期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:269
The Navier-Stokes equations in exterior Lipschitz domains: Lp-theory
Article
Tolksdorf, Patrick1  Watanabe, Keiichi2 
[1] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55099 Mainz, Germany
[2] Waseda Univ, Grad Sch Fundamental Sci & Engn, Dept Pure & Appl Math, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, Japan
关键词: Navier-Stokes equations;    Stokes semigroup;    Lipschitz domains;    Exterior domains;    R-bounded;   
DOI  :  10.1016/j.jde.2020.04.015
来源: Elsevier
PDF
【 摘 要 】

We show that the Stokes operator defined on L-sigma(p)(Omega) for an exterior Lipschitz domain Omega subset of R-n (n >= 3) admits maximal regularity provided that p satisfies vertical bar 1/p - 1/2 vertical bar < 1/(2n) + epsilon for some epsilon > 0. In particular, we prove that the negative of the Stokes operator generates a bounded analytic semigroup on L-sigma(p)(Omega) for such p. In addition, L-p-L-q-mapping properties of the Stokes semigroup and its gradient with optimal decay estimates are obtained. This enables us to prove the existence of mild solutions to the Navier-Stokes equations in the critical space L-infinity (0, T; L-sigma(3)(Omega)) (locally in time and globally in time for small initial data). (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2020_04_015.pdf 523KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次