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Abstract

Nonlinear geometric optics with various frequencies for entropy solutions only in L∞ of
multidimensional scalar conservation laws is analyzed. A new approach to validate nonlinear
geometric optics is developed via entropy dissipation through scaling, compactness, homoge-
nization, and L1-stability. New multidimensional features are recognized, especially including
nonlinear propagations of oscillations with high frequencies. The validity of nonlinear geometric
optics for entropy solutions in L∞ of multidimensional scalar conservation laws is justified.
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1. Introduction

We are concerned with nonlinear geometric optics for entropy solutions of multi-
dimensional scalar conservation laws:

�t u + divxF(u) = 0, u ∈ R, x ∈ Rn, (1.1)

where F : R → Rn is a smooth flux function. Consider the Cauchy problem (1.1) with
Cauchy data:

u|t=0 = uε
0(x) := u + εu1(�1/ε

�1 , . . . ,�n/ε
�n), (1.2)

where u1 is a periodic function of each of its n arguments whose period is denoted by
P = [0, 1]n (without loss of generality), u is a constant ground state, the linear phases
� := (�1, . . . ,�n):

�i :=
n∑

j=1

Jij xj (1.3)

are linearly independent with constant matrix J = (Jij )1� i,j �n, and

� = (�1, . . . , �n) ∈ [0, ∞)n

is the magnitude indices of frequency of the initial oscillations. We seek a geometric
optics asymptotic expansion:

uε(t, x) = u + εvε(t, x). (1.4)

In this paper, we develop a new approach including several basic frameworks and
new tools in Sections 2–5 to validate weakly nonlinear geometric optics via entropy
dissipation through compactness, scaling, homogenization, and L1-stability, and we
apply this approach first to the one-dimensional case in Section 4 and then to the
multidimensional case in Section 5 to recognize new multidimensional features and
validate nonlinear geometric optics for multidimensional scalar conservation laws by
extending the ideas and techniques in Section 4.

To illustrate multidimensional features clearly in nonlinear geometric optics, we focus
now on the two dimensional case. Let u := uε be the Krushkov solution of the Cauchy
problem:

�t u + �x1f1(u) + �x1f2(u) = 0, (1.5)

u(0, x1, x2) = u0(x1, x2) ≡ u + εu1(�1/ε
�, �2/ε

�), (1.6)
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where, as for the general setting (1.1)–(1.4), the linear phases (�1, �2):

�1 := a1x1 + a2x2, �2 := b1x1 + b2x2 (1.7)

are linearly independent, and

�1, �2 �0.

The Krushkov solution is an L∞ function u = u(t, x1, x2) satisfying

�t |u − k|+�x1(sign(u − k)(f1(u)−f1(k)))+�x2(sign(u − k)(f2(u)−f2(k)))�0 (1.8)

in the sense of distributions for any k ∈ R. For the Krushkov solution u, we look for
an asymptotic expansion:

u = uε(t, x1, x2) := u + εvε(t, x1, x2). (1.9)

After, if necessary, a linear change of coordinates: x1 → x1 − a0t, x2 → x2 − b0t , we
may assume

f ′
1(u) = f ′

2(u) = 0.

Since �1 and �2 are linearly independent, we can rewrite equation (1.5) in these
coordinates, even though they are not necessarily orthonormal, and perform a formal
asymptotic expansion to obtain

�t v + ε(a��1
+ b��2

)v2 + ε2(c��1
+ d��2

)v3 = ε3(��1
R1 + ��2

R2), (1.10)

where

a := (a1f1
′′(u) + a2f2

′′(u))/2, b := (b1f1
′′(u) + b2f2

′′(u))/2,

c := (a1f
′′′
1 (u) + a2f

′′′
2 (u))/6, d := (b1f

′′′
1 (u) + b2f

′′′
2 (u))/6, (1.11)

and Rj := Rj (v, u, ε), j = 1, 2, are Lipschitz functions in v, u, and ε with the form:

R1(v, u, ε) = −1

6

∫ 1

0
(1 − �)3

(
a1f

(4)
1 + a2f

(4)
2

)
(u + ε�v) d� v4, (1.12)

R2(v, u, ε) = −1

6

∫ 1

0
(1 − �)3

(
b1f

(4)
1 + b2f

(4)
2

)
(u + ε�v) d� v4. (1.13)
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Define

M :=
(

a c

b d

)
=
(

a1 a2
b1 b2

)(
f1

′′(u)/2 f ′′′
1 (u)/6

f2
′′(u)/2 f ′′′

2 (u)/6

)
. (1.14)

We assume that the matrix M = M(u) is invertible. It is equivalent to require that both

J :=
(

a1 a2
b1 b2

)
= D(�1, �2)

D(x1, x2)
(1.15)

and

N :=
(

f1
′′(u)/2 f ′′′

1 (u)/6
f2

′′(u)/2 f ′′′
2 (u)/6

)
(1.16)

be invertible. Note that the invertibility of (1.15) is a corollary of the linear inde-
pendence of the phases (�1, �2), and the invertibility of (1.16) is an assumption of
genuine nonlinearity and “genuine multidimensionality”, which particularly implies that
the second derivatives of the fluxes f1 and f2 are not proportional on any interval in
a neighborhood of u. This type of nonlinear assumptions is enough to obtain com-
pactness; indeed, this nonlinear assumption is the strongest nonlinear assumption near
the constant ground state u. The compactness of solution operators can be achieved
by applying the compensated compactness method and the averaging lemma. In this
regard, we refer to Chen–Frid [2,3], Engquist–E [12], and Lions et al. [22].

The main problems concerned in this paper include

(i) identification of the formal limit V of v = vε as a function of t and the fast
variables, which turn out to be, for the simplest cases,

X1 := �/εmin(�1,1), X2 := �/εmin(�2,1); (1.17)

(ii) justification of this asymptotics, that is, the strong convergence of vε to V
in L1

loc:

vε − V → 0 strongly in L1
loc (1.18)

in the two systems of fast coordinates (t, X1, X2) and of slow coordinates (t, x1, x2),
where V is the profile.

We emphasize that our purpose here is not necessarily to obtain the sharpest possible
results on the convergence rates, say in (1.18). In particular, contrarily to the one-
dimensional case, there is even no available result on decay rates of the total variation
of the solution to (1.5) with periodic initial data since genuine nonlinearity of the
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flux function fails, although there are some results of strong convergence to a constant
state, see [2,3,12,14]. Precisely, our goal here is to develop a new approach and apply
it to prove rigorously the results of strong convergence like (1.18) for entropy solutions,
by only using entropy dissipation through compactness, scaling, homogenization, and
L1-stability, without relying on the BV structure upon solutions.

There are too many cases to give here a precise statement of the results. Let us just
mention for the moment that, in the one-dimensional case with only one phase � and
with X defined as in (1.17), there are three subcases for entropy solutions in L∞:

(i) If � > 1, then the initial oscillation is so fast that it is “canceled” by the
nonlinearity, that is, vε converges strongly to � with

� = u1 := mean value of u1 over the period; (1.19)

(ii) If � = 1 that is the natural situation of weakly nonlinear geometrical optics
(WNLGO), then vε converges strongly to the profile � in the fast variable X, which is
uniquely determined by the Cauchy problem:

�t� + a�X�2 = 0, �(0, X) = u1(X); (1.20)

(iii) If � < 1, then the initial oscillation is so slow that, in the variable X = �/ε�,
vε converges strongly to �, which is determined by

�t� = 0, �(0, X) = u1(X), (1.21)

that is, �(t, X) = u1(X).

These results are proved in Section 4. In the multidimensional case, the situation
is much more complicated: real new multidimensional features are involved and mul-
tidimensional phenomena occur (see Section 5, especially the examples in the two-
dimensional case), although some cases are a combination of these three different
possibilities. In particular, the links between the linear phases (�1, . . . ,�n) and the
fluxes F through formulas, such as (1.10)–(1.14) for the two-dimensional case, lead
to a number of interesting cases which deserve to be described more precisely. Fur-
thermore, we develop a new approach in Sections 2–5 to validate weakly nonlinear
geometric optics first for the one-dimensional case in Section 4 and then to extend the
ideas and techniques from Section 4 to deal with the multidimensional case in Section 5.
An important tool to preserve the L1

loc-convergence after the triangular change of vari-
ables depending on ε is introduced in Lemma 3.1 and a “quasi” LU factorization of
matrix M to include all new cases is formulated in Lemma 5.1. We also recognize new
phenomena including the blowup of the gradients of the geometric optics asymptotic
expansions; in contrast to the classical geometric optics expansions with the gradients
of order 1 since the amplitude is of order ε and the frequency of order ε−1. There
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are essentially two ways to obtain such very high oscillations for the two-dimensional
case:

(i) A phase gradient is orthogonal to the second flux derivative on the ground state;
(ii) There are some precise arithmetic relations between the coefficients of the ma-

trix M.

