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Abstract

We show that the Stokes operator defined on Lp
σ (�) for an exterior Lipschitz domain � ⊂ Rn (n ≥ 3)

admits maximal regularity provided that p satisfies |1/p − 1/2| < 1/(2n) + ε for some ε > 0. In particu-
lar, we prove that the negative of the Stokes operator generates a bounded analytic semigroup on Lp

σ (�)

for such p. In addition, Lp-Lq -mapping properties of the Stokes semigroup and its gradient with optimal 
decay estimates are obtained. This enables us to prove the existence of mild solutions to the Navier–Stokes 
equations in the critical space L∞(0, T ; L3

σ (�)) (locally in time and globally in time for small initial data).
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1. Introduction

Let � be an exterior Lipschitz domain in Rn (n ≥ 3), i.e., the complement of a bounded Lip-
schitz domain. In this paper, we investigate the Stokes resolvent problem subject to homogeneous 
Dirichlet boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

λu − �u + ∇π = f in �,

div (u) = 0 in �,

u = 0 on ∂�,

(1.1)

where u = �(u1, . . . , un) : � → Cn and π : � → C are the unknown velocity field and the 
pressure, respectively. The right-hand side f is supposed to be divergence-free and Lp-integrable 
for an appropriate number 1 < p < ∞ and the resolvent parameter λ is supposed to be contained 
in a sector 	θ := {z ∈ C \ {0}| |arg(z)| < θ} with θ ∈ (0, π).

In the case of bounded Lipschitz domains, resolvent bounds were proven by Shen [26] for 
numbers p satisfying the condition

∣∣∣ 1

p
− 1

2

∣∣∣ <
1

2n
+ ε, (1.2)

where ε > 0 is a number that only depends on the dimension n, the opening angle θ , and quan-
tities describing the Lipschitz geometry. A corollary of Shen’s result is that the negative of the 
Stokes operator generates a bounded analytic semigroup. This was an affirmative answer to a 
problem posed by Taylor in [29]. Recently, the study of the Stokes operator on bounded Lipschitz 
domains was continued by Kunstmann and Weis [22] and the first author of this article [30,31]. 
In [22], the property of maximal regularity and the boundedness of the H∞-calculus were estab-
lished yielding a short proof to reveal the domain of the square root of the Stokes operator as 
W1,p

0,σ (�), see [30].
The purpose of this paper is to continue the study of the Stokes operator in the case of exterior 

Lipschitz domains �. If � has a connected boundary, the existence of the Helmholtz decompo-
sition was proven by Lang and Méndez in [23]. More precisely, Lang and Méndez proved that 
the Helmholtz projection, i.e., the orthogonal projection P of L2(�; Cn) onto L2

σ (�), defines 
a bounded projection from Lp(�; Cn) onto Lp

σ (�) for p ∈ (3/2, 3). Here and below, Lp
σ (�)

denotes the closure of

C∞
c,σ (�) := {ϕ ∈ C∞

c (�;Cn) | div (ϕ) = 0}

in Lp(�; Cn). As we will see in Subsection 2.1 — and this will be crucial for the whole proof 
— a short analysis of the proof of Lang and Méndez shows the validity of this result for p ∈
(3/2 − ε, 3 + ε) and some ε > 0. We will investigate the Stokes operator, which is defined on 
L2

σ (�) by using a sesquilinear form, see [25, Ch. 4]. On Lp
σ (�) for 1 < p < ∞, the Stokes 

operator Ap is defined in two steps. First, take the part of A2 in Lp
σ (�), i.e.,

D(A2|Lp
σ
) := {u ∈D(A2) ∩ Lp

σ (�) | A2u ∈ Lp
σ (�)}
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and A2|Lp
σ
u is given by A2u for u in its domain. Notice that A2|Lp

σ
is densely defined since 

C∞
c,σ (�) ⊂ D(A2|Lp

σ
) and that it is closable. In the second step, we define Ap to be the closure of 

A2|Lp
σ

in Lp
σ (�).

The first main result of this article is the following theorem, which includes an affirmative 
answer to Taylor’s conjecture [29] in the case of exterior Lipschitz domains.

Theorem 1.1. Let � be an exterior Lipschitz domain in Rn (n ≥ 3). Then there exists ε > 0 such 
that for all numbers p that satisfy (1.2) the Stokes operator Ap is closed and densely defined, its 
domain continuously embeds into W1,p

0,σ (�), and −Ap generates a bounded analytic semigroup 
(T (t))t≥0 on Lp

σ (�). Furthermore, for all 1 < p ≤ q < ∞ that both satisfy (1.2) the semigroup 
T (t) maps for t > 0 the space Lp

σ (�) continuously into Lq
σ (�). Moreover, there exists a constant 

C > 0 such that

‖T (t)f ‖Lq
σ (�) ≤ Ct

− n
2 ( 1

p
− 1

q
)‖f ‖Lp

σ (�) (t > 0, f ∈ Lp
σ (�)). (1.3)

If p and q satisfy additionally p ≤ 2 and q < n there exists a constant C > 0 such that

‖∇T (t)f ‖
Lq (�;Cn2

)
≤ Ct

− 1
2 − n

2 ( 1
p

− 1
q
)‖f ‖Lp

σ (�) (t > 0, f ∈ Lp
σ (�)). (1.4)

To state the second main result consider the Cauchy problem

{
∂tu + Apu = f in (0,∞) × �,

u(0) = u0 in �.
(1.5)

Given s ∈ (1, ∞), the Stokes operator Ap is said to admit maximal Ls-regularity if there exists 
a constant C > 0 such that for all u0 in the real interpolation space (Lp

σ (�), D(Ap))1−1/s,s and 
for all f ∈ Ls(0, ∞; Lp

σ (�)) the system (1.5) has a unique solution u, that is almost everywhere 
differentiable in time, that satisfies u(t) ∈D(Ap) for almost every t > 0, and

‖∂tu‖Ls (0,∞;Lp
σ (�)) + ‖Apu‖Ls (0,∞;Lp

σ (�)) ≤ C
(‖f ‖Lp

σ (�) + ‖u0‖(Lp
σ (�),D(Ap))1−1/s,s

)
.

It is well-known, see [4,5], that maximal Ls -regularity is independent of s and will thus be called 
maximal regularity. We have the following theorem.

Theorem 1.2. Let � be an exterior Lipschitz domain in Rn (n ≥ 3). Then there exists ε > 0 such 
that for all numbers p that satisfy (1.2) the Stokes operator Ap has maximal regularity.

Our last main result concerns the existence of mild solutions to the three-dimensional Navier–
Stokes equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu − �u + (u · ∇)u + ∇π = 0 in (0, T ) × �,

div (u) = 0 in (0, T ) × �,

u = 0 on (0, T ) × ∂�,

u(0) = a in �.

(1.6)
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Given a ∈ Lp
σ (�), we say that a continuous function u ∈ C([0, T ); Lp

σ (�)) is a mild solution 
to (1.6) if u(0) = a and if

u(t) = T (t)a −
t∫

0

T (t − s)Pdiv (u(s) ⊗ u(s)) ds (0 < t < T ).

Relying on Theorem 1.1, we obtain the following theorem.

Theorem 1.3. Let � ⊂ R3 be an exterior Lipschitz domain, ε > 0 be as in Theorem 1.1, and 
3 ≤ r < min{3 + ε, 4}. For a ∈ Lr

σ (�) the following statements are valid.

(1) There exists a number T0 > 0 and a mild solution u to (1.6) on [0, T0) that satisfies for all p
with r ≤ p < min{3 + ε, 4}

t �→ t
3
2 ( 1

r
− 1

p
)
u(t) ∈ BC([0, T0);Lp

σ (�)) and ‖u(t) − a‖Lr
σ (�) → 0 as t ↘ 0.

Moreover, if p > r , then

t
3
2 ( 1

r
− 1

p
)‖u(t)‖Lp

σ (�) → 0 as t ↘ 0.

(2) If r > 3, there exists a constant C > 0, depending only on r , p, and the constants in the 
estimates in Theorem 1.1, such that

T0 ≥ C‖a‖− 2r
r−3

Lr
σ (�).

(3) For all 3 ≤ p < min{3 + ε, 4} there are positive constants C1, C2 > 0, depending only on p
and the constants in the estimates in Theorem 1.1, such that if ‖a‖L3

σ (�) < C1, the solution 
obtained in (1) is global in time, i.e., T0 = ∞. Moreover, it satisfies the estimate

‖u(t)‖Lp
σ (�) ≤ C2t

− 3
2 ( 1

3 − 1
p

)
(0 < t < ∞).

Concerning the uniqueness in Theorem 1.3 we refer to the weak-strong uniqueness result of 
Kozono [21, Thm. 2], which is also valid in three dimensional exterior Lipschitz domains.

The proofs of Theorems 1.1 and 1.2 rely on the investigation of the Stokes resolvent prob-
lem (1.1). More precisely, standard semigroup theory implies that the bounded analyticity of the 
Stokes semigroup follows, once it is shown that for some θ ∈ (π/2, π) the sector 	θ is contained 
in the resolvent set ρ(−Ap) of −Ap and once the resolvent satisfies the bound

‖λ(λ + Ap)−1f ‖Lp
σ (�) ≤ C‖f ‖Lp

σ (�) (λ ∈ 	θ,f ∈ Lp
σ (�)) (1.7)

with a constant C > 0 independent of u, f , and λ. To achieve this inequality for large values of λ, 
we follow the approach of Geissert et al. [10] and show that the solution to the resolvent problem 
in an exterior domain is essentially a perturbation of the sum of solutions to a problem on the 
whole space and to a problem on a bounded Lipschitz domain with appropriately chosen data. A 
crucial point in this approach is to prove decay with respect to the resolvent parameter λ of the 
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Lp-norm of the pressure that appears in the resolvent problem on a bounded Lipschitz domain. 
The main part of this paper deals, however, with the analysis of the Stokes resolvent estimate for 
small values of λ. Here, a refined analysis based on Fredholm theory is performed and resembles 
to some extend to Iwashita’s proof [17] of Lp-Lq -estimates of the Stokes semigroup on smooth 
exterior domains. The main motivation to follow our strategy to prove the resolvent bounds (1.7)
is to obtain a proof that works literally for the maximal regularity property of Ap as well.

To prove the maximal regularity property of Ap a randomized version of the resolvent esti-
mate (1.7) is required. As this is in fact equivalent to boundedness properties in vector-valued 
Lebesgue spaces, see Remark 2.8 below, existing proofs [3,13,2,7] of resolvent estimates that 
rely on a contradiction argument do not work for the maximal regularity property, due to the lack 
of compact embeddings for the vector-valued Lebesgue spaces under consideration. The first 
proof of the maximal regularity property on the finite time interval (0, T ) on smooth exterior do-
mains was given by Solonnikov [28] and the first proof on the infinite time interval (0, ∞) was 
given by Giga and Sohr in the two papers [13,14]. The latter relies on the property of bounded 
imaginary powers and the Dore–Venni theorem and differs completely from our approach.

The rest of this paper is organized as follows: In Section 2 we introduce some notation and 
important preliminary results. In Section 3, we discuss properties of solutions to the Stokes re-
solvent problem on the whole space and on bounded Lipschitz domains. In Section 4 we are 
concerned with the decay estimate of the pressure on bounded Lipschitz domains with respect to 
the resolvent parameter λ. In Section 5 we deal with the proofs of Theorems 1.1, 1.2, and 1.3.

2. Preliminaries

In the whole article the space dimension n ∈ N satisfies n ≥ 3. Let 
 ⊂ Rn be an open set 
and 1 < p < ∞. As was already described in the introduction, we denote by Lp

σ (
) and by 
W1,p

0,σ (
) the closure of C∞
c,σ (
) in the respective norms. For a Banach space X, we denote by 

Lp(
; X) the usual Bochner–Lebesgue space and by C([0, T ); X) and BC([0, T ); X) the spaces 
of continuous and bounded and continuous functions on the interval [0, T ), respectively. If the 
integrability conditions of functions in Sobolev spaces hold only on compact subsets of 
, then 
the space will be attached with the subscript loc. For s > 0 and k ∈ N , the standard Bessel 
potential spaces are denoted by Hs,p(
; Ck). The Hölder conjugate exponent of p is denoted by 
p′. By C > 0 we will often denote a generic constant that does not depend on the quantities at 
stake.

In the following, we introduce the notion of exterior Lipschitz domains that is considered in 
this paper.

Definition 2.1. An exterior Lipschitz domain � ⊂Rn is the complement of a bounded Lipschitz 
domain D ⊂ Rn, i.e., � := Rn \ D.

