期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:269
Saddle-node bifurcation of periodic orbits for a delay differential equation
Article
Beretka, Szandra1  Vas, Gabriella2 
[1] Univ Szeged, Bolyai Inst, 1 Aradi V Tere, Szeged, Hungary
[2] Univ Szeged, Bolyai Inst, MTA SZTE Anal & Stochast Res Grp, 1 Aradi V Tere, Szeged, Hungary
关键词: Delay differential equation;    Positive feedback;    Saddle-node bifurcation;    Large-amplitude periodic solution;   
DOI  :  10.1016/j.jde.2020.03.039
来源: Elsevier
PDF
【 摘 要 】

We consider the scalar delay differential equation (x) over dot(t)= -x(t)+ f(K)(x(t - 1)) with a nondecreasing feedback function f(K) depending on a parameter K, and we verify that a saddle-node bifurcation of periodic orbits takes place as K varies. The nonlinearity f(K) is chosen so that it has two unstable fixed points (hence the dynamical system has two unstable equilibria), and these fixed points remain bounded away from each other as Kchanges. The generated periodic orbits are of large amplitude in the sense that they oscillate about both unstable fixed points of f(K). (c) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2020_03_039.pdf 617KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次