

v av
71 _p 1 D) L + oyt
o~ D10 —Z- = Do —— = f(x,v{, v3)

= ,7/(5)<[C —-Di(1-2n) — Do]w1 —2D1wix + w% / fupuy (%, Up)rdr

+ wq

o

[ fuyuy % up) W1+ fugu, % u)Wa + fupu, (%, i) w2 dr}.

By Remark 2.1 and a prior estimates for parabolic equations, there exist y1,)2 > 0 such that

wi(t, x) > y1 and [wix(t, x)| y, for all t > 0, x € R. Therefore there is C; > 0 such that for C > Cy,
+ + +
av’ — Dy (x) a S+ — Do(x) < — f (%, VT, v;) > 0. By the same procedure, there exists C; > 0 such that

for C > Cy, W—g(x,v1 ,v2)>0. O
Lemma 3.2. The following statements are valid:

(1) If there exists u™ C% such that

liminf [u(t,x;u®,z) —u*(x+2)]=0 uniformlyinzeR,

t—o00, xct

then ¢ < cfp.
(2) Ifc < ¢, then for every u® e Cy, we have

liminf [u(t,x;u% z) —u*(x+2)]=0 uniformlyinzeR.

t— 00, X ct
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Proof. The proof is analogous to [15, Lemma 3.4]. O

Lemma 3.3. The following statements are valid:

(1) Ifthere exists u™ e C% such that

limsup u(t,x;u™,z)=0 uniformlyinzeR,
t— 00, Xx>ct

then ¢ > cg,,.
(2) If ¢ > cgp, then for every u® € C}, we have

limsup u(t,x;u,z) =0 uniformlyinzeR.
t—00, Xx>ct

Proof. This can be proved in a similar way to [15, Lemma 3.5]. O

Theorem 3.1. [c} ., c§,, ] is a finite interval.

Proof. Let = and «™ be the given constant vectors with u~ <o~ <0< a’ < uj . Then there is
ut e C% such that

whO0,x20=a n+a[1-n®]>ut®), Vx,zeR
It follows from the comparison principle and Lemma 3.1 that
wht,x;2)=u(t,x; ™, z)n(x — Cot) + u(t,x; ™, z)[1 = n(x — Cot)]
>u(t,x;u*,z), vt>0,xz€eR.

For each C1 > Cp, the fact that n(oco) =1 implies

0< limsup u(t,x;u",z) < limsup w7 (t,x;2)
t—o00,x>Cqt t—o00,x>Cqt

= limsup u(t,x;0,z)=0.
t—o00,x>Cqt

Thus, we have

limsup u(t,x;u*,z)=0 uniformlyinzeR.
t—o00, x=>Cqt

By Lemma 3.3(1), it follows that c’;up <Cq.

Since u~ <o~ <0<k at <uf, there exists it € C} such that
v 02 =a nx+at[1-nw]<itx), Vx,zeR.
By the comparison principle and Lemma 3.1 again, we have

vt x2) =u(t,xa, 2)nx+ Cot) +u(t,x; o™, z)[1 — n(x + Cot) ]

<u(t,x;ut,z), Vt=0, x,zeR.
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Then for each C; < —Cp, the fact that n(—oo) =0, together with Remark 2.1, implies that

liminf [u(t,x;0",z) —u*(x+2)] > liminf [v7(t,x2) —u*(x+2)]
t—o00, x<Cot t—o00, x<Cat

= liminf [u(t,x;at,z) —u*(x+2)]=0,

t—00, X< Cot

for all t > 0, x,z € R. On the other side, since it « uj ; the comparison principle and Remark 2.1
give rise to

. . L~ ok . . I % —
tJég?;gEzt[u(t,x,u Z)—u (x+z)]<tjég?;2fczt[u(t,x,ulnf,z) u*(x+2)]=0

for all t > 0, x, z € R. Therefore, we obtain

liminf [u(t,x; 4%, z) —u*(x+2)]=0 uniformlyinzeR.
t—o00, X< Cot

In view of Lemma 3.2(1), ¢f; > C. So, to summarize, [c}, c;“up] is a finite interval. O