A bounded Lipschitz domain D ⊂ Rn is a bounded, open, and connected set that satisfies 
the following condition. For each x0 ∈ ∂D, there exists a Lipschitz function ζ : Rn−1 → R, a 
coordinate system (x′, xn), and a radius r > 0 such that

Br(x0) ∩ D = {(x′, xn) ∈ Rn | xn > ζ(x′)} ∩ Br(x0),

Br(x0) ∩ ∂D = {(x′, xn) ∈ Rn | xn = ζ(x′)} ∩ Br(x0),

where Br(x0) denotes the ball with radius r centered at x0 and x′ := (x1, . . . , xn−1).
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Remark 2.2. Notice that the definition of exterior Lipschitz domains stated above excludes the 
presence of holes inside the exterior domain. The exact reason for this technical assumption 
is pinpointed to the discussion of the Helmholtz projection on exterior Lipschitz domains in 
Section 2.1. More precisely, this assumption comes from the fact that Lang and Méndez resolved 
in [23, Thm. 5.8] only the Neumann problem on exterior Lipschitz domains with connected
boundary. However, it should be possible to add holes by adapting the methods of [24]. Notice 
that the rest of this paper works perfectly also with holes appearing in the exterior domain.

2.1. A digression on the Helmholtz projection

For a domain 
 ⊂ Rn the Helmholtz projection P2,
 on L2(
; Cd) is the orthogonal pro-
jection onto L2

σ (
). It is well-known that the Helmholtz projection induces the orthogonal 
decomposition

L2(
;Cn) = L2
σ (
) ⊕ G2(
),

where for 1 < p < ∞

Gp(
) := {∇g ∈ Lp(
;Cn) | g ∈ Lp

loc(
)}.
Thus, for 1 < p < ∞, we say that the Helmholtz decomposition of Lp(
; Cn) exists, if an 
algebraic and topological decomposition of the form

Lp(
;Cn) = Lp
σ (
) ⊕ Gp(
) (2.1)

exists. The Helmholtz projection Pp,
 on Lp(
; Cn) is then defined as the projection of 
Lp(
; Cn) onto Lp

σ (
). In the case 
 = Rn, it is well-known that the Helmholtz decomposi-
tion exists for all 1 < p < ∞, see, e.g., Galdi [8, Thm. III.1.2]. In this case, the projection can be 
written as

Pp,Rn := F−1
[
1 − ξ ⊗ ξ

|ξ |2
]
F , (2.2)

where F denotes the Fourier transform and F−1 its inverse.
If 
 = D, where D ⊂ Rn denotes a bounded Lipschitz domain, then it is shown by Fabes, 

Méndez, and Mitrea [6], that there exists ε = ε(D) > 0 such that the Helmholtz decomposition 
of Lp(D; Cn) exists if

∣∣∣ 1

p
− 1

2

∣∣∣ <
1

6
+ ε. (2.3)

It is also shown in [6, Thm. 12.2] that (2.3) is sharp.
If 
 = �, where � ⊂ Rn is an exterior Lipschitz domain with connected boundary, it was 

proven by Lang and Méndez [23, Thm. 6.1], that the Helmholtz decomposition of Lp(�; Cn)

exists for all p that satisfy

∣∣∣ 1

p
− 1

2

∣∣∣ < min
{1

6
+ ε,

1

2
− 1

n

}
.
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This is a fatal fact as in three dimensions this condition exhibits only the interval 3/2 < p < 3
while it is crucial for the existence theory of the Navier–Stokes equations in the critical space 
L∞(0, ∞; L3(�)) to have information for p in the interval [3, 3 + ε), cf., [20,12,11,30,31] for 
the cases of the whole space and bounded smooth/Lipschitz domains.

In the following, we review the existence proof of Lang and Méndez and point out a slight 
modification in order to recover the interval (2.3) for exterior Lipschitz domains � with con-
nected boundary. (In fact, we review the proof presented in [6] since this proof was left out by 
Lang and Méndez.) Notice that

Lp
σ (�) = {u ∈ Lp(�;Cn) | div (u) = 0 in �,ν · u = 0 on ∂�}, (2.4)

where ν denotes the outward unit vector field to ∂�, see [8, Thm. III.2.3]. Notice that for u ∈
Lp(�; Cn) with div (u) ∈ Lp(�) the expression ν · u is regarded as an element in the Besov 
space B−1/p

p,p (∂�) and is defined by integration by parts

〈ν · u,ϕ〉
B−1/p

p,p ,B1/p

p′,p′
=

∫
�

div (u)Eϕ dx +
∫
�

u · ∇Eϕ dx (ϕ ∈ B1/p

p′,p′(∂�)). (2.5)

In this formula, E denotes an extension operator that maps B1/p

p′,p′(∂�) boundedly into W1,p(�). 
For a construction of E, see [18, Ch. VII]. Notice that ν · u is independent of the respective 
extension Eϕ, see [23, Lem. 5.5].

To prove the existence of the Helmholtz decomposition, let u ∈ L2(�; Cn) ∩ Lp(�; Cn). Let 
��(div (u)) denote the Newton potential of div (u) extended by zero to Rn. Choose a function 
ψ that solves the Neumann problem

⎧⎪⎪⎨
⎪⎪⎩

�ψ = 0 in �

ν · ∇ψ = h on ∂�

∇ψ ∈ Lp(�;Cn),

(Neu)

with h := ν · (u − ∇��(div (u))). Then one argues that the equality

P2,�u = u − ∇��(div (u)) − ∇ψ

holds and it is shown by Lang and Méndez that for 3/2 < p < 3 the right-hand side gives rise to 
Lp-boundedness estimates. These estimates in turn follow from

‖∇ψ‖Lp(�;Cn) ≤ C‖h‖
B−1/p

p,p (∂�)
and ‖∇��(div (u))‖Lp(�;Cn) ≤ C‖u‖Lp(�;Cn).

While the estimate on the left-hand side is valid for all p that satisfy (2.3) by [23, Thm. 5.8], 
the estimate on the right-hand side is valid for all p that satisfy n/(n − 1) < p < n by [23, 
Cor. 3.3].

To get rid of the condition n/(n − 1) < p < n, we replace in the definition of h the term 
∇��div (u) by F−1ξ ⊗ ξ |ξ |−2FU , where U denotes the extension of u to Rn by zero. Thus, 
by virtue of (2.2), let h be given by h := ν · (Pp,RnU)|∂�. Since the divergence of Pp,RnU is 
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clearly an Lp-function, h is well-defined as an element in B−1/p
p,p (∂�) and its norm is estimated 

by virtue of (2.5) as

‖h‖
B−1/p

p,p (∂�)
≤ sup

ϕ

∣∣∣ ∫
�

Pp,RnU · ∇Eϕ dx

∣∣∣ ≤ C‖u‖Lp(�;Cn).

Here the supremum is taken over all functions ϕ ∈ B1/p

p′,p′(∂�) with norm less or equal to one and 
C > 0 is the product of the boundedness constants of the Helmholtz projection Pp,Rn and of the 

extension operator E : B1/p

p′,p′(∂�) → W1,p′
(�).

By virtue of [23, Thm. 5.8] there exists a unique function ψ that satisfies (Neu) whenever p
satisfies (2.3). Now, we show the equality

P2,�u = (Pp,RnU)|� − ∇ψ. (2.6)

Since by assumption u lies in L2(�; Cn) ∩ Lp(�; Cn) it holds Pp,RnU = P2,RnU . Furthermore, 
if ∇g ∈ G2(Rn) with U = P2,RnU + ∇g, then

u = (Pp,RnU)|� + ∇g|� ⇔ u = (Pp,RnU)|� − ∇ψ + ∇(g|� + ψ).

Notice that ∇(g|� + ψ) ∈ G2(�), that (Pp,RnU)|� − ∇ψ is divergence free, and that its normal 
trace vanishes by the construction of ψ . By (2.4) it follows that (Pp,RnU)|� − ∇ψ ∈ L2

σ (�) and 
by the uniqueness of the Helmholtz decomposition, it follows the equality in (2.6).

This proves already the existence of the Helmholtz decomposition on Lp(�; Cn) for all p
subject to (2.3), but only if ∂� is connected.

To use this result to obtain the Helmholtz decomposition for exterior domains subject to Def-
inition 2.1 proceed as follows. Decompose � into its connected components

� = �0 ∪
N⋃

k=1

�k,

where �0 is the unbounded connected component and �k (k = 1, . . . , N) are bounded Lipschitz 
domains. Thus, by [6, Thm. 11.1], there exists ε > 0 such that the Helmholtz projection Pp,�k

is bounded on Lp(�k; Cn) for all p subject to (2.3) and k = 1, . . . , N . To define the Helmholtz 
projection on �, define

[Pp,�f ](x) := [Pp,�k
Rkf ](x) (x ∈ �k, k = 0, . . . ,N,f ∈ Lp(�;Cn)),

where Rk denotes the restriction operator of functions on � to �k .
The discussion of this section leads to the following proposition on the existence of the 

Helmholtz decomposition on exterior Lipschitz domains.

Proposition 2.3. Let � ⊂Rn be an exterior Lipschitz domain and p be subject to (2.3). Then the 
Helmholtz decomposition (2.1) exists.
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2.2. Maximal regularity

Recall the definition of maximal regularity below (1.5) and recall that given θ ∈ (0, π) the 
sector 	θ is given by 	θ := {z ∈ C \ {0} | |arg(z)| < θ}. Clearly, the definition of maximal 
regularity can be generalized to a closed operator A :D(A) ⊂ X → X on a Banach space X such 
that −A generates a bounded analytic semigroup on X. In this case, there exists an angle θ ∈
(π/2, π) such that 	θ ⊂ ρ(−A). The following characterization is due to Weis [33, Thm. 4.2].

Proposition 2.4. Let X be a space of type UMD and let −A be the generator of a bounded 
analytic semigroup on X. Then A has maximal regularity if and only if there exists θ ∈ (π/2, π)

such that {λ(λ +A)−1}λ∈	θ is R-bounded in L(X).

It is well-known that Lp-spaces for 1 < p < ∞ are of type UMD. Moreover, all closed sub-
spaces of UMD-spaces are of type UMD. As a consequence, Lp

σ (
) is a UMD-space for all 
measurable sets 
 ⊂Rn. The definition of R-bounded families of operators reads as follows.

Definition 2.5. Let X and Y be Banach spaces. A family of operators T ⊂ L(X, Y) is said to be 
R-bounded if there exists a positive constant C > 0 such that for any N ∈ N , Tj ∈ T , xj ∈ X

(j = 1, . . . , N) the inequality

∥∥∥ N∑
j=1

rj (·)Tj xj

∥∥∥
L2(0,1;Y)

≤ C

∥∥∥ N∑
j=1

rj (·)xj

∥∥∥
L2(0,1;X)

(2.7)

holds. Here, rj (t) := sgn(sin(2jπt)) are the Rademacher-functions. The infimum over all con-
stants C > 0 such that (2.7) holds is said to be the R-bound of T and will be denoted by 
RX→Y {T }. If X = Y we simply write RX{T }.

Remark 2.6. The following facts follow directly from Definition 2.5: If S ⊂ L(Z, Y) and T ⊂
L(X, Z) are R-bounded families of operators, then

ST := {ST : S ∈ S and T ∈ T } ⊂ L(X,Y )

is R-bounded and one has

RX→Y (ST ) ≤ RZ→Y (S)RX→Z(T ).

Similarly, if S, T ⊂ L(X, Y) are R-bounded, then

S + T := {S + T : S ∈ S and T ∈ T } ⊂ L(X,Y )

is R-bounded with

RX→Y (S + T ) ≤ RX→Y (S) +RX→Y (T ).

Remark 2.7. Notice that R-boundedness of a family of operators implies its uniform bound-
edness. If X and Y are Hilbert spaces, then R-boundedness is equivalent to uniform bounded-
ness [5, Rem. 3.2].
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Remark 2.8. Let 1 < p, q < ∞, k, m ∈ N , and 
 ⊂ Rn be measurable. It is well-known, see [5, 
Rem. 3.2], that there exists a constant C > 0 such that for all N ∈N and fj ∈ Lp(
; Ck) it holds

C−1
∥∥∥ N∑

j=1

rj (·)fj

∥∥∥
L2(0,1;Lp(
;Ck))

≤
∥∥∥[ N∑

j=1

|fj |2
]1/2∥∥∥

Lp(
)
≤ C

∥∥∥ N∑
j=1

rj (·)fj

∥∥∥
L2(0,1;Lp(
;Ck))

.

(2.8)

Thus, R-boundedness of an operator family T ⊂ L(Lp(
; Ck), Lq(
; Cm)) is equivalent to the 
validity of square function estimates of the following form. Namely, there exists a constant C > 0
such that for all N ∈ N , Tj ∈ T , and fj ∈ Lp(
; Ck) it holds

∥∥∥[ N∑
j=1

|Tjfj |2
]1/2∥∥∥

Lq (
)
≤ C

∥∥∥[ N∑
j=1

|fj |2
]1/2∥∥∥

Lp(
)
.

Notice further that this is equivalent to boundedness of the family

S :={(T1, . . . , TN ,0, . . . ) | N ∈N, Tj ∈ T for 1 ≤ j ≤ N}
⊂ L(Lp(
;�2(Ck)),Lq(
;�2(Cm))).

Here, �2(Cl ) denotes the space of square summable sequences that take values in Cl for 
l ∈ N . Moreover, (T1, . . . , TN, 0, . . . ) acts componentwise on an element f = (fj )j∈N ∈
Lp(
; �2(Ck)).

