期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:222
Validity of nonlinear geometric optics for entropy solutions of multidimensional scalar conservation laws
Article
Chen, GQ ; Junca, S ; Rascle, M
关键词: nonlinear geometric optics;    entropy solutions in L-infinity;    multidimensional conservation laws;    validity;    profile;    perturbation;    new approach;    entropy dissipation;    compactness;    homogenization;    oscillation;    scaling;    stability;    multiscale;    BV;   
DOI  :  10.1016/j.jde.2005.04.014
来源: Elsevier
PDF
【 摘 要 】

Nonlinear geometric optics with various frequencies for entropy solutions only in L-infinity of multidimensional scalar conservation laws is analyzed. A new approach to validate nonlinear geometric optics is developed via entropy dissipation through scaling, compactness, homogenization, and L-1-stability. New multidimensional features are recognized, especially including nonlinear propagations of oscillations with high frequencies. The validity of nonlinear geometric optics for entropy solutions in L-infinity of multidimensional scalar conservation laws is justified. (c) 2005 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2005_04_014.pdf 347KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次