Lemma 3.4. Let ¢ € R and u® € [0, u*]¢ be given. If there exist To > 0 and 0 < §° < uj ¢ such that

liminf  u(nTo,x;u®,z) >8° uniformlyinzeR, (3.5)
n—o0, x<cnTp

then for each ¢’ <,

liminf [u(t,x;u° z) —u*(x+2)]=0 uniformlyinzeR.
t— 00, X't

Proof. First, by (3.5), there is ng € N such that

u(nTo,x;u,z) >8°/2 forn>ng, x<cnTo, z€R. (3.6)
Let 1i°(x) = 8°/2. According to Remark 2.1, for each € > 0, there exists n; > ng such that

u(t,x; % z) >u*(x+2)—€ fort >nTo, x,z€R. (3.7)

Fixing o > 1, let i€ € [0, %]C be such that @19 (x) = §°/2 for x < 0 — 1 and 2 (x) =0 for x > o. Notice
the obvious point %€ — #1° as 0 — oco. We infer from Lemma 2.3 that

u(t,0;a°,z) — u(t,0;1° z) as o — oo, uniformlyinze R. (3.8)
Hence, one concludes from (3.8) and then (3.7) that there exists g, > 1 such that for each ¢ > 0o,

u(t,0;1%,z) >u*(2) —2¢ formTo <t < (n1+1DTo, z€R. (3.9)
For given ¢’ < ¢, observe that (c — ¢’)nTg — oo as n — oo. Thus, there is n; > ny such that

(c=c)nTo > 00 +c'(n1 + DTo, forn=n;. (3.10)
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This, together with (3.6), implies that

u(nTo,s+x+c'nTo+c'T;u,2) > 0%(s),
Vx<0, T €[niTo, (11 4+ DT, n>ny, seR. (3.11)
Indeed, if s < o, then G (s) < 11°(s), and for all x <0, n1To < T < (11 +1)To, n > ny, by (3.10), we get
s+x+cnTo+c'1<0o+0+c'nTy+c' (ng +1)Tg < cnTo.
It follows from (3.6) that
u(nTo,s+x+cnTo+c'T;u°,2) >8°/2=10°(s) = u%(s).

On the other hand, if s > g,, then 9 (s) = 0. Thus, (3.11) holds true for all s € R.
Givenn>ny and n+ny)To<t<m+n1+1)Tg. Let T =t —nTy. By (3.11) and (3.9), we get

u(t,x+c't;u’,z) =u(r,x+c't;u(nTo, s u°, 2), 2)

WV

(
u(,0;u(nTo, - +x+cnTo+c'1;u%,2), z+x+'t)
u(t,0;0% (), z+x+c't)

*

>u*(z+x+c't)—2¢, Vx<O0.

Thus, we have

u(t,x;u®,2) >u*(z+x —2¢, Vx<c't,t=(m+nm)To, zeR,
which implies the desired conclusion. O
4. Spreading speeds

In this section, we first characterize spreading speeds, and then show that system (2.1) admits the
propagation features.

Theorem 4.1. There exist c% = infy-o M’l‘ O and ¢* = infy,-o Mf/j’o), being the rightward and leftward

spreading speeds of (2.1). Further, ¢ +c* > 0.

Proof. We split the proof into five steps.
Step 1. To prove that cg,, <infy-o M“ 9 Let Z(x, m) be a principal eigenfunction of (2.20) cor-

responding to A(u,0). Then pe H*~ ”)g(u,x) is a solution of (2.16) with ¢’ = A(u,0)/ and any
W, p > 0. For any u® € C}, choose p > 0 such that u® <1 := pe "*¢(u, x) <uj. It follows from the
comparison principle and (2.23) that

u(t, x;u®) <u(t,x; 1°%) < pe D X).

Hence,

limsup u(t,x;u®)=0 foreachc>c'.
t— 00, x>ct

By Lemma 3.3(1), cgyp < M" 9 for any p > 0, and hence, Coup Sinfy -0 A, 0).
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Step 2. To prove that ci"nf > inf, 50 % Choose @ > 1 such that Lemma 2.6 holds. Note that if

u® € Cy is so small that 0 < u(t,x; u°, z) <4, vt € [0, 1], x, z € R. In view of (2.17), we then get

u(t,x:u®,z) > [@(1;0,&,2u°](x) > [#°9(1; 0,&,2)u°](x), VX,zeR.