For further reference, we record the contraction principle of Kahane, see, e.g., [5, Lem. 3.5].

Proposition 2.9. Let X be a Banach space, N ∈ N , xj ∈ X, and αj , βj ∈C such that |αj | ≤ |βj |
(j = 1, . . . , N). Then

∥∥∥ N∑
j=1

rj (·)αj xj

∥∥∥
L2(0,1;X)

≤ 2
∥∥∥ N∑

j=1

rj (·)βj xj

∥∥∥
L2(0,1;X)

.

3. Properties of the Stokes operators on the whole space and on bounded Lipschitz 
domains

In this section we are going to present important properties of the Stokes resolvent problems 
on the whole space and on bounded Lipschitz domains.

3.1. The Stokes operator on the whole space

The Stokes operator on Lp
σ (Rn) is defined as

Ap,Rnu := −Pp,Rn�p,Rnu for u ∈D(Ap,Rn) := W2,p(Rn;Cn) ∩ Lp
σ (Rn).
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By the very definition it is clear that Pp,Rn and �p,Rn commute so that Ap,Rnu = −�p,Rnu is 
valid for u ∈ D(Ap,Rn). Let θ ∈ (0, π). Then the resolvent problem for the Stokes operator with 
general right-hand side f ∈ Lp(Rn; Cn)

{
λu − �u + ∇π = f in Rn

div (u) = 0 in Rn
(3.1)

can be solved as follows: First, decompose f by means of (2.1) as f = Pp,Rnf + ∇g. Then 
the solutions to the resolvent problem are given by u := (λ − �p,Rn)−1Pp,Rnf and π := g. By 
virtue of [27, Sec. 3] we have the following proposition.

Proposition 3.1. Let 1 < p < ∞ and θ ∈ (0, π). Then for all f ∈ Lp(Rn; Cn) and all λ ∈ 	θ

the resolvent problem (3.1) has a unique solution (u, π) in D(Ap,Rn) × Gp(Rn) (with π being 
unique up to an additional constant). The function u is given by u = (λ − �p,Rn)−1Pp,Rnf and 
π is given by π = g, where g satisfies f = Pp,Rnf + ∇g. Moreover, there exists a constant 
C > 0 such that

RLp(Rn;Cn)→Lp
σ (Rn)

{
λ(λ + Ap,Rn)−1Pp,Rn | λ ∈ 	θ

} ≤ C

R
Lp(Rn;Cn)→Lp(Rn;Cn2

)

{|λ|1/2∇(λ + Ap,Rn)−1Pp,Rn | λ ∈ 	θ

} ≤ C

R
Lp(Rn;Cn)→Lp(Rn;Cn3

)

{∇2(λ + Ap,Rn)−1Pp,Rn | λ ∈ 	θ

} ≤ C.

3.2. The Stokes operator on bounded domains

Let D ⊂ Rn be a bounded Lipschitz domain. As in [26], we define for 1 < p < ∞ the Stokes 
operator Ap,D to be

Ap,Du := −�u + ∇π,

for u ∈ D(Ap,D) := {u ∈ W1,p
0,σ (D) | ∃π ∈ Lp(D) with − �u + ∇π ∈ Lp

σ (D)}.

Here, the relation −�u + ∇π ∈ Lp
σ (D) is understood in the sense of distributions. Notice that 

due to the Lipschitz boundary one can in general not expect that u ∈ W2,p(D; Cn) and π ∈
W1,p(D) holds for u ∈ D(Ap,D). However, u ∈ W2,p

loc (D; Cn) and π ∈ W1,p

loc (D) holds by inner 
regularity [8, Thm. IV.4.1]. We summarize useful properties, extending the seminal paper of 
Shen [26]. These statements can be found in [22, Prop. 13], [31, Thm. 5.2.24], and [30, Thm. 1.1].

Proposition 3.2. Let D be a bounded Lipschitz domain in Rn and θ ∈ (0, π). Then there exists 
a positive constant ε > 0 depending only on n, θ , and the Lipschitz geometry of D such that for 
all p ∈ (1, ∞) satisfying

∣∣∣ 1

p
− 1

2

∣∣∣ <
1

2n
+ ε, (3.2)
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it holds 	θ ⊂ ρ(−Ap,D) and there exists a constant C > 0 such that

RLp(D;Cn)→Lp
σ (D)

{
λ(λ + Ap,D)−1Pp,D | λ ∈ 	θ

} ≤ C.

Moreover, for all these p it holds D(A
1/2
p,D) = W1,p

0,σ (D) and there exists a constant C > 0 such 
that

‖∇u‖
Lp(D;Cn2

)
≤ C‖A1/2

p,Du‖Lp
σ (D) (u ∈D(A

1/2
p,D)). (3.3)

A direct consequence of this proposition is the following lemma.

Lemma 3.3. Let D be a bounded Lipschitz domain in Rn and let p ∈ (1, ∞) satisfy (3.2). Then 
the following estimates hold: For all θ ∈ (0, π), α ∈ (0, 1), and β ∈ [0, 1/2] there exists C > 0
such that

RLp(D;Cn)→Lp
σ (D)

{|λ|αA1−α
p,D (λ + Ap,D)−1Pp,D | λ ∈ 	θ

} ≤ C, (3.4)

R
Lp(D;Cn)→Lp(D;Cn2

)

{|λ|β∇(λ + Ap,D)−1Pp,D | λ ∈ 	θ

} ≤ C. (3.5)

Proof. First of all, notice that (3.4) follows by combining Proposition 3.2 with [16, Ex. 10.3.5]. 
To prove (3.5) let N ∈ N , λj ∈ 	θ , and fj ∈ Lp(D; Cn) (1 ≤ j ≤ N). Applying estimate (3.3) to 
the function u := ∑N

j=1 rj (t)|λj |β(λj + Ap,D)−1Pp,Dfj for 0 < t < 1 followed by the bound-

edness of Aβ−1/2
p,D and (3.4) with α = β ∈ [0, 1/2] delivers

∥∥∥ N∑
j=1

rj (·)|λj |β∇(λj + Ap,D)−1Pp,Dfj

∥∥∥
L2(0,1;Lp(D;Cn2

))

≤ C

∥∥∥ N∑
j=1

rj (·)|λj |βA
1/2
p,D(λj + Ap,D)−1Pp,Dfj

∥∥∥
L2(0,1;Lp

σ (D))

≤ C

∥∥∥ N∑
j=1

rj (·)fj

∥∥∥
L2(0,1;Lp(D;Cn))

. �

3.3. R-bounded Lp-Lq -estimates of the Stokes resolvent

In this section, we are going to derive the validity of R-bounded Lp-Lq -estimates for the 
Stokes resolvent on the whole space and on bounded Lipschitz domains. To this end, we employ 
the following abstract version of Stein’s interpolation theorem, which is due to Voigt [32].

Proposition 3.4. Let (X0, X1) and (Y0, Y1) be interpolation couples, let X be dense in X0 ∩ X1
with respect to the intersection space norm, and let S := {w ∈ C | 0 ≤ Re(w) ≤ 1}. If (T (z))z∈S

is a family of linear mappings T (z) : X → Y0 + Y1 with the following properties:

(1) For all x ∈ X the function T (·)x : S → Y0 + Y1 is continuous, bounded, and analytic on the 
interior of S;
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(2) for j = 0, 1 and x ∈X the function R � s �→ T (j + is)x ∈ Yj is continuous and

Mj := sup{‖T (j + is)x‖Yj
| s ∈R, x ∈ X ,‖x‖Xj

≤ 1} < ∞.

Then for all θ ∈ [0, 1] it holds T (θ)X ⊂ [Y0, Y1]θ and

‖T (θ)x‖[Y0,Y1]θ ≤ M1−θ
0 Mθ

1 ‖x‖[X0,X1]θ (x ∈ X ).

Here, [X0, X1]θ and [Y0, Y1]θ denote interpolation spaces with respect to the complex interpo-
lation functor.

Lemma 3.5. Let θ ∈ (0, π). For all 1 < p ≤ q < ∞ with σ := n(1/p − 1/q)/2 ≤ 1 there exists 
a constant C > 0 such that

RLp(Rn;Cn)→Lq (Rn;Cn)

{|λ|1−σ (λ + Ap,Rn)−1Pp,Rn | λ ∈ 	θ

} ≤ C.

Proof. Let N ∈N , fix λj ∈ 	θ (1 ≤ j ≤ N), and let 1 < p < n/2 and 1/p − 1/r = 2/n. Define

X0 = X1 = Y1 = Lp(Rn;�2(Cn)) and Y0 = Lr (Rn;�2(Cn)).

Define for z ∈ S = {w ∈C | 0 ≤ Re(w) ≤ 1}

T (z) : X0 → Y0 + Y1,

(fj )j∈N �→ (Tj (z)fj )j∈N := (|λ1|z(λ1 + Ap,Rn)−1Pp,Rnf1, . . . ,

|λN |z(λN + Ap,Rn)−1Pp,RnfN ,0, . . .
)
.

Clearly, for each f ∈ Lp(Rn; �2(Cn)) the function z �→ T (z)f is continuous and bounded on S
and analytic on its interior.

To calculate M0 and M1 in Proposition 3.4 (2) let f = (fj )j∈N with ‖f ‖Lp(Rn;�2(Cn)) ≤ 1
and s ∈R. Notice that ||λj |z| = |λj |Re(z). Thus, by virtue of (2.8) and Proposition 3.1 there exists 
a constant C > 0 such that

∥∥∥[ N∑
j=1

|Tj (1 + is)fj |2
]1/2∥∥∥

Lp(Rn)
=

∥∥∥[ N∑
j=1

|Tj (1)fj |2
]1/2∥∥∥

Lp(Rn)
≤ C.

Taking the supremum over s and f delivers M1 ≤ C. Notice that C is uniform in N and λj .
To bound M0, use (2.8) and Sobolev’s embedding theorem to deduce

∥∥∥[ N∑
j=1

|Tj (is)fj |2
]1/2∥∥∥

Lr (Rn)
≤ C

∥∥∥ N∑
j=1

∇2(λj + Ap,Rn)−1Pp,Rnrj (·)fj

∥∥∥
L2(0,1;Lp(Rn;Cn))

.

By virtue of Proposition 3.1, the term on the right-hand side can again be bounded by a constant 
C > 0 that is uniform in N and λj . It follows again M0 ≤ C.
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Let p < q < r . Then, due to the choice of r , it holds for some θ ∈ (0, 1)

1

q
= θ

p
+ 1 − θ

r
⇔ θ = 1 − n

2

( 1

p
− 1

q

)
= 1 − σ.

Proposition 3.4 implies the existence of a constant C > 0 that is uniform in N and λj such that 
for all f = (fj )j∈N ∈ Lp(Rn; �2(Cn)) it holds

∥∥∥[ N∑
j=1

|Tj (θ)fj |2
]1/2∥∥∥

Lq (Rn)
≤ C‖f ‖Lp(Rn;�2(Cn)),

which is the statement of the lemma.
The general case 1 < p ≤ q < ∞ with 1/p − 1/q ≤ 2/n follows from the Stein interpolation 

theorem as well. Notice that the case 1/p − 1/q = 2/n was already covered in the first part of 
the proof. Thus, let 1/p − 1/q < 2/n and choose 1 < r < n/2 with 1/r − 1/q ≤ 2/n. Define

X0 := Lr (Rn;�2(Cn)), X1 = Y0 = Y1 := Lq(Rn;�2(Cn)), and X := X0 ∩ X1.

Moreover, define for z ∈ S

U(z) : X → Y0,

(fj )j∈N �→ (|λ1|(1−z)ν+z(λ1 + Ap,Rn)−1Pp,Rnf1, . . . ,

|λN |(1−z)ν+z(λN + Ap,Rn)−1Pp,RnfN ,0, . . .
)
,

where ν := 1 −n(1/r −1/q)/2. Stein’s interpolation theorem can now be applied in this situation 
as well while the uniform estimates on M0 and M1 follow by the result of the first part of the 
proof and Proposition 3.1. The proof is completed by the density of X in Lp(Rn; �2(Cn)). �

An analogous result holds for the Stokes operator on bounded Lipschitz domains.

Lemma 3.6. Let D ⊂ Rn be a bounded Lipschitz domain and θ ∈ (0, π). There exists ε > 0 such 
that for all 1 < p ≤ q < ∞ with σ := n(1/p − 1/q)/2 ≤ 1/2 that both satisfy (3.2) there exists 
a constant C > 0 such that

RLp(D;Cn)→Lq (D;Cn)

{|λ|1−σ (λ + Ap,D)−1Pp,D | λ ∈ 	θ

} ≤ C.

Proof. Let first p additionally satisfy p < n and let p be such that there exists r satisfying

∣∣∣1

r
− 1

2

∣∣∣ <
1

2n
+ ε and

1

p
− 1

r
= 1

n
.