For dimension n�3, we can have higher oscillations with combinations of these two
ways, or with orthogonality to the second and third flux derivatives, among others.

For related results on nonlinear geometric optics, see DiPerna–Majda [11] for one-
dimensional 2 × 2 hyperbolic systems of conservation laws; also see Cheverry [6,7],
Guès [15], Hunter et al. [16], Junca [18,19], Joly et al. [17], Majda–Rosales [23], and
the references cited therein. For classical results on BV functions and conservation
laws, see [13,30] and [9,14,20,21].

2. Geometric optics, compactness, and L1-stability

In this section, we introduce some basic frameworks to validate nonlinear geometric
optics for entropy solutions only in L∞ of multidimensional conservation laws.

2.1. Basic properties of nonlinear geometric optics expansions

Consider the nonlinear geometric optics expansion (1.4) of solutions of the Cauchy
problem (1.1)–(1.2). Set vε(t, x) = uε(t,x)−u

ε
. We first derive some basic properties of

the sequence vε(t, x).

Lemma 2.1. Let u1 ∈ L∞. Assume that, for each fixed ε > 0, uε(t, x) is the entropy
solution of the Cauchy problem (1.1)–(1.2). Then

‖vε‖L∞ �‖u1‖L∞ for any ε > 0. (2.1)

Proof. Using Krushkov’s uniqueness theorem in [20], uε(t, x) is the periodic entropy
solution of the Cauchy problem (1.1)–(1.2) for any fixed ε > 0, since u1 is periodic.

First, taking the convex entropy (u − u)p of (1.1) for even p�2, we obtain from
the entropy inequality that

�t (u
ε − u)p + divx

(
p

∫ uε

(� − u)p−1F′(�) d�

)
�0

in the sense of distributions. Equivalently,

�t (u
ε − u)p + div�

(
p J

∫ uε

(� − u)p−1F′(�) d�

)
�0
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in the sense of distributions, where � = Jx. Integrating with respect to � and using
the periodicity, we obtain∫

P ε

|uε(t, J−1�) − u|p d��
∫

P ε

|u0(�1/ε
�1 , . . . ,�n/ε

�n) − u|p d�1 · · · d�n,

where

P ε = {(�1, . . . ,�n) : (�1/ε
�1 , . . . ,�n/ε

�n) ∈ P }.

This is equivalent to∫
P ε

|vε(t, J−1�)|p d��
∫

P ε

|u1(�1/ε
�1 , . . . ,�n/ε

�n)|p d�1 · · · d�n

for any even p�2. Taking power 1/p in both sides and letting p → ∞, we conclude
(2.1). �

Lemma 2.2. If uε(t, x1, x2) is the entropy solution of (1.5)–(1.6), then vε(t, x1, x2) is
the entropy solution of (1.10) with initial data

vε|t=0 = u1(�1/ε
�1 , �2/ε

�2). (2.2)

Proof. Notice that uε satisfy (1.8). Choosing l = k−u

ε
with the linear transformation

into the (�1, �2)-coordinates, we have

�t |vε − l| + ε
(
a��1

+ b��2

) (
sign(vε − l)((vε)2 − l2)

)
+ε2 (c��1

+ d��2

) (
sign(vε − l)((vε)3 − l3)

)
+ε3 (��1

(
sign(vε − l)(R1(v

ε, u, ε) − R1(l, u, ε))
)

−��2
(sign(vε − l)(R2(v

ε, u, ε) − R2(l, u, ε)))
)

�0, (2.3)

which implies that vε(t, x1, x2) is the entropy solution of (1.10) and (2.2). �

Remark 2.1. The same proof implies that Lemma 2.2 also holds for (1.1)–(1.2) with
n�3, which will be used in Section 5.

2.2. Compactness of approximate solutions

We now present several compactness lemmas, which can be achieved by compactness
arguments and Young measures with the aid of entropy dissipation of the solutions.
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Lemma 2.3. Assume that u(t, x) is the unique entropy solution in L∞ of (1.1) with
initial data

u|t=0 = u0 ∈ L∞, (2.4)

where the solution is understood in the sense of distributions with initial data included
in the integral entropy inequality. Let the Young measure �t,x(	) be a measure-valued
solution to (1.1) and (2.4) with �0,x = 
u0(x), i.e.,

�t 〈�t,x, �(	)〉 + divx〈�t,x, q(	)〉�0, �0,x = 
u0(x), (2.5)

for any convex entropy pair (�, q). Then

�t,x(	) = 
u(t,x)(	), a.e. (t, x) ∈ R+ × Rn.

That is, if uε(t, x) is a sequence of uniformly bounded approximate solutions to (1.1)
and (2.4) so that the corresponding Young measure �t,x satisfies (2.5), then uε(t, x)

converges strongly to the unique entropy solution u(t, x) of (1.1) and (2.4).

This result can be obtained by combining DiPerna’s argument in [10] with the
monotonicity argument as in Chen–Rascle [5]; also see Szepessy [27].

In particular, Lemma 2.3 implies that, if uε(t, x) are the entropy solutions of

�t u
ε + divx(F(uε) + Gε(u

ε)) = 0, u|t=0 = u0 ∈ L∞,

where G′
ε → 0 strongly in L∞

loc(R) when ε → ∞, then uε(t, x) converges strongly to
the unique entropy solution u(t, x) of (1.1) and (2.4).

On the other hand, the nonlinearity of the flux function can yield the compactness
of solution operators. We start with the one-dimensional case.

Lemma 2.4. Consider the Cauchy problem for one-dimensional conservation laws:

�t u + �xf (u) = 0, u|t=0 = u0(x). (2.6)

Assume that there is no interval (�, �) in which f is affine. Then the entropy solution
operator u(t, ·) = Stu0(·) : L∞ → L1

loc, determined by (2.6), is compact in L1
loc(R+ ×

R). Furthermore, if a uniformly bounded sequence uε(t, x) satisfies that

�t�(uε) + �xq(uε) is compact in H−1
loc , (2.7)

then uε(t, x) strongly converges to an L∞ function u(t, x) a.e.
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The first proof of this lemma was given in Tartar [28] by using infinite entropy–
entropy flux pairs. A simpler proof can be found in Chen–Lu [4] by using only two
natural entropy–entropy flux pairs.

The corresponding multidimensional version of Lemma 2.4 is the following.

Lemma 2.5. Consider the Cauchy problem (1.1)–(1.2). Assume that, for any (�, k) ∈
R × Rn with �2 + |k|2 = 1,

meas{v ∈ R : � + F′(v) · k = 0} = 0. (2.8)

Then the entropy solution operator u(t, ·) = Stu0(·) : L∞ → L1
loc, determined by (1.5),

is compact in L1
loc(R+ × Rn). In particular, if

det
(

F′′(v), . . . , F(n+1)(v)
)


= 0 for any v ∈ R, (2.9)

then the entropy solution operator of (1.1) is compact from L∞(Rn) to L1
loc(R+ ×Rn).

Proof. The first part of this lemma is essentially due to Lions et al. [22]; its complete
proof can be found in Chen–Frid [3].

For the second part, it suffices to prove that, for any (�, k) ∈ R × Rn such that
�2 + |k|2 = 1, the set E := {v ∈ R : � + F′(v) · k = 0} is countable, so meas(E) = 0.
Let h(v) ≡ � + F′(v) · k.

If k = (0, . . . , 0), then h(v) = ±1 and v /∈ E.
If k 
= (0, . . . , 0), then, for any v ∈ R, there exists j ∈ {1, . . . , n} such that

djh(v)

dvj

= 0.

Otherwise,

k⊥span(F′′(v), . . . , F(n+1)(v)) = Rn,

i.e., k = (0, . . . , 0). Therefore, the zeros of h(v) are isolated. �

Remark 2.2. Lemma 2.5 is also true if the genuine nonlinearity assumption (2.9) is
imposed only on the constant state u for which the compactness, locally near u, can
be achieved.