(4.1)

Here @(t; i, ¢, z) is the solution operator of (2.26) and ®9(1; u, €,2z) is the truncated operator of
®(1; 1, &,2) given in (2.27). Let r9(u, &) be the spectral radius of @5(1;u,8,0) and A%(u, &) =
Inr(u, ). By Lemma 2.6(1), r9(u, e) is an eigenvalue of @5(1;,u,£,0) with a strongly positive

eigenfunction ¢€(x, u; &) for |u| < u* +lo.
By Lemma 2.6(3)(iii), for each €; > 0, there exists o > 0 such that

)»Q(MZ,8)< Au*, )
wy

For the above €1 > 0, by Lemma 2.6(3)(ii), there is pe, > 0 such that

e(u,e)  Al(ug.e)
_ -
o M

+e1, Ve (e, 15)-
In the following, we fix u € (¢, /,LZ). In terms of Lemma 2.6(3)(i), we see that

A€
A (u, €) -0

M e) = =g

1 B[ig(z,u;s) L _ .
Pame  m i=1, 2. Define v =(vq, v2) with

o C o) —
Let K; (z, ;&) =

V(5.0 €208 (x, s &)e Msiny s —kf(x, s 8)], 0<s—kf(x pse) < T
ilo, =

0, otherwise,

where €; and y are sufficiently small positive numbers. Let tiQ be defined by

4
(V.2

(4.2)

(4.3)

(4.4)

1 Yie Ja ) 0 w072 x AZE) siny [—(y — 2) + 5 (v, s )1mij(z; y, dy)

= —tan

Yo Je 6] 0 s e r0=2 x ASE) cos y [—(y — 2) + ke (v, s )1 mij(z; ., dy)

By Lebesgue dominated convergence theorem, we have

i Q
)}1510 5 (V.2

oy _z]\ SNV [=(y=2)+] (v, 158)]
Y Jp £ (v s &) r =2y () — mij(z; y,dy)

= lim
v=0 30 e ¢l s s e = x (SE) cos y [—(y — 2) + k] (v, s €)1myj(z; v, dy)

Y Je 8 s e)e MOy (VD= (y — 2) + &7 (v, s )1z y. dy)
it Je 6] 0 15 e r0=D x Ay mi(z; y, dy)
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Yo e aple] 0 i e)e YY) (MR E) myj(z: y, dy)

re(u, £)¢f (z, i €)
e Je 8 0 e Dy (B my(z: v, dy)]

re(u, £)¢f (z, wi €)
galrtGu el @ pie)]
re(u, £)¢f (z, wi &)
_ 9A8(u, &)
==

+ /cig (z, ;&) uniformly for z € R.

Choose y > 0 so small that

v(e+I5 . o]+ |kf (v s 0)]) < and (46)
kf(z, i 8) =12 (y.2) < —Aj(u. &)+ €1, Vy,zeR, 1<i,j<2 (4.7)
Set
Vx5, ) = v(x+s— & (2, 1; &) + T2 (Y, 2), X+ 2).

(4.8)
lngs—xf)(z,u;s) < % and |y — z| < o, then by (4.6),

A

<—o0— | . 9| - ki (v, 15 )

<y—z+s5—i @ o)+ (v, ) — Kk (v, 1 €)
< A @ :
<o+ [T (v, |+ |kf (v, s )

2

Nt

14
Ify—z+s—«f(z,ue)+15(y.2) f/cf(y,u;s) belongs to [~,0) or (¥ 27”], then

siny[y—z+s—«’(z pu; ) +1°(y,2) —K]-Q(y,M;S)] <0.
Therefore, by (4.8) and then via (4.5), we always get

VI —zs.2)=vj(y—z+s— k(2 p &) + 17 (v.2).y)
> 62{9(}/ Wi S)e—u[y—z+s—lcf?(z,u;a)-&-rf’(y,z)]
= ] E) E)

xsiny[y—z+s—«f(z pu &) +18(y,2) — Kf(y, w; e)]. (4.9)
Choose ¢ sufficiently small such that

0<u(t,x;v*(:;5,2),2) <8, Vte[0,1], x,zeR.
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Let nig(z,u, Y; €)= —KiQ(z,;L; &) + ‘L’,-Q()/,Z). Then according to (4.1), (2.27) and (4.9), for 0 < s —

K,-Q(Z, uw; e) < % we obtain

ui(1,0; v*(:s5,2), 2) > [®°(1; 0, &, 2)vU*],(0)

2
=Z/v (y-1zs, Z)x(lyQ |)mij(z;y,dy)
=g

ly -zl
> ee— M+l G yiol /g T (
Z j 0

=g

xsiny[y —z+s+17 2 1, y;€) — 7 (v, 1 &) mij(z; y, dy).