Notice that such a choice is always possible. Let N ∈N and fix λj ∈ 	θ (1 ≤ j ≤ N). Define

X0 = X1 = Y1 = Lp(D;�2(Cn)) and Y0 = Lr (D;�2(Cn)).
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Define for z ∈ S = {w ∈C | 0 ≤ Re(w) ≤ 1}

T (z) : X0 → Y0 + Y1,

(fj )j∈N �→ (Tj (z)fj )j∈N := (|λ1| 1+z
2 (λ1 + Ap,D)−1Pp,Df1, . . . ,

|λN | 1+z
2 (λN + Ap,D)−1Pp,DfN,0, . . .

)
.

To bound M0 in Proposition 3.4 (2), let f = (fj )j∈N ∈ Lp(D; �2(Cn)) with ‖f ‖Lp(D;�2(Cn)) ≤ 1
and let s ∈R. Use (2.8) and Sobolev’s embedding theorem to deduce

∥∥∥[ N∑
j=1

|Tj (is)fj |2
]1/2∥∥∥

Lr (D)
≤ C

∥∥∥ N∑
j=1

∇|λj |1/2(λj + Ap,D)−1Pp,Drj (·)fj

∥∥∥
L2(0,1;Lp(D;Cn2

))
.

By virtue of (3.5), the right-hand side is bounded by a constant C > 0 that is uniform in N and 
λj . Taking the supremum over s and f delivers M0 ≤ C. All other estimates follow now literally 
as in the proof of Lemma 3.5 but rely on Proposition 3.2 instead of Proposition 3.1. �
3.4. Transference of Lp-Lq -estimates

For further reference, we record the following proposition, which allows for a one-to-one 
correspondence between Lp-Lq -estimates for the semigroup and for the resolvent.

Proposition 3.7. Let −A be the generator of a bounded analytic semigroup (S(z))z∈	θ−π/2∪{0}
for some θ ∈ (π/2, π) on a Banach space X. Let X ⊂ X and let Y be another Banach space with 
X ∩ Y �= ∅. Moreover, let B be a closed operator on Y with domain D(B) and let 0 ≤ α < 1. 
Then, the following are equivalent:

(1) For all x ∈ X and z ∈ 	θ−π/2 it holds S(z)x ∈ D(B) and for all π/2 < φ < θ there exists 
C > 0 such that

‖BS(z)x‖Y ≤ C|z|−α‖x‖X (x ∈X , z ∈ 	φ−π/2). (3.6)

(2) For all x ∈ X and λ ∈ 	θ it holds (λ +A)−1x ∈ D(B) and for all π/2 < φ < θ there exists 
C > 0 such that

‖B(λ +A)−1x‖Y ≤ C|λ|α−1‖x‖X (x ∈X , λ ∈ 	φ). (3.7)

Proof. ‘(1) ⇒ (2)’: Notice that −A generates a bounded analytic semigroup on 	θ−π/2 if and 
only if for each π/2 < ϑ < θ the operator −e±i(ϑ−π/2)A generates a bounded C0-semigroup 
(S±ϑ(t))t≥0 on X. Further, notice that

S±ϑ(t) = S(e±i(ϑ−π/2)t) (t > 0).

Let π/2 < φ < ϑ < θ . Standard semigroup theory implies that the resolvent is represented via 
the Laplace-transform of the semigroup, i.e.,
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(
λ + e±i(ϑ−π/2)A

)−1
x =

∞∫
0

e−λtS(e±i(ϑ−π/2)t)x dt (x ∈ X,λ ∈C with Re(λ) > 0).

The estimate on the semigroup then implies for x ∈X

∞∫
0

‖e−λtBS(e±i(ϑ−π/2)t)x‖Y dt ≤ C

∞∫
0

e−Re(λ)t t−α dt‖x‖X = C′Re(λ)α−1‖x‖X.

This implies that (e∓i(ϑ−π/2)λ +A)−1x ∈ D(B) and (3.7) on the sector 	φ .
‘(2) ⇒ (1)’: For this direction, let π/2 < φ < ϑ < θ and notice that for z ∈ 	φ−π/2 the 

semigroup has a representation via the Cauchy formula

S(z) = 1

2π i

∫
γ|z|

ezλ(λ +A)−1 dλ, (3.8)

where γ|z| = −γ1 − γ2 + γ3 is the path given by

γ1/3 : [|z|−1,∞) → C, γ1/3(t) := te±iϑ and γ2 : [−ϑ,ϑ] → C, γ2(t) := |z|−1eit .

For x ∈X the estimate (3.6) follows now by estimating (3.8) by virtue of (3.7). �
Corollary 3.8. Let θ ∈ (0, π). For all 1 < p ≤ q < ∞ with σ := n(1/p − 1/q)/2 < 1/2 there 
exists a constant C > 0 such that for all λ ∈ 	θ and f ∈ Lp(Rn; Cn) it holds

‖∇(λ + Ap,Rn)−1Pp,Rnf ‖
Lq (Rn;Cn2

)
≤ C|λ|σ−1/2‖f ‖Lp(Rn;Cn).

Proof. This follows by combining [20, Eq. (2.3′)] with Proposition 3.7. Notice that the semi-
group estimate in [20, Eq. (2.3′)] is only proved for real values of t but that it also holds for 
complex values z ∈ 	φ for each 0 < φ < π/2. �
Corollary 3.9. Let D ⊂ Rn be a bounded Lipschitz domain and θ ∈ (0, π). Then there exists 
ε > 0 such that for all 1 < p ≤ q < ∞ that satisfy (3.2) and σ := n(1/p − 1/q)/2 < 1/2 there 
exists a constant C > 0 such that for all λ ∈ 	θ and f ∈ Lp(D; Cn) it holds

‖∇(λ + Ap,D)−1Pp,Df ‖
Lq (D;Cn2

)
≤ C|λ|σ−1/2‖f ‖Lp(D;Cn).

Proof. This follows by combining [30, Cor. 1.2] with Proposition 3.7. Notice that the semigroup 
estimate in [30, Cor. 1.2] is only proved for real values of t but that it also holds for complex 
values z ∈ 	φ for each 0 < φ < π/2. �
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4. A pressure estimate on bounded Lipschitz domains

To get access to the Lp-norm of the pressure, we introduce the Bogovskiı̆ operator, which was 
constructed by Bogovskiı̆ [1], see also Galdi [8, Sec. III.3]. For this purpose, let

Lp
0 (D) :=

⎧⎨
⎩ F ∈ Lp(D)

∣∣∣∣∣∣
∫
D

F dx = 0

⎫⎬
⎭ .

Proposition 4.1. Let D be a bounded Lipschitz domain in Rn, 1 < p < ∞, and k ∈ N . Then 
there exists a continuous operator

B : Lp(D) → W1,p

0 (D;Cn) with B ∈ L(Wk,p

0 (D),Wk+1,p

0 (D;Cn))

such that

div (Bg) = g (g ∈ Lp

0 (D)). (4.1)

For purposes that come up in the following section, we record the following lemma to treat 
the operator B in Sobolev spaces of negative order. This was proven by Geissert, Heck, and 
Hieber [9, Thm. 2.5].

Proposition 4.2. Let D be a bounded Lipschitz domain in Rn and 1 < p < ∞. Then the operator 
B defined in Proposition 4.1 extends to a bounded operator from W−1,p

0 (D) to Lp(D; Cn). Here, 

the space W−1,p

0 (D) denotes the dual space of W1,p′
(D).

For f ∈ Lp
σ (D) consider the equation

⎧⎪⎪⎨
⎪⎪⎩

λu − �u + ∇π = f in D,

div (u) = 0 in D,

u = 0 on ∂D.

(4.2)

We next turn to proving a decay estimate in λ for the pressure term π .

Proposition 4.3. Let D be a bounded Lipschitz domain in Rn and θ ∈ (0, π). Let (uλ, πλ) be 
the unique solution to the problem (4.2) such that uλ ∈ D(Ap,D) and πλ ∈ Lp

0 (D). Define the 
operator

Pλ : Lp
σ (D) → Lp

0 (D), Pλf := πλ.

Then there exist positive constants ε, C > 0 and δ ∈ (0, 1), such that for all numbers p satisfying 
the condition (3.2) and all numbers α that satisfy

0 ≤ 2α < 1 − 1

p
if p ≥ 2

1 + δ
and 0 ≤ 2α < 2 − 3

p
+ δ if p <

2

1 + δ
(4.3)



5782 P. Tolksdorf, K. Watanabe / J. Differential Equations 269 (2020) 5765–5801
the estimate

RLp
σ (D)→Lp

0 (D)

{|λ|αPλ | λ ∈ 	θ

} ≤ C

holds.

The proof of Proposition 4.3 relies on mapping properties of the Helmholtz projection on 
bounded Lipschitz domains. These mapping properties, which are stated in Lemma 4.4 are a 
reformulation of [25, Prop. 2.16]. To arrive at this reformulation recall that, by virtue of [15, 
Thm. 6.6.9], the boundedness of the H∞-calculus, see [22, Thm. 16], ensures the complex inter-
polation identity

D(A
s/2
p,D) = [

D(A0
p,D),D(A

1/2
p,D)

]
s

(s ∈ (0,1)).

Finally, the facts D(A0
p,D) = Lp

σ (D) and D(A
1/2
p,D) = W1,p

0,σ (D), see Proposition 3.2, together 
with the interpolation result [25, Thm. 2.12] ensure that for 0 ≤ s < 1/p it holds

[
D(A0

p,D),D(A
1/2
p,D)

]
s
= [

Lp
σ (�),W1,p

0,σ (�)
]
s
= Hs,p

σ (�).

Altogether, this argument gives the following lemma.

Lemma 4.4. Let D ⊂ Rn be a bounded Lipschitz domain. Then there exists δ ∈ (0, 1) and ε > 0
such that for all numbers p that satisfy (3.2) and all s subject to

0 ≤ s <
1

p
if p ≤ 2

1 − δ
and 0 ≤ s <

3

p
− 1 + δ if

2

1 − δ
< p,

the Helmholtz projection Pp,D restricts to a bounded operator

Pp,D : Hs,p(D;Cn) →D(A
s/2
p,D).

Now, we are in the position to present a proof of Proposition 4.3.

Proof of Proposition 4.3. Let N ∈ N , λj ∈ 	θ , and fj ∈ Lp
σ (D) (j = 1, . . . , N). Let (uj , πj )

be the solutions to the equation

⎧⎪⎪⎨
⎪⎪⎩

λjuj − �uj + ∇πj = fj in D,

div (uj ) = 0 in D,

uj = 0 on ∂D

with uj ∈ D(Ap,D) and πj ∈ Lp

0 (D) being the pressure associated to uj . By virtue of Proposi-
tion 4.1, followed by the identity Ap,Duj = −�uj + ∇πj in the sense of distributions it follows 
for 0 < t < 1
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∥∥∥ N∑
j=1

rj (t)|λj |απj

∥∥∥
Lp(D)

= sup
g∈Lp′

0 (D)

‖g‖
Lp′

(D)
≤1

∣∣∣∣
∫
D

N∑
j=1

rj (t)|λj |απj div (Bg)dx

∣∣∣∣

≤ sup
g∈Lp′

0 (D)

‖g‖
Lp′

(D)
≤1

∣∣∣∣
∫
D

N∑
j=1

rj (t)|λj |αAp,Duj ·Bg dx

∣∣∣∣

+ sup
g∈Lp′

0 (D)

‖g‖
Lp′

(D)
≤1

∣∣∣∣
∫
D

N∑
j=1

rj (t)|λj |α∇uj · ∇Bg dx

∣∣∣∣.

(4.4)

Since the Helmholtz projection Pp,D is the identity on Lp
σ (D), we obtain by duality by virtue of 

Proposition 4.1 and Lemma 4.4 that

sup
g∈Lp′

0 (D)

‖g‖
Lp′

(D)
≤1

∣∣∣∣
∫
D

N∑
j=1

rj (t)|λj |αAp,Duj ·Bg dx

∣∣∣∣

= sup
g∈Lp′

0 (D)

‖g‖
Lp′

(D)
≤1

∣∣∣∣
∫
D

N∑
j=1

rj (t)|λj |αA1−α
p,Duj · Aα

p′,DPp′,DBg dx

∣∣∣∣

≤
∥∥∥∥

N∑
j=1

rj (t)|λj |αA1−α
p,Duj

∥∥∥∥
Lp

σ (D)

sup
g∈Lp′

0 (D)

‖g‖
Lp′

(D)
≤1

‖Aα
p′,DPp′,DBg‖

Lp′
σ (D)

≤ C

∥∥∥∥
N∑

j=1

rj (t)|λj |αA1−α
p,Duj

∥∥∥∥
Lp

σ (D)

(4.5)

for some constant C > 0 and any α satisfying the condition (4.3). By the estimate (3.4), we 
obtain

∥∥∥ N∑
j=1

rj (·)|λj |αA1−α
p,Duj

∥∥∥
L2(0,1;Lp

σ (D))
≤ C

∥∥∥ N∑
j=1

rj (·)fj

∥∥∥
L2(0,1;Lp

σ (D))

which, combined with (4.5), yields that

∥∥∥∥ sup
g∈Lp′

0 (D)

‖g‖
Lp′

(D)
≤1

∣∣∣∣
∫
D

N∑
j=1

rj (·)|λj |αAp,Duj ·Bg dx

∣∣∣∣
∥∥∥∥

L2(0,1)

≤ C

∥∥∥ N∑
j=1

rj (·)fj

∥∥∥
L2(0,1;Lp

σ (D))
.