Remark 2.3. Lemma 2.5 also holds if there exist 2� i1 < i2 < · · · < in such that

det(F(i1)(v), . . . , F(in)(v)) 
= 0,

followed by a similar proof.
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Lemma 2.6. Let F, Gε ∈ C1(R; Rn) such that F satisfies the nondegeneracy condition
(2.8) and G′

ε(u) → 0 strongly in L∞
loc(R) as ε → 0. Assume that uε

0(x) is a uniformly
bounded sequence converging weak-star to u0(x). Let uε(t, x) and u(t, x) be the entropy
solutions of the Cauchy problems:

�t u
ε + divx(F(uε) + Gε(u

ε)) = 0, uε(0, x) = uε
0(x),

�t u + divxF(u) = 0, u(0, x) = u0(x),

respectively. Then the sequence uε(t, x) strongly converges to u(t, x) in L1
loc(R+ ×Rn).

Proof. Let Fε := F + Gε. Then the kinetic formulation of uε(t, x) for (1.1) is

�t
ε + F′
ε(�) · ∇x
ε = ��mε

with mε uniformly bounded in Mloc since uε are uniformly bounded in L∞. We can
rewrite the kinetic formulation as

�t
ε + F′(�) · ∇x
ε = ��mε − G′
ε(�) · ∇x
ε.

Then, using Theorem 3.1 of [25, p. 124] (also [3,22]), we get the compactness of the
sequence uε(t, x) in L1

loc. Therefore, up to a subsequence, uε → w strongly in L1
loc.

Passing to the limit in the weak formulation of (1.1) and the entropy inequality, we
find that, for any � ∈ C∞

0 ([0, ∞) × Rn),

∫ ∞

0

∫
Rn

(w�t� + F(w) · ∇x�)(t, x) dt dx +
∫

Rn
u0(x)�(0, x) dx = 0, (2.10)

and

�t |w − k| + div(sign(w − k)(F(w) − F(k)))�0 for any k ∈ R (2.11)

in the sense of distributions. A priori, we could have lost the initial data in passing
to the limit in the entropy inequalities. Now Vasseur’s result in [29] indicates that any
solution of (2.10)–(2.11) satisfying (2.8) has a strong trace on t = 0. Since the weak
formulation of (1.1) implies that u0 is a weak trace of w, we conclude that u0 is
the strong trace of w on t = 0, which implies w ≡ u by the Krushkov’s uniqueness
theorem. Since the weak limit is unique, then the whole sequence uε(t, x) converges
to u(t, x). �



G.-Q. Chen et al. / J. Differential Equations 222 (2006) 439–475 449

2.3. L1-stability with respect to the flux functions

We have

Lemma 2.7. Let F ∈ C1(R; Rn). Let u ∈ BV loc ∩ L∞(Rn; R) and v ∈ L∞(Rn; R) be
periodic entropy solutions with period P of the Cauchy problems:

�t u + divxF(u) = 0, u(0, x) = u0(x);
�t v + divxG(v) = 0, v(0, x) = v0(x),

respectively. Then, for any 0 < t �T ,

∫
P

|u − v|(t, x) dx�
∫

P

|u0 − v0|(x) dx + LT |∇xu0(·)|M(P ),

where L := max1� j �n(max{|(F′
j − G′

j )(u)| : |u|� max(‖u0‖∞, ‖v0‖∞)}).

See [1,26] for the nonperiodic case and [19] for the periodic initial data with respect
to one space variable. We can extend the proof of [19] to the case of periodic initial
data with respect to each space variable.

We will use this lemma with initial data uε
0 := u0(x1/ε

�1 , x2/ε
�2). If u0 ∈ BV(P )

is periodic with period P, then �x1u
ε
0 is of order 1/ε�1 and �x2u

ε
0 is of order 1/ε�2 in

the space Mloc(R
2).

3. Scaling, L1-convergence, and homogenization

In this section, we introduce new tools to validate nonlinear geometric optics for
entropy solutions only in L∞ of multidimensional conservation laws. These tools are
about the changes of variables that preserve the L1

loc-convergence, weak oscillating
limits, and uniqueness of the profiles.

3.1. Scaling and L1-convergence

We first formulate the following useful lemma.

Lemma 3.1 (L1-convergence of periodic functions and triangular scaling). Let uε ∈
L1(P ; R) be a sequence of periodic functions with period P = [0, 1]n. Let Aε =(
aε
ij

)
1� i,j �n

be a sequence of lower triangular n × n matrices such that

min
1� i �n

lim inf
ε→0

|aε
ii | > 0. (3.1)
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Set vε(x) := uε(Aεx). Then, when ε → 0, uε(x) converges strongly to 0 in L1
loc(R

n)

if and only if vε(x) converges strongly to 0 in L1
loc(R

n).

Proof. We first note the following facts:

(1) For any a ∈ R, the translation operator 	 �→ �(	) := 	 + a is obviously one to
one from [0, 1) ≡ R/Z to R/Z.

(2) If A = (aij )1� i,j �n is an invertible and lower triangular n × n matrix, then

A�1� i �n[0, 1/aii) = [0, 1)n in (R/Z)n , (3.2)

where [0, a) := {	a : 	 ∈ [0, 1)} is independent of the sign of a, and A in (3.2) is the
linear map from Rn to Rn associated with the matrix A.

This can be seen by induction on the dimension. If n = 1, the result is trivial.
Now, assume that n�2 and the result is true for n − 1. Let B be the submatrix
(aij )1� i,j �n−1. For any X ∈ �1� i �n[0, 1/aii) with X = (	1/a11, . . . , 	n/ann) and
Y := (

	1/a11, . . . , 	n−1/a(n−1)(n−1)

)
for 	i ∈ [0, 1), then

AX =
(

BY(∑
i �n−1 	iani/aii

)+ 	n

)
.

Therefore, by induction, for Z = (Z1, . . . , Zn), Zj ∈ (0, 1), j = 1, . . . , n, there exists
a unique Y ∈ �1� i �n−1[0, 1/aii) such that BY = (Z1, . . . , Zn−1). Now, fix Y and let
a := ∑

i �n−1
	iani/aii . Using Fact 1, there exists a unique 	n ∈ [0, 1) such that a+	n =

Zn. Therefore, for any Z ∈ [0, 1)n, there exists a unique X ∈ �1� i �n[0, a−1
ii ) such

that AX = Z in (R/Z)n.
We now use Facts 1 and 2 to complete the proof of Lemma 3.1. First, there exists

� > 0 and 
 > 0 such that, when ε ∈ (0, �),

min
1� i �n

|aε
ii | > 
.

Choose R > 1 + 1/
 and � := (−R, R)n. Then, when ε ∈ (0, �), we have

1/|aε
ii | < 1/
, [|aε

ii |R] > |aε
ii |,

since [|aε
ii |R] > |aε

ii |R − 1 and |aε
ii |R − 1 > |aε

ii | from R − 1 > 
−1 > |aε
ii |−1, where

[a] is the integer part of a real number a such that [a]�a < [a] + 1. Furthermore,
since [|aε

ii |R]�R|aε
ii | and R|aε

ii | > 1, we have

[|aε
ii |R] + 1 < 2R|aε

ii |.
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Set Bε := �1� i �n[0, 1/aε
ii) and kε := (ki/a

ε
ii)1� i �n for any k ∈ Zn. Define

Mε := #{k ∈ Zn : (kε + Bε) ∩ � 
= ∅} < �1� i �n(2([|aε
ii |R] + 1)) < 4nRn|det Aε|,

Nε := #{k ∈ Zn : kε + Bε ⊂ �}��1� i �n(2[|aε
ii |R]) > 2n|det Aε|.

Fact 2 implies that

Aε(kε + Bε) = Aεkε + AεBε = [0, 1)n in (R/Z)n .

Then we have∫
�

|vε(x)| dx � Mε

∫
Bε

|uε(Aεx)| dx� Mε

|det Aε|
∫

(0,1)n
|uε(y)| dy

� (4R)n
∫

(0,1)n
|uε(y)| dy,

and ∫
�

|vε(x)| dx � Nε

∫
Bε

|uε(Aεx)| dx� Nε

|detAε|
∫

(0,1)n
|uε(y)| dy

� 2n

∫
(0,1)n

|uε(y)| dy,

which concludes the proof. �

Remark 3.1. In the proof of this lemma, we have also established the following useful
inequalities: If A is a lower invertible triangular n×n matrix, 
 := mink |Akk| > 0, and
u ∈ L1(Rn; R) is a 1-periodic function in each variable, then, for any R > 1 + 1/
,

2n

∫
(0,1)n

|u(y)| dy�
∫

(−R,R)n
|u(Ax)| dx�(4R)n

∫
(0,1)n

|u(y)| dy. (3.3)

Remark 3.2. In Lemma 3.1, condition (3.1) is necessary for preserving the strong
L1

loc-convergence in the rescaled triangular change of variables y := Aεx. For instance,
we choose

w(x1, x2) = sin(x1 − x2),

and then

uε(x1, x2) := w(x1/ε, x1/ε + εx2) → 0 in L1
loc,
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but

w(x1/ε, x2/ε)

does not converge to 0 in L1
loc when ε → 0.