By means of sin(A — B) =sin A cos B — cos Asin B, we get

5 [ o ser-ro-n(2=2)

=g

xsiny[y —z+s+n7(z 1,y €) — k7 (v, u; &) mij(z; y, dy)

—Z/Q (v, s &)e VD cosy[—(y —2) + &7 (v, s ©)]x (wg;zg mij(z; y, dy)
j=1p
x {siny[s+nl(z pu,y;e)] —cosy[s+nf(z w, y:e)tan(yz?)}

—Z/s“ (v, s &)e VD cosy[—(y —2) + &7 (v, s ©)]x (%)mu(z; y.dy)

j=1p

x siny[s —k’(z, u; &)] sec(ytf).

Thus, we obtain

ui(1,0;v*(58,2),2) > Eze_“[s+’7ig(z’“’7"e)] siny [s — KfQ(z, w; €] sec(ytig)

XZ/C (v, p; £)e =2

=g
0 ) ly — 2| )
x cosy[—(y —2) + K (s e)]x v mij(z; y, dy)
2
— el @pye) VilS: 2 .2 c(yt? fo (v, ; £)e H=2)
2z s 8) =y

x cosy [—(y —2) + &7 (v, 1: ©)]x (“’Q;Zl> mij(z; y. dy).

By (4.4), we see that
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2
. 0 . sec(yt v
lim e MM @m.yie) 2 7P 7 2 :/.{-Q(y,u;s)e n(y—2)
y=0 iz, uie =17

x cosy [—(y —2) + &7 (v, 1: ©)] (ugj) mij(z; y, dy)

— e MR IOLe (1 g) = e HAL(MEHI (L) o 1
It then follows that for 0 <s —«f(z, u; &) < %

ui(1,0; v*(55,2),2) > vi(s, 2).

By the definition of v;(s, z), it follows that the above inequality is true for all s € R. Now let k =
maxlg,-gz,zgnglcf?(z,u; ¢) and define v = (vq, v) with

5.5 Vi(Si(x), x), S<SiX) — 5 — K,
Vi(S,X) = _ _ _
’ Vis+Z+R,0, 5250 -Z &,

where s;(x) is the maximum point of v;(-,x) on R. Let

U*(x;5,2) = V(x+5— Kk (z, 1s 8) + T2 (y, 2, x + 2).

Then it is easy to verify u;(1,0; U*(-; s, 2), 2) > V;(s, z). Put 0°(x; z) = V(x, X + z). Since V(s, x) is non-
increasing in s, we obtain

ui(1,x0°¢; 2),2) =ui(1,0; 0°(- +x; 2), X + 2)

ui(1,0; 0* (s x +kf (x+ 2, w3 €) — T2 (Y X +2), X+ 2), X+ Z)

\\/

\\/

Vi(x =A% (1, &) +€1,x+2) (by(4.7))
X—28(ug, e)/ g +2€1,x+2) (by(4.3))
i(x—a(u* e)/u* +3e1,x+2) (by(4.2))

o

=00 (x— " z+8%) withc® =A(u*, e)/u* —3er.

V
<|

i

(
(
Vix+ .l x+z, w8) =8y, x+2),x+2)
vi(
(
(

WV
<|

Thus, we have

ui(2,% 0°C; 2), 2) 2 ui(1, %, 0°(- = €5 2 +¢%), 2)
=ui(1,x - 0°(s2+¢"), 2+ )
>0 (x—28%;2+2C"), VzeR.

1

By induction, we finally get
ui(n,x; 0°(;2),z) 2 0 (x —nc*; z+nc*), VzeR.

By Lemma 3.4 and then Lemma 3.2(1), ¢* < ¢, namely, A(t*, &)/u* —3€1 < Since €7 is arbitrary,

(u)

mf
we must have infy .o

< Cmf
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9 Combining steps 1 and 2, we have

Step 3. To prove that c* = inf,,.o 24

Letting &€ — 0, we see that ¢ ;= cSup =:c} =infy,.o ’W‘ ®

Step 4. To prove that ¢* =inf},.¢ w. By the change of variable w(t, x) = u(t, —x) and continue
the above procedure, we see that c¢* is the spreading speed of the resulting equation for w. Hence,

¢t = inflyo X0
Step 5. To prove that c* +c* > 0. There exist (1, u2 > 0 such that ¢} = M’l‘;] 9 and ¢* = %.