5784 P. Tolksdorf, K. Watanabe / J. Differential Equations 269 (2020) 5765–5801
In addition, from (3.5) together with Proposition 4.1 we have that

∥∥∥∥ sup
g∈Lp′

0 (D)

‖g‖
Lp′

(D)
≤1

∣∣∣∣
∫
D

N∑
j=1

rj (·)|λj |α∇uj · ∇Bg dx

∣∣∣∣
∥∥∥∥

L2(0,1)

≤ C

∥∥∥ N∑
j=1

rj (·)fj

∥∥∥
L2(0,1;Lp

σ (D))

for α satisfying (4.3) and λj ∈ 	θ . In view of (4.4) this completes the proof. �
5. The Stokes operator in exterior Lipschitz domains

This section is devoted to the proofs of Theorems 1.1, 1.2, and 1.3. The proof of these facts 
relies on the philosophy that the solution to the Stokes resolvent problem can “almost” be written 
as the sum of a solution to a whole space problem and a solution to a problem on an appropriately 
chosen bounded Lipschitz domain. In view of this, we follow the argument of Geissert et al. [10]
for large resolvent parameters λ and perform a refined analysis that resembles in some parts to 
the argument of Iwashita [17] for small values of λ.

Choose R > 0 sufficiently large such that �c ⊂ BR(0) = {x ∈Rn | |x| < R} and define

D := � ∩ BR+5(0),

K1 := {x ∈ � | R < |x| < R + 3},
K2 := {x ∈ � | R + 2 < |x| < R + 5}.

Let B1 and B2 be the Bogovskiı̆ operators, introduced in Proposition 4.1, defined in the domain 
K1 and K2, respectively. Let further ϕ, η ∈ C∞(Rn) be cut-off functions such that 0 ≤ ϕ, η ≤ 1
and

ϕ(x) =
{

0 for |x| ≤ R + 1,

1 for |x| ≥ R + 2,

η(x) =
{

1 for |x| ≤ R + 3,

0 for |x| ≥ R + 4.

For f ∈ Lp(�; Cn) denote by f R the extension by zero of f to Rn. Notice that f ∈ Lp
σ (�)

implies f R ∈ Lp
σ (Rn) because C∞

c,σ (�) is dense in Lp
σ (�). Set f D = ηf −B2((∇η) · f ), where 

B2((∇η) ·f ) is regarded as a function that is extended by zero to all of Rn. Notice that f ∈ Lp
σ (�)

implies 
∫
K2

(∇η) · f dx = 0 and thus in this case that f D ∈ Lp
σ (D).

In the following, we will agree upon the following convention for ε and p.

Convention 5.1. Let ε > 0 be such that for all p ∈ (1, ∞) satisfying

∣∣∣ 1

p
− 1

2

∣∣∣ <
1

2n
+ ε

the statements of Propositions 2.3 and 3.2 are valid.
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Let θ ∈ (0, π) and ε > 0 and p be subject to Convention 5.1. For λ ∈ 	θ there exist by 
Propositions 3.1 and 3.2 functions uR

λ , uD
λ , and πD

λ satisfying the equations

{
λuR

λ − �uR
λ + ∇g = f R in Rn,

div (uR
λ ) = 0 in Rn,

(5.1)

and ⎧⎪⎪⎨
⎪⎪⎩

λuD
λ − �uD

λ + ∇πD
λ = f D in D,

div (uD
λ ) = 0 in D,

uD
λ = 0 on ∂D.

(5.2)

Recall, that g was given by ∇g = (Id − Pp,Rn)f R . In the following, we normalize g to satisfy

∫
D

g dx = 0. (5.3)

The operator Uλ : Lp(�; Cd) → Lp
σ (�) defined next is “almost” the solution operator to the 

resolvent problem on the exterior domain � with right-hand side f . Define Uλ by

Uλf := ϕuR
λ + (1 − ϕ)uD

λ −B1
(
(∇ϕ) · (uR

λ − uD
λ )

)
, (5.4)

where uR
λ and uD

λ are the functions satisfying equations (5.1) and (5.2), respectively. Again 
B1((∇ϕ) · (uR

λ − uD
λ )) is regarded as the extension by zero to the whole space. Notice that even 

though the regularity theory of solutions to the Stokes equations on bounded Lipschitz domains 
does not allow for W2,p-regularity of uD

λ on D, standard inner regularity results, see Galdi [8, 

Thm. IV.4.1], yield that (∇ϕ) · (uR
λ − uD

λ ) ∈ W2,p
0 (K1) so that by Proposition 4.1 the extension 

by zero of B1((∇ϕ) · (uR
λ − uD

λ )) lies in W3,p(Rn).

Moreover, Propositions 3.1 and 3.2 imply that ϕuR
λ ∈ W2,p(�) ∩ W1,p

0 (�) and (1 − ϕ)uD
λ ∈

W1,p

0 (�). Thus, we observe that for all p subject to Convention 5.1 it holds

Uλf ∈ W1,p
0 (�) ∩ Lp

σ (�).

Setting �λf := (1 − ϕ)πD
λ + ϕg, the pair (Uλf, �λf ) satisfies the equation

⎧⎪⎪⎨
⎪⎪⎩

(λ − �)Uλf + ∇�λf = f + Tλf in �,

div (Uλf ) = 0 in �,

Uλf = 0 on ∂�

(5.5)

in the sense of distributions. Here, Tλ is given by

Tλf := −2[(∇ϕ) · ∇](uR
λ − uD

λ ) − (�ϕ)(uR
λ − uD

λ )

+ (∇ϕ)(g − πD) − (λ − �)B
(
(∇ϕ) · (uR − uD)

)
.

(5.6)

λ 1 λ λ
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Observe the following two properties concerning the operator Tλ defined on Lp(�; Cn) where 
p satisfies (3.2). First of all, for each function f ∈ Lp(�; Cn), the support of Tλf lies in the 
compact set K1. Second, notice that inner regularity results for the Stokes equations, see [8, 
Thm. IV.4.1], imply that Tλ is a bounded operator from Lp(�; Cn) to W1,p(�; Cn). Thus, in 
combination with the support property, Tλ turns out to be a compact operator. This is recorded in 
the following lemma.

Lemma 5.2. Let θ ∈ (0, π), λ ∈ 	θ , and let p be subject to Convention 5.1. Then Tλ satisfies Tλ ∈
L(Lp(�; Cn), W1,p(�; Cn)), it satisfies for each f ∈ Lp(�; Cn) the property supp (Tλf ) ⊂ K1, 
and it is compact on Lp(�; Cn).

The further line of action will be split into five consecutive steps. The first step is dedicated 
to the investigation of the operator f �→ Uλf . Here, estimates with respect to λ are established. 
To obtain estimates to the Stokes resolvent problem on the exterior domain � by means of the 
operator Uλ the operator Id +Tλ and its solenoidal counterpart Id +Pp,�Tλ have to be analyzed. 
In the second step we show that Pp,�Tλ regarded as an operator on Lp

σ (�) is small for large 
values of λ so that Id +Pp,�Tλ can be inverted by a simple Neumann series argument. The third 
step is much more delicate as here continuity properties of the operator Tλ for small values of λ
are studied. In particular, we will show that Tλ has a well-defined limit as λ → 0 that is a compact 
operator. In the fourth step, the invertibility of Id+Tλ for small values of λ is proven by standard 
Fredholm theory and a perturbation argument. In the final fifth step, everything will be combined 
to give the proofs of Theorems 1.1, 1.2, and 1.3.

Step 1: Investigation of the operator Uλ. We start by giving bounds on the operator norms of 
the operators Uλ and ∇Uλ in terms of the resolvent parameter λ.

Lemma 5.3. Let � ⊂ Rn be an exterior Lipschitz domain and θ ∈ (0, π). Let ε > 0 and p ≤ q

satisfy Convention 5.1 and σ := n(1/p − 1/q)/2 ≤ 1/2. Then there exists a constant C > 0 such 
that

RLp(�;Cn)→Lq
σ (�)

{|λ|1−σ Uλ | λ ∈ 	θ

} ≤ C (5.7)

and

‖U1f ‖
W1,p

0,σ (�)
≤ C‖f ‖Lp(�;Cn). (5.8)

If additionally q < n, p < n/2, and σ < 1/2, then there exists C > 0 such that

|λ|1/2−σ ‖∇Uλf ‖
Lq (�;Cn2

)
≤ C‖f ‖Lp(�;Cn) (λ ∈ 	θ,f ∈ Lp(�;Cn)).

Proof. First of all, recall the definition of Uλ in (5.4). To prove (5.7) let N ∈ N , λj ∈ 	θ , and 
fj ∈ Lp(�; Cn) where 1 ≤ j ≤ N . An application of Lemmas 3.5 and 3.6 together with the 
boundedness of Bogovskiı̆’s operator from Lq

0(K1) to W1,q

0 (K1; Cn), see Proposition 4.1, imply 
the estimate



P. Tolksdorf, K. Watanabe / J. Differential Equations 269 (2020) 5765–5801 5787
∥∥∥ N∑
j=1

|λj |1−σ Uλj
rj (·)fj

∥∥∥
L2(0,1;Lq

σ (�))

≤ C

(∥∥∥ N∑
j=1

|λj |1−σ rj (·)uR
λj

∥∥∥
L2(0,1;Lq

σ (Rn))
+

∥∥∥ N∑
j=1

|λj |1−σ rj (·)uD
λj

∥∥∥
L2(0,1;Lq

σ (D))

)

≤ C

∥∥∥ N∑
j=1

rj (·)fj

∥∥∥
L2(0,1;Lp(�;Cn))

.

Concerning (5.8), this follows by the product rule and by the boundedness estimates given in 
Proposition 3.1, Proposition 3.2, Lemma 3.3, and Proposition 4.1.

Now, let λ ∈ 	θ and f ∈ Lp(�; Cn) and let p and q additionally satisfy q < n and p < n/2
with σ < 1/2. To derive an estimate to ∇Uλ, notice that the support of ∇ϕ is contained in the 
annulus A := BR+2(0) \ BR+1(0). Thus, applying Hölder’s inequality followed by Sobolev’s 
inequality together with the boundedness of Bogovskiı̆’s operator from Lq

0(K1) to W1,q

0 (K1; Cn)

imply with q∗ := nq/(n − q)

‖∇Uλf ‖
Lq (�;Cn2

)
≤ ‖∇uR

λ ‖
Lq (Rn;Cn2

)
+ ‖∇uD

λ ‖
Lq (D;Cn2

)

+ ‖uR
λ ‖Lq (A;Cn) + ‖uD

λ ‖Lq (A;Cn)

≤ ‖∇uR
λ ‖

Lq (Rn;Cn2
)
+ ‖∇uD

λ ‖
Lq (D;Cn2

)

+ C
(
‖uR

λ ‖Lq∗
(Rn;Cn) + ‖uD

λ ‖Lq∗
(D;Cn)

)
≤ C

(
‖∇uR

λ ‖
Lq (Rn;Cn2

)
+ ‖∇uD

λ ‖
Lq (D;Cn2

)

)
.

Finally, Corollaries 3.8 and 3.9 imply

|λ|1/2−σ ‖∇Uλf ‖
Lq (�;Cn2

)
≤ C‖f ‖Lp(�;Cn). �

Step 2: Invertibility of Id + Pp,�Tλ for large values of λ. To obtain decay of the family of 
operators Tλ with respect to λ it is essential to project these operators onto Lp

σ (�), i.e., to consider

Pp,�Tλ : Lp
σ (�) → Lp

σ (�).

This has the effect that non-decaying terms with respect to λ, that is g (see (5.6)) and a certain 
term within πD

λ that exists for non-solenoidal right-hand sides, are eliminated.

Lemma 5.4. Let � be an exterior Lipschitz domain in Rn and θ ∈ (0, π). Then, for ε and p
subject to Convention 5.1 and α being a constant satisfying (4.3) there exists C > 0 satisfying 
for all λ∗ ≥ 1

R p

{|λ|αPp,�Tλ | λ ∈ 	θ, |λ| ≥ λ∗} ≤ C.
Lσ (�)
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Proof. Let f ∈ Lp
σ (�) and uR

λ and uD
λ be the functions satisfying the equations (5.1) and (5.2), 

respectively. Since f R ∈ Lp
σ (Rn) the function g in (5.1) is zero by Proposition 3.1. Thus, we 

have

λuR
λ − λuD

λ = f R + �uR
λ − (f D + �uD

λ − ∇πD
λ ). (5.9)

Since supp (∇ϕ) ∩ K2 = ∅ and η ≡ 1 on supp (∇ϕ), the definitions of f R and f D further yield

(∇ϕ) · (f R − f D) = (∇ϕ)(1 − η)f = 0.

This combined with (5.9) results in

λB1
(
(∇ϕ) · (uR

λ − uD
λ )

) = B1
(
(∇ϕ) · (�uR

λ − �uD
λ )

) +B1
(
(∇ϕ) · (∇πD

λ )
)
.