3.2. Weak oscillating limits in L2
loc(R

n; C)

In this section as well as in Section 3.3, we are essentially going to use Fourier
analysis. Therefore, it is more convenient to deal with complex-valued functions. We
want to study weak limits of sequences of oscillating data, with mixed scalings of space
variables through a lower triangular matrix T ε. This result will be used in Section 5,
especially in Theorem 5.1, where the matrix Lε with entries (Lε)ij = ε�j −�i Lij satisfy
all the conditions below (see Section 5).

Let T ε be a lower triangular n × n matrix for 0 < ε�1 such that

min
1�k �n

(
lim inf

ε→0

∣∣T ε
kk

∣∣) > 0 (3.4)

which, moreover, can be decomposed into two lower triangular matrices: the constant
part T0 and the oscillating part T ε

1 :

T ε = T0 + T ε
1 (3.5)

satisfying that, for all 1�p, q �n,

(T0)p,q 
= 0 �⇒ (T ε
1 )p,q = 0, (3.6)

(T ε
1 )p,q = tp,q/ε�p,q for �p,q > 0, tp,q ∈ R. (3.7)

We exclude the case T ε
1 ≡ 0, which is a trivial case: no oscillation.

Therefore, we can rewrite T ε
1 :

T ε
1 =

m∑
k=1

Ak/ε
�k , (3.8)

where m is a positive integer, �1 > �2 > · · · > �m, and all Ak are nonzero lower
triangular matrices. Define

K :=
m⋂

k=1

Ker(tAk) =
⋂
ε>0

Ker(tT ε
1 ),
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where we denote tA as the transposed matrix of A. Then, for any � ∈ Rn, there are
only two cases:

(i) � ∈ K �⇒ t T ε
1 � = 0 for all ε > 0;

(ii) � /∈ K �⇒ lim
ε→0

‖t T ε
1 �‖ = ∞ for the norm ‖ · ‖ in Rn.

Furthermore, studying (3.8) with respect to ε−1, we find that, for sufficiently small ε,

K = Ker(tT ε
1 ).

We will use the following Hilbert space of 1-periodic functions in each space variable:
L2

p � L2((0, 1)n; C). On L2
p, we define the orthogonal projection:

P̃ : L2
p �→ L2

p

exp(2�i� · x) �→
{

exp(2�i� · x) if � ∈ K,

0 otherwise.
(3.9)

We now state the following result, which will be used in Section 5. This result is
classical when the functions are smooth.

Lemma 3.2 (Oscillating sequences in L2
p). Let u ∈ L2

p, i.e., u be periodic with period
1 in each space variable. Let T ε be a family of lower triangular n × n matrices
satisfying (3.4)–(3.7). Then, with ũ := P̃ (u), we have

u
(
T εx

)
⇀ ũ(T0x) when ε → 0,

where ũ(T0x) is well defined even if T0 is degenerate. Furthermore, if uε ∈ L2
p and

converges strongly to u in L1
loc when ε → 0, we also have

uε
(
T εx

)
⇀ ũ(T0x).

Proof. The proof is divided into four steps.
Step 1: ũ(T0x) is well-defined almost everywhere. Let �K be the orthogonal projec-

tion from Rn to K. Since the spectrum of ũ is included in K, that is,

ũ(x) = ũ(�K(x)), (3.10)

then, ũ(T0x) is well defined a.e. if and only if K = �K(R(T0)), where R(T0) is the
range of T0. From assumptions (3.4)–(3.7), we easily obtain

Ker(tT0) ∩ Ker(tT ε
1 ) = {0}, dim Ker(tT0) + dim Ker(tT ε

1 ) = n; (3.11)
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Ker(tT0) ⊕ Ker(tT ε
1 ) = Rn; (3.12)

dimR(T0) = dim Ker(tT ε
1 ). (3.13)

Furthermore, for small ε, K = Ker(tT ε
1 ). Then, from equality (3.13), we get dim K =

dim(R(T0)). Thus, we have

K⊥ ∩ R(T0) = {0} ⇐⇒ K = �K(R(T0)).

Now, from (3.12), {0} = (
Ker(tT0) ∪ K

)⊥ = (
Ker(tT0)

)⊥ ∩ K⊥ = R(T0) ∩ K⊥, and
the result follows.

Step 2: We now first prove the weak convergence result for polynomial trigonometric
functions. Let T P1 be the linear space of trigonometric polynomials in Rn with period
1 in each variable, that is, T P1 := span{exp(2�i� · x) : � ∈ Zn}. Take u(x) :=
exp(2�i� · x). Then

u(T εx) := exp(2�i� · (T0x)) × exp(2�i� · (T ε
1 x)).

We have two cases:

(i) If � ∈ K , then we get t T ε
1 � ≡ 0, which implies

u(T εx) := exp(2�i� · (T0x)) = ũ(T0x).

(ii) If � /∈ K , then ‖t T ε
1 �‖ → ∞ when ε → 0, which implies

exp(2�i� · (T ε
1 x)) = exp(2�i(tT ε

1 �) · x) ⇀ 0,

and thus

u(T εx) ⇀ 0 = ũ(T0x) when ε → 0.

By linearity, Lemma 3.2 is also true for any function in T P1.
Step 3: We now conclude by the density of T P1 in L2

p thanks to Step 1. Let u ∈ L2
p.

Then, for any small 
 > 0, there exists v ∈ T P1 such that

∫
(0,1)n

|u − v|2(x) dx < 
2.
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For any � ∈ C∞
0 (Rn), we now prove that the following quantity is small:∣∣∣∣∫

Rn
(u(T εx) − ũ(T0x))�(x) dx

∣∣∣∣ �
∣∣∣∣∫

Rn
(u − v)(T εx)�(x) dx

∣∣∣∣
+
∣∣∣∣∫

Rn
(v(T εx) − ṽ(T0x))�(x) dx

∣∣∣∣
+
∣∣∣∣∫

Rn
(̃v(T0x) − ũ(T0x))�(x) dx

∣∣∣∣
:= Aε + Bε + C
.

Indeed, let B := (−R, R)n be a bounded set containing the compact support of � and

 > 0 be any small constant.

First, for ε small enough, Aε < C1
 where the constant C1 depends only on
min

k
(lim inf

ε→0
|T ε

kk|) and �, since the L2-norm on (u − v) over a period (0, 1)n can

be controlled by using Lemma 3.1 (see Remark 3.1).
Second, Bε < 
 for ε small enough, since v ∈ T P1.
Third, since P̃ is an orthogonal projection, we have∫

(0,1)n
|̃u − ṽ|2(x) dx�

∫
(0,1)n

|u − v|2(x) dx < 
2.

Setting w := ũ − ṽ, then the L1-norm of w is less than any 
 on the unit square
P := (0, 1)n. We need to compute the L1-norm of w(T0x) on the bounded subset B
of Rn. Since w admits a trace on K, we see that

C
 < C2
,

where C2 comes from the Fubini Theorem and the change of variables on K ∩ B.
Therefore, the sum of these three terms is less than (C1 +1+C2)
 for ε small enough,
with constants C1 and C2 independent of ε. This concludes the proof of this step.

Step 4: Now, if uε converges to u strongly in L1
loc when ε → 0, we find from

Lemma 3.1 that

uε(T εx) − u(T εx) → 0

strongly in L1
loc, which concludes the proof. �

3.3. Uniqueness of the profiles

In Section 5, we will use an algorithm which defines some profiles. In this subsection,
we provide some tools to prove that the profile is unique, and therefore is independent
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of the particular chosen triangulation. We first recall some basic facts on the class of
almost periodic functions.

3.3.1. Almost periodic functions
We first introduce

T P := span{exp(i� · x) : � ∈ Rn}

that is the linear space of trigonometric polynomials in Rn. For any measurable set
Q ⊂ Rn with meas(Q) = |Q| > 0 and any f, g ∈ T P , we define the natural scalar
product on T P:

〈f, g〉 := lim
T →∞

1

T n|Q|
∫

T .Q

f (x)g(x) dx, 〈f 〉 := 〈f, 1〉 ,

where T .Q := {T q : q ∈ Q}.
It is well known that 〈f 〉 is independent of the choice of Q. In particular, this

property implies the scale invariance of the mean:

A ∈ LGn(R) �⇒ 〈f (Ax)〉 = 〈f (x)〉 , (3.14)

where LGn(R) is the linear group of invertible n×n matrices. We use the usual norm
associated with this scalar product: ‖f ‖2

ap := 〈f, f 〉 and the natural Hilbert space L2
ap.

