期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:259
Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths
Article
Chu, Jixun1,2  Coron, Jean-Michel2,3  Shang, Peipei4 
[1] Univ Sci & Technol, Sch Math & Phys, Dept Appl Math, Beijing 100083, Peoples R China
[2] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[3] Inst Univ France, F-75005 Paris, France
[4] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
关键词: Nonlinearity;    Korteweg-de Vries equation;    Stability;    Center manifold;   
DOI  :  10.1016/j.jde.2015.05.010
来源: Elsevier
PDF
【 摘 要 】

We study an initial-boundary-value problem of a nonlinear Korteweg-de Vries equation posed on the finite interval (0, 2k pi) where k is a positive integer. The whole system has Dirichlet boundary condition at the left end-point, and both of Dirichlet and Neumann homogeneous boundary conditions at the right end-point. It is known that the origin is not asymptotically stable for the linearized system around the origin. We prove that the origin is (locally) asymptotically stable for the nonlinear system if the integer k is such that the kernel of the linear Korteweg-de Vries stationary equation is of dimension I. This is for example the case if k = 1. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2015_05_010.pdf 1576KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次