From this fact, we rewrite Pp,�Tλ as

Pp,�Tλf = −2
[
Pp,�[(∇ϕ) · ∇](uR

λ − uD
λ )

] − [
Pp,�(�ϕ)(uR

λ − uD
λ )

]
+ [

Pp,��B1
(
(∇ϕ) · (uR

λ − uD
λ )

)]
− [

Pp,�B1
(
(∇ϕ) · (�uR

λ − �uD
λ )

)] − [
Pp,�

(
(∇ϕ)πD

λ

)]
− [

Pp,�B1
(
(∇ϕ) · (∇πD

λ )
)]

≡ T 1
λ f + T 2

λ f + T 3
λ f + T 4

λ f + T 5
λ f + T 6

λ f.

By virtue of Proposition 2.3, Proposition 3.1, and Lemma 3.3 there exists C > 0 such that

RLp
σ (�)

{|λ|1/2T 1
λ | λ ∈ 	θ, |λ| ≥ λ∗} ≤ C.

Now, use Kahane’s contraction principle, see Proposition 2.9, and the fact that α < 1/2 to deduce 
that

RLp
σ (�)

{|λ|αT 1
λ | λ ∈ 	θ, |λ| ≥ λ∗} ≤ 2(λ∗)α−1/2C,

where C > 0 is the constant from the previous estimate. Similarly, the operator families T 2
λ and 

T 5
λ are estimated, but relying additionally on Propositions 3.2 and 4.3. To estimate, T 3

λ use the 

boundedness of B1 : W1,p
0 (K1) → W2,p

0 (K1; Cn) stated in Proposition 4.1 and proceed as for T 1
λ

and T 2
λ .

Finally, we present the estimates for T 4
λ and remark that T 6

λ is estimated similarly. Let N ∈N , 
λj ∈ 	θ with |λj | ≥ λ∗, and fj ∈ Lp

σ (�) (j = 1, . . . , N). Then

(∇ϕ) · (�uR
λj

− �uD
λj

) = div
( n∑

i=1

∂iϕ∇[(uR
λj

)i − (uD
λj

)i]
)

− ∇2ϕ : ∇(uR
λj

− uD
λj

),

where A : B = ∑n
i,k=1 AikBik for two n × n matrices A and B . Consequently, the bound-

edness of Pp,� and the boundedness of B1 : W−1,p
0 (K1) → Lp

0 (K1; Cn) and B1 : Lp
0 (K1) →

W1,p
(K1; Cn) yield
0
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∥∥∥ N∑
j=1

rj (·)|λj |1/2T 4
λj

fj

∥∥∥
L2(0,1;Lp

σ (�))
≤ C

∥∥∥ N∑
j=1

rj (·)fj

∥∥∥
L2(0,1;Lp

σ (�))
.

Again, Kahane’s contraction principle together with α < 1/2 result in the estimate

RLp
σ (�)

{|λ|αT 4
λ | λ ∈ 	θ, |λ| ≥ λ∗} ≤ 2(λ∗)α−1/2C. �

Corollary 5.5. Let � be an exterior domain in Rn and θ ∈ (0, π). Let ε and p be subject to 
Convention 5.1. Then there exists λ∗ ≥ 1 such that for all λ ∈ 	θ with |λ| ≥ λ∗ the operator

Id + Pp,�Tλ : Lp
σ (�) → Lp

σ (�)

is invertible. Moreover, λ∗ can be chosen such that it holds

RLp
σ (�)

{
(Id + Pp,�Tλ)

−1 | λ ∈ 	θ, |λ| ≥ λ∗} ≤ 2.

Proof. This follows by Lemma 5.4 and a Neumann series argument combined with Proposi-
tion 2.9. �
Step 3: Continuity and continuation of Tλ for small λ. While it was (in the case of large values 
of λ) beneficial to consider the projected operator

Id + Pp,�Tλ : Lp
σ (�) → Lp

σ (�)

the question of invertibility for small values of λ is resolved for the operator

Id + Tλ : Lp(�;Cn) → Lp(�;Cn).

Here, decay properties of Tλ are not the prevalent feature but essentially the fact that Tλ is a 
regularizing and localizing operator. The locality will also be of importance in Step 4, where the 
injectivity of Id + Tλ is shown. To obtain estimates for the Stokes resolvent up to λ = 0, we are 
going to define an operator T0 as the limit of the operators Tλ as |λ| ↘ 0 and unveil some of its 
properties. As a preparation we prove the following lemma. To this end, for λ, μ, λj ∈ 	θ and 
f, fj ∈ Lp(Rn; Cn) we use the notation

uR
λ := (λ + Ap,Rn)−1Pp,Rnf, uR

λj
:= (λj + Ap,Rn)−1Pp,Rnfj ,

and uR
μ,j := (μ + Ap,Rn)−1Pp,Rnfj .

Lemma 5.6. Let θ ∈ (0, π), 1 < p < n/2, f ∈ Lp(Rn; Cn), and ∇g = (Id − Pp,Rn)f . There 

exists uR
0 ∈ W2,p

loc (Rn; Cn) with ∇2uR
0 ∈ Lp(Rn; Cn3

) such that

{−�uR
0 + ∇g = f in Rn

div (uR
0 ) = 0 in Rn,
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and such that uR
λ → uR

0 in W2,p

loc (Rn; Cn) and ∇2uR
λ → ∇2uR

0 in Lp(Rn; Cn3
) as λ → 0 with 

λ ∈ 	θ .
Furthermore, there exist constants 0 < α, β < 1 such that for each open and bounded set 

O ⊂ Rn there exists a constant C > 0 such that for all N ∈ N , fj ∈ Lp(Rn; Cn), λ∗ > 0, and 
λj , μ ∈ Bλ∗(0) ∩ 	θ (j = 1, . . . , N) it holds

∥∥∥ N∑
j=1

rj (·)(uR
λj

− uR
μ,j )

∥∥∥
L2(0,1;W1,p(O;Cn))

≤ C max{λ∗,1}β max
1≤i≤N

min
{|λi |α−1|λi − μ|, |μ|α−1|μ − λi |

}

·
∥∥∥ N∑

j=1

rj (·)fj

∥∥∥
L2(0,1;Lp(Rn;Cn))

. (5.10)

In particular, if uR
0,j denotes the limit obtained above but with datum fj , then for each open and 

bounded set O ⊂ Rn there exists a constant C > 0 such that for all N ∈ N , fj ∈ Lp(Rn; Cn), 
δ > 0, and λj ∈ Bδ(0) ∩ 	θ (j = 1, . . . , N) it holds

∥∥∥ N∑
j=1

rj (·)(uR
λj

− uR
0,j )

∥∥∥
L2(0,1;W1,p(O;Cn))

≤ C max{δβ,1}δα
∥∥∥ N∑

j=1

rj (·)fj

∥∥∥
L2(0,1;Lp(Rn;Cn))

.

(5.11)

Proof. Let O ⊂ Rn be open and bounded. Let λ∗ > 0, N ∈N , fj ∈ Lp(Rn; Cn), and λj , μ ∈ 	θ

with |μ|, |λj | < λ∗ (j = 1, . . . , N). Let np/(n − p) = p∗ < q < ∞ with 1/p − 1/q ≤ 3/n. De-
note by q∗ := qn/(q + n) and notice that W1,q∗(Rn) ⊂ Lq(Rn). An application of Hölder’s 
inequality followed by Sobolev’s inequality together with the resolvent identity implies for al-
most every t ∈ (0, 1)

∥∥∥ N∑
j=1

rj (t)∇
(
uR

λj
− uR

μ,j

)∥∥∥
Lp(O;Cn2

)

≤ C

∥∥∥ N∑
j=1

rj (t)∇2(μ + Ap,Rn)−1(μ − λj )u
R
λj

∥∥∥
Lq∗ (Rn;Cn3

)
. (5.12)

Now, Proposition 3.1 ensures

∥∥∥ N∑
j=1

rj (·)∇2(μ + Ap,Rn)−1(μ − λj )u
R
λj

∥∥∥
L2(0,1;Lq∗ (Rn;Cn3

))

≤ C

∥∥∥ N∑
j=1

rj (·)(μ − λj )u
R
λj

∥∥∥
L2(0,1;Lq∗ (Rn;Cn))

.
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Notice that q∗ > p and that 1/p − 1/q∗ ≤ 2/n. Thus, Lemma 3.5 with σ := n(1/p − 1/q∗)/2
implies

∥∥∥ N∑
j=1

rj (·)(μ − λj )u
R
λj

∥∥∥
L2(0,1;Lq∗ (Rn;Cn))

≤ C

∥∥∥ N∑
j=1

rj (·)|λj |σ−1(μ − λj )fj

∥∥∥
L2(0,1;Lp(Rn;Cn))

.

Summarizing the previous estimates followed by Kahane’s contraction principle delivers

∥∥∥ N∑
j=1

rj (·)∇
(
uR

λj
− uR

μ,j

)∥∥∥
L2(0,1;Lp(O;Cn2

))

≤ C sup
1≤i≤N

|λi |σ−1|λi − μ|
∥∥∥ N∑

j=1

rj (·)fj

∥∥∥
L2(0,1;Lp(Rn;Cn))

. (5.13)

Next, for any np/(n − 2p) = p∗∗ < q < ∞ with 1/p − 1/q ≤ 4/n and q∗∗ := qn/(n + 2q)

define ν := n(1/p − 1/q∗∗)/2. Then analogously as above one finds

∥∥∥ N∑
j=1

rj (·)
(
uR

λj
− uR

μ,j

)∥∥∥
L2(0,1;Lp(O;Cn))

≤ C sup
1≤i≤N

|λi |ν−1|λi − μ|
∥∥∥ N∑

j=1

rj (·)fj

∥∥∥
L2(0,1;Lp(Rn;Cn))

. (5.14)

Notice that ν, σ > 0 and that out of symmetry reasons (5.13) and (5.14) hold with the sym-
bols λj and μ interchanged. Indeed, since the resolvent operators commute, instead of (5.12) is 
equivalent to the estimate

∥∥∥ N∑
j=1

rj (t)∇
(
uR

λj
− uR

μ,j

)∥∥∥
Lp(O;Cn2

)

≤ C

∥∥∥ N∑
j=1

rj (t)∇2(λj + Ap,Rn)−1(λj − μ)uR
μ,j

∥∥∥
Lq∗ (Rn;Cn3

)
.

Now, proceed exactly as below (5.12). This gives (5.10). Furthermore, if N = 1, this gives the 
W1,p

loc -convergence properties stated in the lemma. The convergence of (∇2uR
λ )λ∈	θ follows since 

the sectoriality of the Stokes operator Ap,Rn , Proposition 3.1, implies the Cauchy property in 

Lp(Rn; Cn3
) as λ → 0, see [15, Prop. 2.1.1]. All convergences being known, let μ → 0 in (5.13)

and (5.14). This delivers (5.11). �
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A similar lemma holds on bounded Lipschitz domains. As above, for λ, μ, λj ∈ 	θ and 
f, fj ∈ Lp(Rn; Cn) we write

uD
λ := (λ + Ap,D)−1Pp,Df, uD

λj
:= (λj + Ap,D)−1Pp,Dfj ,

and uD
μ,j := (μ + Ap,D)−1Pp,Dfj

and denote the associated pressures by πD
λ , πD

λj
, and πD

μ,j .

Lemma 5.7. Let θ ∈ (0, π), ε and p be subject to Convention 5.1, and f ∈ Lp(D; Cn). There 
exists uD

0 ∈ D(Ap,D) with associated pressure πD
0 ∈ Lp

0 (D) such that

⎧⎪⎪⎨
⎪⎪⎩

−�uD
0 + ∇πD

0 = f in D

div (uD
0 ) = 0 in D

uD
0 = 0 on ∂D

and such that uD
λ → uD

0 in W1,p

0,σ (D) and in W2,p

loc (D; Cn) as λ → 0. Furthermore, it holds 

πD
λ → πD

0 in Lp

0 (D) and in W1,p

loc (D) as λ → 0 with λ ∈ 	θ .
Moreover, there exists C > 0 such that for all N ∈ N , fj ∈ Lp(D; Cn), and λj , μ ∈ 	θ ∪ {0}

(j = 1, . . . , N) it holds

∥∥∥ N∑
j=1

rj (·)(uD
λj

− uD
μ,j )

∥∥∥
L2(0,1;W1,p

0,σ (D))
≤ C max

1≤i≤N
|μ − λi | ·

∥∥∥ N∑
j=1

rj (·)fj

∥∥∥
L2(0,1;Lp(D;Cn))

(5.15)

and

∥∥∥ N∑
j=1

rj (t)(π
D
λj

− πD
μ,j )

∥∥∥
Lp

0 (D)
≤ C max

1≤i≤N
|μ − λi | ·

∥∥∥ N∑
j=1

rj (·)fj

∥∥∥
L2(0,1;Lp(D;Cn))

.