We use C0
ap and L1

ap to denote the closure of T P associated with the L∞-norm and the

L1-almost periodic norm: ‖f ‖1,ap := 〈|f |〉, respectively. For any U ∈ L2
ap, we define

the spectrum of U:

Sp[U ] := {� ∈ Rn : c�[U ] := 〈U(x), exp(i� · x)〉 
= 0}.

Then the spectrum of each U is countable, and U satisfies Parseval’s equality:

‖U‖2
ap =

∑
�∈Sp[U ]

|c�[U ]|2 .

Denote by L2
p((0, 1)n) the classical set of 1-periodic functions in each space variable.

We recall that a prototype of quasi-periodic functions is a function v such that there
exists a matrix M and a periodic function u such that v(x) = u(Mx). Note that
all periodic functions are quasi-periodic but the converse is false and, similarly, all
quasi-periodic functions are almost-periodic but the converse is also false. Also, for
u ∈ L1

p((0, 1)n), we have

〈|u|〉 =
∫

(0,1)n
|u(x)| dx. (3.15)

For more details, see [8].
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3.3.2. Uniqueness of the profiles
We now show the uniqueness of the profiles.

Lemma 3.3. Let U, V ∈ L∞
p ((0, 1)n; C). Set

dU := dim span{Sp[U ]}, dV := dim span{Sp[V ]}.

Assume that

(i) U(Aεx) = V (Bεx) + Rε(x),
(ii) Aε, Bε ∈ C0((0, 1); LGn(R)),

(iii) lim
ε→0

〈|Rε(x)|〉 = 0.

Then there exists a matrix C such that

U(y) = V (Cy) a.e. in y. (3.16)

More precisely, rank C = dU and, if n > dU , U admits a trace on span{Sp[U ]} and V
a trace on span{Sp[V ]} so that equality (3.16) is satisfied by these traces.

Proof. First, we rescale:

y = Aεx, Cε = Bε(Aε)−1, R̃ε(y) = Rε(x),

and use the invariance of the mean to have

U(y) = V (Cεy) + R̃ε(y) and lim
ε→0

〈
|R̃ε(x)|

〉
= 0, (3.17)

where

V (Cεy) =
∑

�∈Sp[V ]
c�[V ] exp

(
i� · (Cεy)

)
in L2

ap.

Now, for any � ∈ Sp[U ], define


 := |c�[U ]|/2 > 0, I := {� : |c�[V ]| > 
}.

Then I is a finite set since
∑

�∈Sp[U ] |c�[U ]|2 < ∞. Using equality (3.17), we can
calculate 〈U(y), exp(i� · y)〉 to obtain

c�[U ] = cε
�[V ] + rε, (3.18)
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where limε→0 rε(x) = 0 and � = tCε�ε, that is, �ε = (tCε)−1� since Cε is one to
one. Take now � > 0 such that, when ε < �, |rε| < 
. Thus, if ε < �, �ε must be in
I. Since �ε is continuous with respect to ε and I is finite, then �ε must be a constant
when ε < �.

Furthermore, if dU = n, taking {�1, . . . , �n} ∈ Sp[U ] which is a basis of Rn, for
ε small enough, we obtain �1, . . . , �n such that �k = tCε�k for all k. Therefore, for
sufficiently small ε, Cε becomes a constant C. Then we rewrite equality (3.17) as
follows:

U(y) = V (Cy) + R̃ε(y).

Passing to the limit in ε yields the conclusion for the generic case n = dU , i.e., U
depends on each variable in y.

In the case dU < n, we use the previous case and choose {�1, . . . , �dU } ⊂ Sp[U ] as
a base of span{Sp[U ]} to obtain

t ((Cε)−1)Sp[U ] ⊂ Sp[V ].

By symmetry in (3.17), the converse inclusion is also true. Therefore,

Sp[U ] = tCεSp[V ] for small ε > 0,

and again tCε is constant on span{Sp[V ]}. We also have relation (3.18) and then the
equality among the Fourier coefficients of each profile. Therefore, dU = dV and V
depends only on the variables in span{Sp[V ]}. Notice that, at the limit, tCε only needs
to be constant on span{Sp[V ]}, not necessarily on the whole space, see Remark 5.3.
This completes the proof. �

4. Validity of nonlinear geometric optics in L∞: 1-D case

For the one-dimensional case with f ∈ C3, without loss of generality, we can take
� = x and consider the following Cauchy problem:

�t u
ε + �xf (uε) = 0, u|t=0 = u + εu1(x/ε�), (4.1)

where u1 ∈ L∞ is periodic with period P = [0, 1].
First, from Lemmas 2.1 and 2.2, we have

‖vε‖L∞ �‖u1‖L∞ < ∞,
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and vε(t, x) is the entropy solution of the Cauchy problem:

�t v + ε�x(av2) = ε2�xR(v, u, ε), v|t=0 = u1(x/ε�), (4.2)

with a = f ′′(u)/2 and

R(v, u, ε) = 1

2

∫ 1

0
(1 − �)2f ′′′(u + ε�v) d� v3, (4.3)

which is a Lipschitz function in v, u, and ε. Then we have the following theorem.

Theorem 4.1. Let f ∈ C3.

(i) If � = 1, then

∫ 1

0
|u�(t, x) − u − ��(t, x/�)| dx = o(ε),

where the profile �(t, x) is uniquely determined by the Cauchy problem for the inviscid
Burgers equation:

�t� + a�X�2 = 0, �|t=0 = u1(X),

which is the validity of classical weakly nonlinear geometric optics.
(ii) If � < 1, then

∫ 1

0
|u�(t, x) − u − �u1(x/��)| dx = o(ε),

which means that the slow initial oscillation propagates linearly.
(iii) If � > 1, then

∫ 1

0
|u�(t, x) − u| dx = o(ε),

which means that the fast initial oscillation is canceled by the nonlinearity of the flux
function.

Proof. We now prove this theorem in the three cases, separately.

(1) Case � = 1: Consider the following perturbation problem:

�tV + a�XV 2 = ε�XR(V, u, ε), V |t=0 = u1(X). (4.4)
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We want to prove that, as ε → 0, the solution sequence V ε of (4.4) is determined by
the profile � governed by the Cauchy problem of the inviscid Burgers equation:

�t� + a�X�2 = 0, �|t=0 = u1(X) ∈ L∞ periodic with period P. (4.5)

Notice that the unique solution �(t, X) of (4.5) is in BV (R2+) although u1(X) is only
L∞. We now divide three steps to prove this fact.

Step 1: Since V ε is an entropy solution of (4.4) for any fixed ε > 0, then, for any
� ∈ C2, �′′ �0, we conclude that

�t�(V ε) + �Xq(V ε) − ε�X

(∫ V ε

�′(�)R�(�, u, ε) d�

)

is a nonpositive, uniformly bounded Radon measure sequence. This implies that

�t�(V �) + �Xq(V �)

is compact in H−1
loc (R2+) from Lemma 2.1 and Murat’s Lemma [24] with the aid of

the argument in Chen–Frid [2]. Then, using the compactness lemma (Lemma 2.4) for
scalar conservation laws, we conclude that there exists �(t, X) such that

V ε(t, X) → �(t, X) a.e.

and �(t, X) is uniquely determined by (4.5). Then we have

∫ t

0

∫ 1

0
|V ε(�, X) − �(�, X)| dX d� → 0 as ε → 0. (4.6)

Step 2: Notice that |R′
v(V , u, ε)|�C. Then, using Lemma 2.7, we have from (4.4)

that, for 0 < t < T < ∞,∫ 1

0
|V ε(t, X) − �(t, X)| dX�εCT |�xu1|M(P ). (4.7)

Using a standard mollifier to smooth u1 such that ε�xu
ε
1 → 0 in L1

loc, we conclude
that, for all t ∈ (0, ∞),

�(ε, t) :=
∫ 1

0
|V ε(t, X) − �(t, X)| dX → 0 as ε → 0. (4.8)

Step 3: Now we return to our problem for vε of (4.2) with the aid of the result (4.8)
for (4.4)–(4.5). For fixed ε > 0, we assume that V ε(t, X) is the solution of the Cauchy
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problem (4.4) and set X = x/ε. By uniqueness, we have

V ε(t, X) = vε(t, x).