Let v =

mﬂn' Then v € (0,1) and (1 — v)uq = vup. Since A(u, 0) is convex in u, we get

A ,0 AM—u2,0
¢t = (M1 )+ (—u2,0)
1 2

1
= —[(1 — VA1, 0) + VA(—pu2, 0)]
V2

1 1
> — (1 =v)u1 —vpu2,0)=——21(0,0)>0. O
%) VU2

Theorem 4.2. Let ¢, and c* be defined as in Theorem 4.1. Then the following statements are valid:

(1) Forany c < c% and ¢’ < c*, ifu® € [0, u*]c with u® # 0, then

liminf  [u(t,x;u° z) —u*(x+2)] =0 uniformlyinzeR.
t— 00, —c't<x<ct

(2) If u® € [0, u*]c has compact support and satisfies u® (x) < uj;; for all x € R, then for each ¢ > ¢* and
¢’ > c*, imsup;_, oo xser U, X; u%, 2) = 0 and limsup;_, o x ¢ U(E, X; u%, 2) = O uniformly inz e R.

Proof. If u® € [0, u*]¢ with u® # 0, then u(t,x; u®) > 0 for any t > 0. Fix a tp > 0. Then for any
given r > 0, we have u(tg, x; u®) > miny <, u(to, x; u®) > 0 for all |x| <r. Now take u(to, x; u®) as
a new initial data and the conclusions can be obtained by using the similar arguments to those
in [26, Theorem D] except that r, may not be chosen to be independent of o. In fact, since Q (t) is
subhomogeneous, we are able to use an analogous manner to that in [21, Proposition 3.3] or in [18,
Corollary 2.16] to show that r, can be chosen to be independent of 0. O

To finish this section, we apply our analytic results to the benthic-pelagic population model (1.1).
Although the piecewise constant coefficient functions in (1.1) are not Holder continuous, one may
choose a sequence of smooth and L-periodic functions to approximate such a coefficient function. By
a limiting process, we may carry the analytic results over to the case of model (1.1). Thus, we compute
two spreading speeds by directly using the piecewise constant functions in model (1.1).

Linearizing (1.1) at the trivial solution u = 0 and recalling d, a, f, k, p are piecewise constant
functions, we obtain

92u ou
(t X =d —1—g—]+kuZ—ku1,
9x2 a 0x

3
Bfmm=mn+d—mw,xe®i)

According to (2.20), we have the following eigenvalue problem associated with (1.1):
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q
&y’ (x) — [ + ZMd]é} () + [d,u tokh- k]él (%) +k&2(x) =251(x), x€(0,L),
p&1(0) +[f —pls2(x) =162(%), x€(0,L), &) =&(L), i=12.
For convenience, we use the subscripts 1 and 2 to denote the value of the coefficient functions on
the good and bad patches, respectively, i.e., a; and a and so on. On the bad patches, the growth rate
becomes a death rate, hence f; < 0. Assume that the remaining parameters are positive and fi < p;

on the good patches. Then it is easy to check that (1.1) satisfies our assumptions (A3)-(A5). Straight-
forward calculations show that A = A(u) can be determined implicitly by the following expression:

Wt () =

where

T, = cosh<,uL + = <11 + i h )) —cosh(A1(M)l1) cosh(A2(M)(L —11))

axdy

A3() + (d2a2)> A5 (1)
2a;d3 A1 (M) A2(2)

M) = —gi +a/4 A=\ (k- g2)/d2 + ¢2/ (43 B3),

and g1, g» are defined as the values on the good and bad patches of g = l;(—ff_:i Let

— sinh(A1(W)l1) sinh(A2(W)(L —17))

’

W (1, 0) = W (=, ).

By Theorems 2.2, 2.5 and 4.1, it follows that the rightward and leftward spreading speeds of sys-
tem (1.1) can be computed as

M) o A(—p2)

“= mr T
where 1 satisfies ¥ (1, A(1)) =0 and % =infy-o M ,and w, satisfies ¥~ (w2, A(—u2)) =0
and % =inf, .o %
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