(5.16)

Proof. Let N ∈N , fj ∈ Lp(D; Cn), and λj , μ ∈ 	θ . The invertibility of Ap,D together with the 
continuous embedding D(Ap,D) ⊂ W1,p

0,σ (D) and the resolvent identity implies

∥∥∥ N∑
j=1

rj (·)(uD
λj

− uD
μ,j )

∥∥∥
L2(0,1;W1,p

0,σ (D))

≤ C

∥∥∥ N∑
j=1

rj (·)(μ − λj )Ap,D(μ + Ap,D)−1Ap,DuD
λj

∥∥∥
L2(0,1;Lp

σ (D))
.

An application of Proposition 3.2 followed by Kahane’s contraction principle then yields (5.15).



P. Tolksdorf, K. Watanabe / J. Differential Equations 269 (2020) 5765–5801 5793
Concerning the pressure, use that Ap,DuD
λj

= −�uD
λj

+ ∇πD
λj

holds in the sense of distribu-
tions (the same holds for μ) and estimate by using Bogovskiı̆’s operator B on D and the resolvent 
identity for almost every t ∈ (0, 1)

∥∥∥ N∑
j=1

rj (t)(π
D
λj

− πD
μ,j )

∥∥∥
Lp

0 (D)

= sup
h∈Lp′

0 (D)

‖h‖
Lp′

(D)
≤1

∣∣∣ ∫
D

N∑
j=1

rj (t)(π
D
λj

− πD
μ,j )div (Bh)dx

∣∣∣

≤ sup
h∈Lp′

0 (D)

‖h‖
Lp′

(D)
≤1

∣∣∣ ∫
D

N∑
j=1

rj (t)(μ − λj )Ap,D(μ + Ap,D)−1uD
λj

·Bhdx

∣∣∣

+ sup
h∈Lp′

0 (D)

‖h‖
Lp′

(D)
≤1

∣∣∣ ∫
D

N∑
j=1

rj (t)∇(uD
λj

− uD
μ,j ) · ∇Bhdx

∣∣∣.

As a consequence, the boundedness of B : Lp′
0 (D) → W1,p′

0 (D; Cn) together with (5.15), Propo-
sition 3.2, the invertibility of Ap,D , and Kahane’s contraction principle yield (5.16).

If N = 1, (5.15) and (5.16) show that (uλ)λ∈	θ is a Cauchy sequence in W1,p
0,σ (D) and that 

(πD
λ )λ∈	θ is a Cauchy sequence in Lp

0 (D) as |λ| → 0. Moreover, the sectoriality of the Stokes 
operator Ap,D , see Proposition 3.2, implies that (Ap,DuD

λ )λ∈	θ is a Cauchy sequence in Lp
σ (D)

as well [15, Prop. 2.1.1]. The closedness of Ap,D implies that the limit uD
0 is an element of 

D(Ap,D). Finally, inner regularity estimates, see [8, Thm. IV.4.1], imply the convergence of 
(uD

λ )λ∈	θ to uD
0 in W2,q

loc (D; Cn) and of (πD
λ )λ∈	θ to πD

0 in W1,q

loc (D). �
Proposition 5.8. Let � be an exterior Lipschitz domain in Rn and θ ∈ (0, π). Let ε and p be sub-
ject to Convention 5.1 with p < n/2. Then there exists a compact operator T0 ∈ L(Lp(�; Cn))

that satisfies supp (T0f ) ⊂ K1 for all f ∈ Lp(�; Cn) and for all γ > 0 and μ ∈ 	θ ∪ {0} there 
exists δ > 0 such that

RLp(�;Cn)

{
Tλ − Tμ | λ ∈ 	θ ∩ Bδ(μ)

} ≤ γ. (5.17)

Moreover, it holds T0 ∈ L(Lp(�; Cn), W1,p(�; Cn)) and T0 is consistent in the Lp-scale, i.e., 
if f ∈ Lp1(�; Cn) ∩ Lp2(�; Cn) with p1, p2 < n/2 subject to Convention 5.1, then the limits 
lim|λ|→0,λ∈	θ Tλf taken with respect to Lp1(�; Cn) and Lp2(�; Cn) coincide.

Proof. We concentrate mainly on the case μ = 0. Notice that the compactness of T0 and 
supp (T0f ) ⊂ K1 for all f ∈ Lp(�; Cn) will be direct consequences of the convergence in (5.17)
and Lemma 5.2. To establish (5.17), define for f ∈ Lp(�; Cn), λ ∈ 	θ , and uR

λ , uD
λ , and πD

λ

subject to (5.1) and (5.2)
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S1
λf := [(∇ϕ) · ∇]uR

λ , S2
λf := [(∇ϕ) · ∇]uD

λ , S3
λf := (�ϕ)uR

λ

S4
λf := (�ϕ)uD

λ , S5
λf := (∇ϕ)πD

λ , S6
λf := λB1

(
(∇ϕ) · uR

λ

)
S7

λf := �B1
(
(∇ϕ) · uR

λ

)
, S8

λf := λB1
(
(∇ϕ) · uD

λ

)
, S9

λf := �B1
(
(∇ϕ) · uD

λ

)
.

If g is given by (Id − Pp,Rn)f R = ∇g, then (5.6) delivers the relation

Tλf = −2S1
λf + 2S2

λf − S3
λf + S4

λf − S5
λf + (∇ϕ)g − S6

λf + S7
λf + S8

λf − S9
λf.

First of all, notice that g does not depend on λ so that this term does not have to be investigated. 
Let μ ∈ 	θ . Then, since supp (∇ϕ) ⊂ BR+2 \ BR+1 is compact, the convergences and estimates 
proven in Lemmas 5.6 and 5.7 carry over to respective convergences and estimates of S1

λ, S2
λ , S3

λ , 
S4

λ , and S5
λ . Analogously, taking Proposition 4.1 into account, convergences and estimates of S7

λ

and S9
λ follow as well. Finally, to estimate S6

λ the triangle inequality gives for μ ∈ 	θ ∩ Bδ(0)

RLp(�;Cn)

{
S6

λ | λ ∈ 	θ ∩ Bδ(0)
} ≤ RLp(�;Cn)

{
S6

λ − S6
μ | λ ∈ 	θ ∩ Bδ(0)

} + ‖S6
μ‖L(Lp(�;Cn)).

Employing (5.10) and Kahane’s contraction principle, the first term on the right-hand side is 
small whenever δ is small. Concerning the second term on the right-hand side let q > p with 
1/p−1/q < 2/n, use the boundedness of the Bogovskiı̆ operator followed by Hölder’s inequality 
and Lemma 3.5 to estimate

‖S6
μf ‖Lp(�;Cn) ≤ C|μ|‖uR

μ‖Lq (Rn;Cn) ≤ |μ| n
2 ( 1

p
− 1

q
)‖f ‖Lp(�;Cn).

Analogously, one estimates S8
λ . It follows that the R-norms of (S6

λ)λ∈	θ∩Bδ(0) and (S8
λ)λ∈	θ∩Bδ(0)

are small, whenever δ is small. In particular, S6
λf and S8

λf converge to zero as λ → 0. This 
establishes the existence of T0.

To show that T0 maps boundedly into W1,p(�; Cn), notice that this is true for each Tλ if 
λ �= 0 by Lemma 5.2. Now, Tλf converges to T0f in W1,p(�; Cn) as λ → 0 due to Lemmas 5.6
and 5.7. By the Banach–Steinhaus theorem, we find T0 ∈ L(Lp(�; Cn), W1,p(�; Cn)).

The case μ �= 0 follows literally by the same reasoning. �
5.1. Step 4: invertibility of Id + Tλ

A direct consequence of Lemma 5.2 and Proposition 5.8 is that for λ ∈ 	θ ∪ {0} the operator 
Id + Tλ is Fredholm and thus the Fredholm alternative reduces the question of the invertibility of 
Id + Tλ to the injectivity of Id + Tλ.

Proposition 5.9. Let � ⊂ Rn be an exterior Lipschitz domain and θ ∈ (0, π). Let ε and p be 
subject to Convention 5.1. Then for every λ ∈ 	θ the operator Id+Tλ : Lp(�; Cn) → Lp(�; Cn)

is injective. If additionally p < n/2, the operator Id +T0 : Lp(�; Cn) → Lp(�; Cn) is injective.

Proof. Let λ ∈ 	θ ∪ {0} and assume that there exists f ∈ Lp(�; Cn) with (Id + Tλ)f = 0 (with 
p < n/2 in the case λ = 0). In other words, it holds

f = −Tλf in �.
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As a consequence of Lemma 5.2 and Proposition 5.8 the function f satisfies

supp (f ) ⊂ K1.

On the one hand, this support property of f ensures that f ∈ Lq(�; Cn) for all 1 ≤ q ≤ p. On 
the other hand, Lemma 5.2 and Proposition 5.8 ensure that f ∈ W1,p(�; Cn). Thus, Sobolev’s 
embedding theorem entails f ∈ Lp∗

(�; Cn) with p∗ := np/(n −p). If λ = 0 and p∗ < n/2, then 
Proposition 5.8 ensures that f ∈ W1,p∗

(�; Cn) which is embedded by Sobolev’s embedding the-
orem into Lp∗∗

(�; Cn) with p∗∗ := np∗/(n −p∗). If λ �= 0 and p∗ < n, then Lemma 5.2 together 
with Sobolev’s embedding theorem implies f ∈ Lp∗∗

(�; Cn) as well. Iterate this procedure until 
f ∈ Lq(�; Cn) for each 1 ≤ q < n (if λ = 0) or f ∈ Lq(�; Cn) for each 1 ≤ q < ∞ (if λ �= 0) 
is established.

Let λ �= 0. We find in particular f ∈ L2(�; Cn) and thus Uλf ∈ W1,2
0,σ (�) and �λf ∈ L2

loc(�). 
Consequently,

λ

∫
�

|Uλf |2 dx +
∫
�

|∇Uλf |2 dx =
∫
�

(Id + Tλ)f · Uλf dx = 0.

Since λ ∈ 	θ it follows that∫
�

|Uλf |2 dx = 0 and �λf = c in � for some c ∈ C.

Let λ = 0. Since in particular f ∈ Lq(�; Cn) for all 1 ≤ q < n/2 subject to Convention 5.1, 
Proposition 5.8 ensures for these q the Lq -convergence

(Id + T0)f = lim|μ|→0
μ∈	θ

(Id + Tμ)f = lim|μ|→0
μ∈	θ

[
(μ − �)Uμf + ∇�μf

]
.

In particular, this convergence is valid for some q satisfying 2n/(n + 2) < q < n/2. Moreover, 
since also f ∈ Lr (�; Cn) for all 1 ≤ r < n, we find f ∈ L2(�; Cn) and thus that for each μ ∈ 	θ

it holds

μ

∫
�

|Uμf |2 dx +
∫
�

|∇Uμf |2 dx =
∫
�

(Id + Tμ)f · Uμf dx.

By assumption (Id + Tμ)f converges to zero in Lq(�; Cn) and additionally notice that the 
support of (Id + Tμ)f is contained in K1. Moreover, by Sobolev’s embedding theorem and 

the special choice of q we have W2,q

loc (�; Cn) ⊂ Lq ′
loc(�; Cn). Thus, (Uμ)μ∈	θ is bounded in 

Lq ′
(K1; Cn) as |μ| → 0 by Lemmas 5.6 and 5.7. It follows that

∫
�

|∇U0f |2 dx ≤ C lim|μ|→0
μ∈	θ

∣∣∣∣μ
∫
�

|Uμf |2 dx +
∫
�

|∇Uμf |2 dx

∣∣∣∣ = 0.

Consequently, in all cases (λ = 0 and λ �= 0) it holds Uλf = 0 and �λf = c for some c ∈C.
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Combining (5.4) and the definition of �λf above (5.5) together with Lemmas 5.6 and 5.7, 
we find that in both cases (λ = 0 and λ �= 0) Uλf and �λf are given by

Uλf = ϕuR
λ + (1 − ϕ)uD

λ −B1
(
(∇ϕ) · (uR

λ − uD
λ )

)
and �λf = (1 − ϕ)πD

λ + ϕg. (5.18)

Since in all cases f ∈ Lq(�; Cn) for all 1 ≤ q < n, Lemma 5.6 asserts that for all 1 < r < n/2
its holds uR

λ ∈ W2,r
loc(R

n; Cn) with ∇2uR
λ ∈ Lr (Rn; Cn3

) and div (uR
λ ) = 0 and g ∈ Lr

loc(R
n) with 

∇g ∈ Lr (Rn; Cn). Furthermore, concerning uD
λ and πD

λ , Lemma 5.7 asserts that for all r < n

subject to Convention 5.1, uD
λ ∈ W1,r

0,σ (D) ∩ W2,r
loc(D; Cn) and πD

λ ∈ Lr
0(D) ∩ W1,r

loc(D). By the 
definition of ϕ, the fact that B1((∇ϕ) · (uR

λ − uD
λ )) is extended by zero to all of Rn outside of 

K1, and the fact that Uλf = 0 in �, we find

uR
λ (x) = 0 for |x| > R + 3 and uD

λ (x) = 0 for x ∈ � ∩ BR(0).

Furthermore, we also find πD
λ to be constant on � ∩ BR(0) and g to be constant on BR+3(0)c . 