Then we have

�(ε, t) := 1

ε

∫ ε

0
|vε(t, x) − �(t, x/ε)| dx. (4.9)

Notice that, for any nonnegative periodic function h(x) with period P,

∫ 1

0
h(x/ε) dx =

(∫ ε

0
+
∫ 2ε

ε

+ · · · +
∫ [ 1

ε
]ε

([ 1
ε
]−1)ε

+
∫ 1

[ 1
ε
]ε

)
h(x/ε) dx

� 2

ε

∫ ε

0
h(x/ε) dx.

Then we conclude from (4.8) that

∫ 1

0
|uε(t, x) − u − ε�(t, x/ε)| dx = o(ε). (4.10)

This validates the weakly nonlinear geometric optics.
(2) Case � < 1: Similarly, we consider the following Cauchy problem:

�tV + aε1−��XV 2 = ε2−��XR(V, u, ε), V |t=0 = u1(X). (4.11)

Then we want to prove that the solution sequence V ε(t, X) of (4.11) is determined as
ε → 0 by the profile �(t, x) solution to

�t� = 0, �|t=0 = u1(X), (4.12)

that is,

�(t, X) = u1(X). (4.13)

Choose 
 = 
(ε) such that ε1−�/
(ε) → 0 as ε → 0. Define

�
(t, X) = � ∗ �
(X),

where �
 is the standard symmetric mollifier. Then �
 is the solution of

�t� = 0, �|t=0 = u

1(X).
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Using Lemma 2.1, we conclude

∫ 1

0
|V ε − �
|(t, X) dX�

∫ 1

0
|u1(X) − u


1(X)| dX + Cε1−�t

∫ 1

0
|�Xu


1(X)| dX,

and hence ∫ 1

0
|V ε − �|(t, X) dX

�
∫ 1

0
|�
(ε)(X) − �(X)| dX +

∫ 1

0
|u
(ε)

1 (X) − u1(X)| dX + oε(1)

�oε(1). (4.14)

Now we return to our problem for vε of (4.2) with the aid of the result (4.14) for
(4.11)–(4.13). For fixed ε > 0, assume that V ε(t, X) is the solution of the Cauchy
problem (4.11) and set X = x/ε�. Then the same argument as in the case � = 1 yields

∫ 1

0
|uε(t, x) − u − εu1(x/ε�)| dx = o(ε) as ε → 0, (4.15)

where we used Lemmas 3.1. This means that the initial oscillation propagates.
(3) Case � > 1: For this case, consider the following Cauchy problem:

�tV + a�XV 2 = ε�XR(V, u, ε), V |t=0 = u1

(
X

ε�−1

)
∗
⇀0 = 〈u0〉 in L∞. (4.16)

We want to prove that the solution sequence V ε of (4.16) is determined as ε → 0 by
the profile � = �(t, X) governed by

�t� + a�X�2 = 0, �|t=0 = 0, (4.17)

that is,

�(t, X) = 0. (4.18)

Using Lemma 2.6, we conclude

V ε(t, X) → �(t, X) ≡ 0 as ε → 0. (4.19)

Now we return to our problem for vε of (4.2) with the aid of the result (4.19) for
(4.16)–(4.18). For fixed ε > 0, assume that V ε(t, X) is the solution of the Cauchy
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problem (4.16) and set X = x/ε. Then, combining the same argument as in the case
� = 1 with Lemmas 3.1 and 2.7 yields

∫ 1

0
|uε(t, x) − u| dx = o(ε) as ε → 0. (4.20)

This means that the initial oscillation is canceled. �

5. Validity of nonlinear geometric optics in L∞: multi-D case

In this section we turn to the multidimensional case to analyze further the nonlinear
geometric optics.

Let u := uε be the Krushkov solution of (1.1)–(1.2). Consider the geometric optics
asymptotic expansion of the solution (1.4). Then the new approach in Section 4 for
one-dimensional conservation laws requires further refinement for solving the general
nonlinear geometric optics for multidimensional scalar conservation laws. We need a
general scaling of variables to recover all the numerous cases. We will perform that
with a “quasi” LU factorization depending on the magnitude of all frequencies. We
will also use Lemma 3.1 to preserve the L1

loc-convergence after a triangular scaling of
variables which depends on ε.

We first recall that, under the one-to-one constant linear change of coordinates � :=
Jx = (�1, . . . ,�n) determined by (1.3), Eq. (1.1) can be rewritten in the weak form
in the variable (t, �) as

�t ũ
ε + div�(JF(̃uε)) = 0, (5.1)

where the Jacobian matrix J = D�
Dx is constant. We also assume that the nonlinear flux

matrix

N :=
⎛⎜⎝ F

(2)
1 (u)/2! · · · F

(n+1)
1 (u)/(n + 1)!

... F
(j+1)
i (u)/(j + 1)! ...

F
(2)
n (u)/2! · · · F

(n+1)
n (u)/(n + 1)!

⎞⎟⎠ (5.2)

is invertible. The invertibility of matrix J = D�
Dx expresses the linear independence of

the phases (�i )1� i �n, while the invertibility of matrix N in (5.2) is an assumption of
genuine nonlinearity and “genuine multidimensionality”.

The possibility that the initial oscillations with high frequency propagate for (1.1)
depends on the magnitude indices � := (�1, . . . , �n) of ε in (1.2) and on the matrix:

M = JN . (5.3)
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With our choice, the matrix M expresses the flux in the �-coordinates: the j th column
corresponds to the term εj v

j+1
ε in the Taylor expansion of F(uε) := F(u + εvε); while

the ith row corresponds to the derivatives with respect to the ith phase �i (see (5.6)
below).

In this section, we want to find the profile � and to show the convergence of vε

to � after a suitable triangularization of the matrix M, replacing each variable �i

with �i/ε
�i for a suitable exponent �i . In order to preserve the L1

loc-convergence of
vε to � in the rescaled coordinates and to go back in the original space coordinates,
all the exponents �i must be nonnegative, see Lemma 3.1. Therefore, in this general
multidimensional case, we need a triangularization (up to a permutation) of matrix M,
combined with a suitable scaling. In the statement of Theorem 5.1 below, the profiles
are defined in the “final” variables

X := (SLEε)−1�,

where S is a permutation (substitution) matrix, L a lower triangular matrix (almost) as
in the LU decomposition of any n × n matrix, and the rescaling diagonal matrix Eε

satisfies

Eε
ii = ε�i := εmin(�i ,�i ),

for which the precise notations are given below. Now there are two cases.
Case 1. Single phase in (1.2): u1 = u1(ε

−�1�1). In this case, consider the first
integer �1 �1 such that ∇x�1 · F (1+�1)(u) 
= 0. As in the previous sections, we say
that the corresponding oscillation is linear if �1 > �1 and is nonlinear if �1 ��1. In
the latter case, if �1 < �1, the fast oscillations are canceled by the nonlinearity of the
flux function, whereas the case �1 = �1 (“WNLGO”) corresponds the particular case
�1 = �1 = 1 to the classical weakly nonlinear geometrical optics (�1 = 1) for the
Burgers equation (�1 = 1) since ∇x�1 · F (2)(u) 
= 0.

Case 2. Multiple phases in (1.2): this situation is of course much more complicated.
For instance, if �1 < �1, not only the corresponding oscillation is canceled, but also it
can interact with the other oscillations, see examples below, just after Theorem 5.1.

The structure of the final form of the matrix in Lemma 5.1 below reflects the partition
between these two different cases: the last rows (m < i�n) correspond to the linear
oscillations, whereas the first rows (1� i�m) correspond to the nonlinear oscillations.
More precisely, as in the proof of Lemma 5.1, at each step k, there are three sets of
indices Ek, Fk, and Gk . In the “final” coordinates X, the set Ek corresponds (among
the remaining coordinates) to the nonlinear oscillations, due to the term εkvk+1

ε in
the Taylor expansion of F(uε) = F(u + εvε); in contrast, the set Gk corresponds to
the linear oscillations, whereas the set Fk correspond to the “fast” oscillations in the
directions that are orthogonal to F(k+1)(u), which therefore do not play a role in this
step.

Thus, in order to extend the results of Section 4 to the general multidimensional
case, we need the following variant of LU-type factorization.
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Lemma 5.1 (LU-type factorization with respect to � = (�1, . . . , �n)). Let M be an in-
vertible n × n real matrix and � ∈ [0, ∞)n. Then there exist an n × n permutation
matrix S, a lower triangular invertible n × n matrix L, an n × n matrix U, and an
integer m ∈ {0, 1, . . . , n} with the following properties:

(i) M = SLU;
(ii) For �i := min{j : Uij 
= 0} with 1� i�n and � := S−1�,

(a) i < j �m ⇒ �i < �j and �i ��j ,
(b) Ui�i

= 1 for 1� i�m,
(c) �i ��i for i�m,
(d) �i > �i for i > m;

(iii) Lij = 
ij for m < j �n and 1� i�n, where 
ij is the Kronecker symbol.

Proof. The proof follows the classical proof of the LU decomposition. In fact, in
general, it is an incomplete LU factorization depending on the magnitude of �. We
give an algorithmic proof here.

Initialization: Set M0 := M , �0 := �, m0 := 0, n0 := n.
Loop: For k = 1, . . . , n, let ik := 1 + mk−1 and Ik := {ik, . . . , nk−1}.
If Ik = ∅, stop.
If Ik 
= ∅, then the algorithm is continued. We write Ik as the following disjoint

union:

Ik = Ek ∪ Fk ∪ Gk,

where

Ek = {�k−1
i �k : i ∈ Ik, M

k−1
ik 
= 0}, ek := Cardinal(Ek),

Fk = {�k−1
i �k : i ∈ Ik, M

k−1
ik = 0}, fk := Cardinal(Fk),

and

Gk = {�k−1
i < k : i ∈ Ik}, gk := Cardinal(Gk).

We make a permutation on the row of matrix Mk−1 with index in Ik such that

M̃k := SkMk−1, �̃k := Sk�k−1,

where Ẽk has the same definition as Ek replacing � and M by �̃ and M̃ . We
do the same for F̃ k and G̃k . We require that Ẽk be ordered: i, j ∈ Ẽk , i�j ⇒
�̃k
i � �̃k

j . We also require that Ik begins by Ẽk , continues by F̃ k , and finishes by G̃k ,
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i.e.,

{ik, . . . , ik − 1 + ek} = Ẽk, {ik + ek, . . . , ik − 1 + ek + fk} = F̃ k,

{ik + ek + fk, . . . , nk} = F̃ k.

Since G̃k represents the low oscillations, we define nk := nk−1 − gk .
Now, there are two subcases:

(i) If Ẽk 
= ∅, then we calculate one step on the classical Gauss elimination on

the submatrix of M̃k with indices in Ẽk × Ẽk , with pivot entry M̃k
ik,ik


= 0, Mk :=
(Lk)−1M̃k , and Mk

ik,ik
= 1. Therefore, we have mk := 1 + mk−1 = ik and �ik

:= k.

(ii) If Ẽk = ∅, then we do nothing, i.e., Lk := Id, Mk := M̃k , and mk := mk−1.

End Loop. Then we have m = mn and U := Mn.
Indeed, we can easily prove by induction that I1 = {1, . . . , n} and Ik+1 ⊂ Ik .

Moreover, Ik becomes empty for k > n and Mk
i,j = 0 for i < k and j ∈ Ik . All the

statements of Lemma 5.1 follow by induction.
Therefore, this algorithm yields

M :=
[
S1L1S2L2 · · · Sn−1Ln−1

]
U.

Finally, we define

� = �n−1, S := S1S2 · · · Sn−1 = �n−1
j=1S

j ,

and

L := �n−1
k=1

(
�n−1

j=k+1S
j
)−1

Lk
(
�n−1

j=k+1S
j
)

.

The result follows since the structure of each Lk matrix is invariant by any permu-
tation of the labeling of coordinates of index j>k. This concludes the proof. �

We will give some examples after Theorem 5.1.

Remark 5.1.

(i) Generically, det
(
(Mij )1� i,j �k

) 
= 0 for all k. Thus, if �i � i, then S = Id, m =
n, �i ≡ i, � = �, and we obtain the classical LU decomposition with an upper
triangular matrix U.

(ii) If all �i < 1, then we have only S = L = Id, M = U , and m = 0.
(iii) If all �i �n, then we have the classical LU factorization with m = n and �i ≡ i.
(iv) This factorization is not unique. In fact, L and U depend on S.

We now use the factorization in Lemma 5.1: M = SLU, �, m, and �.
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Remark 5.2. For the diagonal matrices Aε, Bε, and Eε such that

Aε
ii := ε−�i , Bε

ii := ε−�i , Eε
ii := εmin(�i ,�i ), (5.4)

then AεS = SBε. Define Lε := BεLEε which is the lower triangular matrix. Note
that its diagonal terms Lε

jj are nonzero constants or go to ∞ if j �m. Indeed, the
structure of Lε is the same as T ε described in Section 3.2. Furthermore, we find that,
for j > m, Lε

jj = 1 and Lε
ij = 0 if j 
= i.

In fact, this can be seen by a careful examination of the entries (Lε)ij for j � i�m.
Indeed, Lε is like the identity matrix, except its strictly triangular part, in which we
have �1 ��2 � · · · ��m from Lemma 5.1 and

(Lε)ij = ε�j −�i Lij with �j = min(�j , �j ) = �j .

Since �j − �i �0, we arrive at the conclusion.

Therefore, we have the following main theorem.

Theorem 5.1. Assume that F ∈ Cn+2(R; Rn), and u1 ∈ L∞(Rn; R) is P -periodic. Let
uε(t, x) be the entropy solution in L∞ of (1.1)–(1.2). Then

u�(t, x) = u + εvε(t, x)

with

vε(t, x) − �(t, (SLEε)−1�(t, x)) → 0 in L1
loc(R

+ × Rn), (5.5)

where SLEε are defined in Lemma 5.1, �(t, x)i := �i (x1 − 	1t, . . . , xn − 	nt), and the
profile � is the unique entropy solution to the Cauchy problem

�t� +
m∑

i=1

�Xi
�1+�i = 0, �(0, X) = w1(X),

where w1(X) is the weak-star limit of the whole sequence {u1 (SLεX)}ε>0 in L∞, that
is,

u1
(
SLεX

) ∗
⇀w1(X) in L∞ when ε → 0.

Furthermore, � is the unique profile satisfying (5.5) (see Remark 5.3(i) for a precise
statement).
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Before proving Theorem 5.1, let us explain several examples of numerous cases
for the two-dimensional conservation laws, written in the phase variables, included in
Theorem 5.1. In this case, we have

M :=
(

a c

b d

)
,

{
�t u

ε + (a��1
+ b��2

)(uε)2 + (c��1
+ d��2

))(uε)3 = 0,

uε(0, x1, x2) = εu1
(
�1/ε

�1 , �2/ε
�2
)
.

For each example, we give the factorization: M = SLU, Lε, the integer m, the profile
equation with initial data w1(X1, X2) as a weak oscillating limit, and an asymptotic
expansion of vε := (uε(t, x1, x2)− ū)/ε (ū = 0 here). In each case, in each of the first
m rows of matrix U, say in row i, the only important term is the first nonzero entry
(often on the diagonal, and normalized to be 1), which defines the dominant term in
the Taylor expansion of the nonlinear part of the flux in the corresponding direction
Xi . Note that all the other entries in these rows do not play any role in the profile
equations.

(i) Case �1 = 1, �2 = 2, b = 0:

S = Id :=
(

1 0
0 1

)
, L =

(
a 0
0 d

)
, U =

(
1 c/a

0 1

)
, Lε = L, m = 2,

�t� + �X1�
2 + �X2�

3 = 0, �(0, X, Y ) = w1(X1, X2) = u1(aX1, dX2),

vε(t, x1, x2) � �(t, �1(x1, x2)/(aε), �2(x1, x2)/(dε2)).

(ii) Case �1, �2 < 1:

S = Id, L = Id, U = M, Lε = Id, m = 0,

�t� = 0, �(0, X1, X2) = u1(X1, X2),

vε(t, x1, x2) � u1(�1(x1, x2)/ε
�, �2(x1, x2)/ε

�).

(iii) Case �1 = 1, �2 = 1, a 
= 0:

S = Id, L =
(

a 0
b 1

)
, U =

(
1 c/a

0 (ad − bc)/a

)
, Lε = L, m = 1

�t� + �X1�
2 = 0, �(0, X1, X2) = u1(aX1, bX1 + X2),

vε(t, x1, x2) � �

(
t, �1(x1, x2)/(aε),

(
�2(x1, x2) − b

a
�1(x1, x2)

)
/ε

)
.
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(iv) Case �1 < 1 < �2, b 
= 0:

S =
(

0 1
1 0

)
, L =

(
b 0
0 1

)
, U =

(
1 d/b

a c

)
, Lε =

(
bε1−� 0

0 1

)
,

m = 1,

�t� + �X1�
2 = 0, �(0, X1, X2) = w1(X1, X2) =

∫ 1

0
u1(X2, �) d� := w1(X2),

that is,

�(t, X1, X2) = w1(X2),

which implies

vε(t, x1, x2) � w1(�1(x1, x2)/(bε)).