Thus, uD
λ and πD

λ can be extended constantly to functions in W1,2
0,σ (BR+5(0)) and L2(BR+5(0)), 

respectively. Let us denote these functions by uD
λ and πD

λ again.
Next, recall the definition of η and notice that the fact supp (f ) ⊂ K1 implies

∇η · f = 0 in K2 and ηf = f in �.

Consequently, by definition of f D it holds f D = f in D. Since 2n/(n + 2) < n/2, the inte-
grabilities stated below (5.18) imply uR

λ ∈ W2,2n/(n+2)
0,σ (BR+5(0)) and by Sobolev’s embedding 

theorem that uR
λ ∈ W1,2

0,σ (BR+5(0)). Consequently, uD
λ and uR

λ solve the Stokes (resolvent) prob-
lem in BR+5(0) subject to homogeneous Dirichlet boundary conditions and the same right-hand 
side f . Consequently, these functions have to coincide in BR+5(0) and there exists a constant 
c1 ∈ C such that πD

λ = g + c1 in BR+5(0). Furthermore, it follows that uR
λ = Uλf and thus

uR
λ = 0 in �,

hence Pp,Rnf = 0. Since πD
λ and g are normalized to have average zero on D, see (5.3), it 

follows that c1 = 0. Since �λf = c2 for some constant c2 ∈ C it follows that

c2 = (1 − ϕ)πD
λ + ϕg = (1 − ϕ)πD

λ + ϕπD
λ = πD

λ ,

and again, since the average of πD
λ is zero in D, it follows that c2 = 0. Consequently, g vanishes 

on all of Rn, which implies f R = 0 and thus f = 0. �
Lemma 5.10. Let ε and p be subject to Convention 5.1 with p < n/2, θ ∈ (0, π), and λ∗ > 0. 
Then for all λ ∈ 	θ ∩ Bλ∗(0) the operator Id + Tλ : Lp(�; Cn) → Lp(�; Cn) is invertible and 
there exists a constant C > 0 such that

RLp(�;Cn)

{
(Id + Tλ)

−1 | λ ∈ 	θ ∩ Bλ∗(0)
} ≤ C.
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Proof. By Lemma 5.2 and Propositions 5.8 and 5.9 for each μ ∈ 	θ ∩ Bλ∗(0) the operators 
Id + Tμ are invertible. Moreover, by Proposition 5.8 there exists δμ > 0 such that

RLp(�;Cn)

{
Tλ − Tμ | λ ∈ 	θ ∩ Bδμ(μ)

} ≤ (
2‖(Id + Tμ)−1‖L(Lp(�;Cn))

)−1
.

Since

{
Bδμ(μ) | μ ∈ 	θ ∩ Bλ∗(0)

}
is an open covering of the compact set 	θ ∩ Bλ∗(0), there exists m ∈ N together with μj ∈
	θ ∩ Bλ∗(0) (j = 1, . . . , m), such that

	θ ∩ Bλ∗(0) ⊂
m⋃

j=1

Bδμj
(μj ).

By the choices above, a usual Neumann series argument based on Remark 2.6 shows that for all 
j = 1, . . . , m it holds

RLp(�;Cn)

{
(Id + Tλ)

−1 | λ ∈ 	θ ∩ Bδμj
(μj )

} ≤ 2‖(Id + Tμj
)−1‖L(Lp(�;Cn)).

Thus, the lemma is proved. �
Step 5: Proof of Theorems 1.1 and 1.2. Let ε and p be subject to Convention 5.1 and f ∈
Lp(�; Cn). Combining Lemma 5.2 and Proposition 5.9, we infer that Id +T1 is invertible. Thus, 
defining

u := U1(Id + T1)
−1f and π := �1(Id + T1)

−1f, (5.19)

we find by (5.8) that there exists C > 0 such that

‖u‖
W1,p

0,σ (�)
≤ C‖f ‖Lp

σ (�). (5.20)

We argue now, that −1 ∈ ρ(Ap). Let p = 2 for a moment. Notice that since the operator U1 and 
�1 solve (5.5) in the sense of distributions, moreover, since (5.20) holds true, and since A2 is 
defined by a sesquilinear form, we find

U1(Id + T1)
−1f = (Id + A2)

−1f (f ∈ L2
σ (�)). (5.21)

Now, consider the case of general p and recall the definition of Ap given in the introduction. 
Let f ∈ Lp

σ (�). Then f can be approximated in Lp
σ (�) by a sequence (fk)k∈N ⊂ C∞

c,σ (�) ⊂
L2

σ (�) ∩ Lp
σ (�). Let uk be given by (5.19) but with right-hand side fk , so that uk ∈ D(A2). The 

estimate (5.20) especially implies that uk ∈ Lp
σ (�), which shows that

uk ∈ {v ∈ D(A2) ∩ Lp
σ (�) : A2v ∈ Lp

σ (�)} = D(A2|Lp
σ
).
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By (5.20), the sequence (uk)k∈N converges in W1,p

0,σ (�) to u defined by (5.19) with right-hand 
side f . Since Ap is the closure of A2|Lp

σ
in Lp

σ (�), we find u ∈ D(Ap) and u + Apu = f . This 
proves the surjectivity.

For the injectivity, notice that by (5.21) it holds

U1(Id + T1)
−1(Id + A2|Lp

σ
)u = u (u ∈D(A2|Lp

σ
)).

Since Ap is the closure of A2|Lp
σ

in Lp
σ (�), this identity carries over to all u ∈D(Ap) by taking 

limits while using (5.20). This proves the injectivity. Since Ap is by definition closed, it follows 
−1 ∈ ρ(Ap) and (5.20) implies the continuous inclusion D(Ap) ⊂ W1,p

0,σ (�). Notice that with the 
same reasoning, one readily verifies that 	θ ⊂ ρ(−Ap) holds for every θ ∈ (0, π). We continue 
by estimating the resolvent.

Next, let p < n/2, f ∈ Lp
σ (�), and λ ∈ 	θ . By construction, Uλf and �λf solve (5.5). 

Decompose by means of the Helmholtz decomposition (2.1) and Proposition 2.3

f + Tλf = f + Pp,�Tλf + (Id − Pp,�)Tλf =: f + Pp,�Tλf + ∇�λf.

Thus, Uλf and �λf − �λf solve (1.1) with right-hand side f + Pp,�Tλf . Let λ∗ ≥ 1 be the 
number obtained in Corollary 5.5, i.e., λ∗ is chosen such that

RLp
σ (�)

{
(Id + Pp,�Tλ)

−1 | λ ∈ 	θ, |λ| ≥ λ∗} ≤ 2.

Thus, if |λ| ≥ λ∗ the functions

u := Uλ(Id + Pp,�Tλ)
−1f and π := �λ(Id + Pp,�Tλ)

−1f − �λ(Id + Pp,�Tλ)
−1f

solve the Stokes resolvent problem (1.1) with right-hand side f . Since compositions of R-
bounded sets are R-bounded by Remark 2.6, Lemma 5.3 together with Corollary 5.5 imply that 
there exists C > 0 such that

RLp
σ (�)

{
λ(λ + Ap)−1 | λ ∈ 	θ, |λ| ≥ λ∗} ≤ C.

Furthermore, the boundedness of Pp,�, see Proposition 2.3, implies that

RLp(�;Cn)

{
λ(λ + Ap)−1Pp,� | λ ∈ 	θ, |λ| ≥ λ∗} ≤ C (5.22)

for some possibly different constant C > 0.
If |λ| < λ∗, then Lemma 5.10 allows us to conclude that the solutions to (1.1) with right-hand 

side f are given by

u := Uλ(Id + Tλ)
−1f and π := �λ(Id + Tλ)

−1f.

Combining the same lemma with Lemma 5.3 yields the existence of a constant C > 0 such that

RLp(�;Cn)

{
λ(λ + Ap)−1Pp,� | λ ∈ 	θ, |λ| < λ∗} ≤ C. (5.23)
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Since the union of two R-bounded sets is again R-bounded (this follows by an application of 
Kahane’s contraction principle) it follows by (5.22) and (5.23) that

RLp(�;Cn)

{
λ(λ + Ap)−1Pp,� | λ ∈ 	θ

} ≤ C (5.24)

for some constant C > 0. Since in the case p = 2 uniform boundedness implies R-boundedness, 
see Remark 2.7, (5.24) holds also true in the case p = 2. By complex interpolation, it follows 
that (5.24) holds true for all p ≤ 2 subject to Convention 5.1. Finally, the duality result in [19, 
Lem. 3.1] implies the validity of (5.24) for all p that satisfy Convention 5.1. Now, Remark 2.7 im-
plies that −Ap generates a bounded analytic semigroup (T (t))t≥0 on Lp

σ (�) and Proposition 2.4
implies Theorem 1.2.

In order to prove Theorem 1.1, notice that R-boundedness implies uniform boundedness of 
the particular family of operators. Thus, proceeding as in the proof of Theorem 1.2, we conclude 
by Lemma 5.3 that for p < n/2 and for all q ≥ p with σ := n(1/p − 1/q)/2 ≤ 1/2 there exists 
a constant C > 0 such that for all λ ∈ 	θ it holds

|λ|1−σ ‖(λ + Ap)−1Pp,�‖L(Lp(�;Cn),Lq (�;Cn)) ≤ C. (5.25)

Moreover, if additionally σ < 1/2, there exists C > 0 such that

|λ|1/2−σ ‖∇(λ + Ap)−1Pp,�‖L(Lp(�;Cn),Lq (�;Cn2
))

≤ C. (5.26)

Complex interpolation between (5.24) and (5.25) yields the validity of (5.25) for all p ≤ q < n

that both satisfy Convention 5.1 and σ ≤ 1/2. Furthermore, complex interpolation of (5.26) with

|λ|1/2‖∇(λ + A2)
−1P2,�‖L(L2(�;Cn),L2(�;Cn2

))
≤ C,

(which follows as usual by testing the resolvent equation with the solution u), implies (5.26) for 
all p ≤ q < n that satisfy p ≤ 2, σ < 1/2, and Convention 5.1.

Next, employing Proposition 3.7 yields that for all p ≤ q < n that both satisfy Convention 5.1
and σ ≤ 1/2 there exists a constant C > 0 such that for all t > 0 it holds

tσ ‖T (t)Pp,�‖L(Lp(�;Cn),Lq (�;Cn)) ≤ C. (5.27)

To get rid of the condition σ ≤ 1/2, employ for some suitable k ∈ N the semigroup law T (t) =
T (t/k)k and use (5.27) k times in a row. This implies the validity of (1.3) but only if the additional 
condition q < n is satisfied.

Concerning the Lp-Lq -estimates for the gradient of the Stokes semigroup, Proposition 3.7
implies that for all p ≤ q < n that satisfy p ≤ 2, σ < 1/2, and Convention 5.1 that there exists 
C > 0 such that for all t > 0 it holds

tσ+1/2‖∇T (t)Pp,�‖L(Lp(�;Cn),Lq (�;Cn2
))

≤ C. (5.28)

To get rid of the condition σ < 1/2, employ the semigroup law T (t) = T (t/2)T (t/2) and use 
first (5.28) and then (1.3). This implies the validity of (1.4).

Finally, we combine (5.27) and (5.28) in order to deduce (1.3) for the whole range of numbers 
p and q . Indeed, let first p = 2 and q ≥ n satisfying Convention 5.1 (we only proceed, if such 
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a number q exists, if not, then the proof is already finished). Let f ∈ L2(�; Cn) and 2 ≤ r < n, 
α ∈ [0, 1] with 1/r − 1/q = α/n. Then, by the Gagliardo–Nirenberg inequality, it holds

‖T (t)P2,�f ‖Lq (�;Cn) ≤ C‖∇T (t)P2,�f ‖α
Lr (�;Cn)‖T (t)P2,�f ‖1−α

Lr (�;Cn)
(5.29)

≤ Ct−
α
2 − n

2 ( 1
2 − 1

r
)‖f ‖L2(�;Cn). (5.30)

Notice that α/2 +n(1/2 − 1/r)/2 = n(1/2 − 1/q)/2. Performing another complex interpolation 
between (5.29) and the uniform estimate

‖T (t)Pq,�‖L(Lq (�;Cn)) ≤ C (t > 0)

delivers (1.3) for 2 ≤ p ≤ q . Using the semigroup law T (t) = T (t/2)T (t/2) together with (5.27)
then delivers the estimate for the desired range of numbers p and q . �
Proof of Theorem 1.3. The existence part follows by the usual iteration scheme. Notice, that 
in the classical literature, see, e.g., [11,20], it is required that the semigroup satisfies Lp-Lq -
estimates and gradient estimates in L3. This is especially used by Kato in [20]. In particular, 
he obtains bounds on the gradient of the solution to the Navier–Stokes equations. However, if 
one is only interested into a construction of solutions to the Navier–Stokes equations with the 
properties of Theorem 1.3, i.e., without a control on the gradient of the solution, then one can 
perform the iteration scheme carried out by Giga [11]. Notice that this iteration scheme can be 
carried out with the weaker estimates proven in Theorem 1.1. However, this is not stated in [11]
but is presented in detail in [31, Sec. 6.3]. �
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