(v) Case �1 = 1, �2 = 2, a 
= 0, b 
= 0:

S = Id, L =
(

a 0
b d

)
, U =

(
1 c/a

0 1

)
, Lε =

(
a 0

bε−1 d

)
, m = 2,

�t� + �X1�
2 + �X2�

3 = 0, �(0, X1, X2) = w1(X1) =
∫ 1

0
u1(aX1, �) d�,

that is, �(t, X1, X2) = �(t, X1) is the unique solution of

�t� + �X1�
2 = 0, �(0, X1) = w1(X1),

which implies

vε(t, x1, x2) � �(t, �1(x1, x2)/(aε)).

(vi) Case 1 < �1 = �2 < 2, a 
= 0, b 
= 0, a
b

∈ Q (rational numbers):

S = Id, L =
(

a 0
b 1

)
, U =

(
1 c/a

0 det(M)/a

)
, Lε =

(
ε1−�a 0
ε1−�b 1

)
,

m = 1,

�t� + �X1�
2 = 0, �(0, X1, X2) = w̃1(X2) =

∫ 1

0
u1(p�, q� + X2) d�,
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where (p, q) belongs in Z2-{(0, 0)} such that qa − pb = 0, which implies

�(t, X1, X2) = w̃1(X2),

and

vε(t, x1, x2) � w̃1

((
�2(x1, x2) − p

q
�1(x1, x2)

)/
ε�
)

.

(vii) Case �1 = �2 = 2, a
b

∈ Q: this is an interesting case of nonlinear propaga-
tion of high oscillations with maximal frequency without orthogonality between the
phase gradients and the second flux derivative. Details for this last case are left to the
reader.

Proof of Theorem 5.1. We need several steps and linear scalings of variables to prove
this general theorem.

Step 1: Get rid of the linear transport. With a linear change of variables, we may
assume that the gradient of the flux vanishes at the constant state u. That is, for any
i ∈ {1, . . . , n},

yi := xi − 	i t, Gi(u) := Fi(u) − 	iu.

Then G′(u) = (0, . . . , 0) and G′′(u) = F′′(u) for all u, and the problem becomes

�t u
ε + divy(G(uε)) = 0,

uε(0, y) = uε
0(y) ≡ u + εu1(A

ε�).

Step 2: Move to a periodic case. With a second constant change of variables � := Jy,
the solution and the data are periodic, and the problem becomes

�t u
ε + div�(JG(uε)) = 0,

uε(0, �) = uε
0(�) ≡ u + εu1(A

ε�).

This change does not affect the convergence in L1
loc(R

n). We still denote by uε the
same function after the change of variables.

Step 3: Make a Taylor expansion. Now, set uε := u + εvε. Performing a Taylor
expansion and defining the vector

Vε := t
(
ε1v2

ε , . . . , ε
ivi+1

ε , . . . , εnvn+1
ε

)
.
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Then

div�(F(uε)) = ε

⎛⎝ ∑
1� i,j �n

Mij ε
j��i

vj+1
ε + εn+1div�(Rε

0)

⎞⎠ , (5.6)

and we can rewrite the problem as

�t vε + div�(MVε) = εn+1div�(Rε
0),

vε(0, �) ≡ u1(A
ε�),

where Rε
0 is a vector function of vε, which is bounded in L∞, thanks to the maximum

principle.
Step 4: Factorize M. Now we can apply the change of variables in Lemma 5.1. Since

M = (SL)U , we use the new variable � such that � = (SL)�. Then we find that the
problem becomes

�t vε + div�(UVε) = εn+1div�(Rε
1),

vε(0, �) = u1(A
εSL�) = u1(SBεL�),

where (SL)Rε
1 = Rε

0.
Step 5: Rescale. With the new variable X given by � = EεX, we obtain

�t vε +
m∑

i=1

�Xi
(v

�i+1
ε + εrε

i ) = ε�divXp (Rε
2),

vε(0, X) = u1(SBεLEεX) = u1(SLεX),

where Rε
2, r

ε
i , 1� i�m, are functions of vε which are bounded in L∞ and � > 0.

Step 6: Smooth initial data. For � > 0 chosen in Step 5, take �ε a standard mollifier
such that uε

1 = u1 ∗ �ε satisfies

lim
ε→0

ε�T V (uε
1) = 0. (5.7)

Step 7: Apply the L1-stability with respect to small BV perturbations. Set X :=
(Xc, Xp) with Xc := (Xi)i �m and Xp := (Xi)i>m. Notice the important fact that the
initial data has no oscillation in Xp, which is due to the structure of matrix Lε or,
more precisely, to the incomplete LU factorization (see Remark 5.2). Therefore, we
can control the remainder by Lemma 2.7 and Step 6 so that vε − wε is small in L1

loc,
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where wε is the solution of the following reduced equation:

�twε +
m∑

i=1

�Xi

(
w

�i+1
ε + εrε

i (wε)
)

= 0,

wε(0, X) = u1(SLεX),

in which Xp plays the role of a parameter. Notice that, for almost all fixed Xp, thanks
to Lemma 3.2, the initial data sequence converges weakly:

vε(0, z) ⇀ w1(Xc; Xp).

Finally, in order to pass to the limit in the conservation law, we need the compactness
with respect to the variable Xc.

Step 8: Use compactness. Set

wε(X) = wε(Xc; Xp),

where Xp plays only the role of a parameter. For any fixed Xp, wε(t, Xc; Xp) is the
solution of the Cauchy problem for a genuinely nonlinear m-dimensional conservation
law. Thus we can use the compactness argument for each Xp to get

wε(·; Xp) → �(·; Xp) ∈ L1
loc,t,Xc

(R+ × Rm).

Now, since the sequence is bounded in L∞, by Lebesgue’s Theorem,

wε → � in L1
loc,t,X(R+ × Rn).

Noting � = (SLEε)X and using Lemma 3.1 about the triangular change of variables,
we conclude that the L1

loc-convergence is preserved, which implies

vε(t, �) − �(t, (SLEε)−1�) → 0 in L1
loc when ε → 0.

Step 9: Use the uniqueness of the profile. First, with the notations in Section 3.2,
we have 〈|Rε|〉 → 0,

where

Rε := vε(t, x) − �(t, (SLEε)−1�(t, x)).

which implies the uniqueness of such a profile.
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Indeed, Lemma 3.1 provides exactly such a convergence in L1
ap and therefore here the

L1 convergence for 1-periodic functions. Furthermore, our change of variables satisfies
the assumptions of Lemma 3.1. Therefore, the asymptotics in (5.5) is valid in L1

ap, and
the uniqueness follows, as stated below in Remark 5.3.

This completes the proof of Theorem 5.1. �

Remark 5.3. From Theorem 5.1, we have

(i) Although the factorization is far from being unique, the profile defined in Theo-
rem 5.1 is unique modulo a linear change of variables, which is one-to-one on
span{Sp[�(0, .)]}, which is a subspace of dimension at most m. Along the lines
of Lemma 3.3, another factorization could perhaps provide formally a different
profile, but two different profiles are equal up to a linear change of variables,
and the only differences between them involve fast oscillating variables, which
are therefore “killed” by the nonlinearities.

(ii) If all �i < 1, then, at the limit, all the waves propagate linearly:

vε(t, x) � u1(A
ε�(t, x)).

(iii) If all �i > n, then, at the limit, all the initial oscillations are canceled by the
nonlinearity:

vε(t, x) �
∫

P

u1(�) d�.

(iv) If all �i are between 1 and n, there is a large number of cases.
(v) If all �i = 1, we recover the classical case of weakly nonlinear geometric optic

(WNLGO).
(vi) If �i > 1, plus a generic assumption, then again all the oscillations are canceled

by the nonlinearity. An example of such an assumption is that no phase gradient
is orthogonal to the vector F′′(u) and all �i are distinct.

(vii) More surprisingly, with a suitable phase choice with respect to the nonlinearity
(for instance, choose J such that M = JN becomes upper triangular), it is always
possible to allow for the propagation of an oscillation with small amplitude ε

and frequency ε−� for all � ∈ (0, n]. This is a new multidimensional feature! In
contrast, if � > n, the “true” nonlinearity always cancels this oscillation. Therefore,
in dimension n�1, the critical exponent is n, provided that the solution oscillates
in very singular directions! For n = 1, we recover the classical geometric optics.
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